On basis of the group of Washington's cyclotomic units

SOUANEF Rafik

Université Marie et Louis Pasteur (Besançon, France)

14 avril 2025

• • • • • • • • • • • •

.∃⇒

VFU

SOUANEF Rafik

Introduction

Notation

In what is next \mathbb{K} is an abelian number field. Let $\mathsf{E}(\mathbb{K}) = \mathcal{O}_{\mathbb{K}}^{\times}$ denote the units group of \mathbb{K} . Let $h(\mathbb{K})$ denote the cardinality of the class group of \mathbb{K} . Let $\zeta_n = \exp(2i\pi/n)$.

<ロ> (日) (日) (日) (日) (日)

VEU

SOUANEF Rafik

Introduction - Cyclotomic units

History

Kummer had the idea to consider a certain subgroup of $E(\mathbb{Q}(\zeta_p))$ to try to approximate this last group of units. He noticed that the index of this subgroup was $h(\mathbb{Q}(\zeta_p)^+)$.

< < >> < < < >>

VEU

Definition

Let C_n denote the Galois submodule of $(\mathbb{Q}(\zeta_n)^*, \times)$ generated by the $1 - \zeta_d$'s with $d \mid n$ and let $Was(\mathbb{K}) = E(\mathbb{K}) \cap C_n$.

Definition

Let $\mathsf{Sin}(\mathbb{K})$ be the intersection of $\mathsf{E}(\mathbb{K})$ with the Galois module generated by the

$$\mathsf{N}_{\mathbb{Q}(\zeta_d)/\mathbb{K}\cap\mathbb{Q}(\zeta_d)}(1-\zeta_d)'s.$$

• • • • • • • • • • • • •

VEU

SOUANEF Rafik

Proposition

The abelian group $Sin(\mathbb{K})$ is generated by :

-the roots of unity of $\mathbb K$

-the $N_{\mathbb{Q}(\zeta_d)/\mathbb{K}\cap\mathbb{Q}(\zeta_d)}(1-\zeta_d^a)$'s with $d \mid n$ such that d is not a prime power, $d \land (n/d) = 1$ and $a \land d = 1$ -the $N_{\mathbb{Q}(\zeta_d)/\mathbb{K}\cap\mathbb{Q}(\zeta_d)}(1-\zeta_d/1-\zeta_d^a)$'s with d being a prime power

dividing *n* that satisfies $d \wedge (n/d) = 1$ and $a \wedge d = 1$.

< ロ > < 同 > < 回 > < 回 >

Theorem (Sinnott, 1980/1981)

Both groups $Was(\mathbb{K})$ et $Sin(\mathbb{K})$ have finite index in $E(\mathbb{K})$ (that is they both are finelity generated abelian groups with rank $r_1 + r_2 - 1$). We have $[E(\mathbb{K}) : Sin(\mathbb{K})] \longleftrightarrow h(\mathbb{K}^+)$.

・ロト ・同ト ・ヨト ・ヨト

VEU

SOUANEF Rafik

Theorem (Sinnott, 1980/1981)

Both groups $Was(\mathbb{K})$ et $Sin(\mathbb{K})$ have finite index in $E(\mathbb{K})$ (that is they both are finelity generated abelian groups with rank $r_1 + r_2 - 1$). We have $[E(\mathbb{K}) : Sin(\mathbb{K})] \longleftrightarrow h(\mathbb{K}^+)$.

Warning

In what is next, we quotient those groups by the group of roots of unity of $\mathbb K$ (and keep the same notation).

• • • • • • • • • • • • •

Theorem (Sinnott, 1980/1981)

Both groups $Was(\mathbb{K})$ et $Sin(\mathbb{K})$ have finite index in $E(\mathbb{K})$ (that is they both are finelity generated abelian groups with rank $r_1 + r_2 - 1$). We have $[E(\mathbb{K}) : Sin(\mathbb{K})] \longleftrightarrow h(\mathbb{K}^+)$.

Warning

In what is next, we quotient those groups by the group of roots of unity of $\mathbb K$ (and keep the same notation).

Theorem (Gold and Kim, 1989, Kucera, 1991/1992)

If $\mathbb{K} = \mathbb{Q}(\zeta_n)$, a <u>basis</u> of Was $(\mathbb{Q}(\zeta_n)) = Sin(\mathbb{Q}(\zeta_n))$ has been given explicitly.

SOUANEF Rafik

On basis of the group of Washington's cyclotomic units

<ロ> <四> <四> <三</p>

Totally deployed fields

Definition

Suppose
$$\mathbb{K}$$
 has conductor $n = \prod_{i=1}^r p_i^{e_i} = \prod_{i=1}^r q_i$. Say \mathbb{K} if totally deployed if
 $\mathbb{K} = \mathbb{K}_1 \cdots \mathbb{K}_r$

for some $\mathbb{K}_i \subset \mathbb{Q}(\zeta_{q_i})$.

Remark

Some cases have been treated in -Werl, Milan "On bases of Washington's group of circular units of some real cyclic number fields", JNT, 2014 -Kučera, Radan "The circular units and the Stickelberger ideal of a cyclotomic field revisited", Acta Arith., 2016

э

イロン 不得 とくほど くほどう

My work

Theorem (S. 2024)

If \mathbb{K} is totally deployed, then $Was(\mathbb{K}) \otimes_{\mathbb{Z}} \mathbb{Z}[1/2]$ is a direct factor of $Was(\mathbb{Q}(\zeta_n)) \otimes_{\mathbb{Z}} \mathbb{Z}[1/2]$ and we can explicit a $\mathbb{Z}[1/2]$ basis of $Was(\mathbb{K}) \otimes_{\mathbb{Z}} \mathbb{Z}[1/2]$.

<ロ> (日) (日) (日) (日) (日)

VFU

SOUANEF Rafik

My work

Theorem (S. 2024)

If \mathbb{K} is totally deployed, then $Was(\mathbb{K}) \otimes_{\mathbb{Z}} \mathbb{Z}[1/2]$ is a direct factor of $Was(\mathbb{Q}(\zeta_n)) \otimes_{\mathbb{Z}} \mathbb{Z}[1/2]$ and we can explicit a $\mathbb{Z}[1/2]$ basis of $Was(\mathbb{K}) \otimes_{\mathbb{Z}} \mathbb{Z}[1/2]$.

Corollary

Let A_1, \ldots, A_k be disjoint subsets of $[\![1, r]\!]$. Let $h_p^+(\mathbb{K})$ denote the *p*-part of the class number of \mathbb{K}^+ . For all odd prime number *p*, we have

$$\prod_{j=1}^k h_p^+(\mathbb{K}_{A_j}) \mid h_p^+(\mathbb{K}).$$