Banach-Nečas-Babuška theorem and proof

Raphael Lecoq

July 2024

I - Theorem

The scalar field is always $\mathbb{K} = \mathbb{R}$ or \mathbb{C} .

Theorema 0.1: Banach–Nečas–Babuška

Let V, W be respectively Banach and reflexive Banach space.

 $a: V \times W$ continuous bilinear form. $f: W \to \mathbb{R}$ continuous linear form.

$$
(\star \star): \quad \text{find } u \in V, \ \ a(u, w) = f(w) \ \ \forall w \in W
$$

 $(\star \star)$ is well-posed if and only if

(BNB1)
$$
\exists C_{\text{sta}} > 0, \forall v \in V, \quad \sup_{w \in W \setminus \{0\}} \frac{a(v, w)}{\|w\|_{W}} \ge C_{\text{sta}} \|v\|_{V}
$$

(BNB2)
$$
\forall w \in W, \quad (\forall v \in V, a(v, w) = 0) \Longrightarrow w = 0
$$

The following control holds true :

$$
\left\Vert u\right\Vert _{V}\leq\frac{1}{C_{\text{sta}}}\left\Vert f\right\Vert _{W^{\prime}}
$$

II - Proof

1) Definitions

Definition 0.2: Well-posedness

 $(\star \star)$: find $u \in V$, $a(u, w) = \mathbf{f}(w)$ $\forall w \in W$

is well-posed in the sense of Hadamard if and only if there exists a *unique* solution u and

 $\exists c > 0, \ \forall f \in W', \ \|u\|_{V} \leq c \|f\|_{W'}$

In the next section we always consider V, W real Banach spaces. We also denote $A \in \mathcal{L}(V, W)$ a linear continuous operator.

Definition 0.3: Dual space

The dual space of V is $V' := \mathcal{L}(V, \mathbb{R})$ the space of continuous linear forms. We denote $\langle A|v \rangle_{V',V} = Av.$

Remark :

Being given an operator $A: V \to W$, one can define a unique linear operator A^T by Riesz representation theorem that has the following property :

 $\forall v \in V, \forall w' \in W', \ \ \langle A^T w' | v \rangle_{V',V} = \langle w' | Av \rangle_{W',W}$

Definition 0.4: Dual operator

The dual operator $A^T: W' \to V'$ is defined by

$$
\forall v \in V, \forall w' \in W', \ \ \langle A^T w' | v \rangle_{V',V} = \langle w' | Av \rangle_{W',W}
$$

Definition 0.5: Annihilator

For
$$
M \subset V
$$
, $N \subset V'$
\n
$$
M^{\perp} = \left\{ v' \in V' \middle/ \forall m \in M, \langle v'|m \rangle_{V,V'} = 0 \right\} \subset V'
$$
\n
$$
N^{\perp} = \left\{ v \in V \middle/ \forall n' \in N, \langle n'|v \rangle_{V',V} = 0 \right\} \subset V
$$
\nWe note that $V^{\perp} = \{0_{V'}\}$ and $\{0_{V}\}^{\perp} = V'$.

2) Preliminary results

From these definitions, we can characterise the range and the kernel of an operator.

Lemma 0.6: Characterisation of the range and kernel

• Ker
$$
A = (\text{Im } A^T)^{\perp}
$$

• Ker
$$
A^T = (\text{Im } A)^{\perp}
$$

•
$$
\overline{\text{Im } A} = (\text{Ker } A^T)^{\perp}
$$

•
$$
\overline{\operatorname{Im} A^T} \subset (\operatorname{Ker} A)^{\perp}
$$

Functional Analysis, Sobolev Spaces and Partial Differential Equations, [\[Bre10\]](#page-6-0) p.45 \Box

• Im $A^T = (\text{Ker } A)^{\perp}$

${\cal D}$

Functional Analysis, Sobolev Spaces and Partial Differential Equations, [\[Bre10\]](#page-6-0) p.46 \Box

\mathcal{D}

Functional Analysis, Sobolev Spaces and Partial Differential Equations, [\[Bre10\]](#page-6-0) p.35 \Box

3) Characterisation of a functionnal operator

Lemma 0.9

EQU

- $\bullet~\operatorname{Im} \, A$ is closed
- There exists $\alpha > 0$ such that for all $w \in \text{Im } A$, there exists $v_w \in V$

 $Av_w = w$ and $||w||_W \ge \alpha ||v_w||_V$

\mathcal{D}

 \Rightarrow : Suppose Im $A \subset W$ is closed.

Since W is Banach, Im A is also one.

Considering $B = B_V(0, 1)$ the open unity sphere and using the Open Mapping theorem [0.8](#page-2-0) with $A \simeq A|_{\text{Im }A}: V \to \text{Im }A$ surjective, $A(B)$ is open.

Since $0 \in A(B)$, there exists $\gamma > 0$ such that $B_W(0, \gamma) \subset A(B)$. Let $w \in \text{Im } A$, then $\frac{\gamma}{2}$ 2 w $\frac{w}{\|w\|_W} \in B_W(0, \gamma) \subset A(B).$

Then there exists $z \in B$ such that

$$
Az = \frac{\gamma}{2} \frac{w}{\|w\|_W} \iff A(\frac{2\|w\|_W}{\gamma}z) = w
$$

and

$$
||v_w||_V = \underbrace{||z||_V}_{\leq 1} \frac{2}{\gamma} ||w||_W \leq \frac{2}{\gamma} ||w||_W \iff \underbrace{\frac{\gamma}{2}}_{:=\alpha} ||v_w||_V \leq ||w||_W
$$

 \Leftarrow Suppose there exists $\alpha > 0$ such that for all $w \in$ Im A, there exists $v_w \in V$

 $Av_w = w$ and $||w||_W \geq \alpha ||v_w||_V$

Let $(w_n)_n \in (\text{Im } A)^{\mathbb{N}}$ be a converging sequence to $w \in W$.

There exists $(v_n)_n$ such that $\begin{cases} Av_n = w_n \end{cases}$ $||w_n||_W \ge \alpha ||v_n||_V \forall n.$

 $(w_n)_n$ convergence implies $(w_n)_n$ is a Cauchy sequence and by the inequality $(v_n)_n$ is a Cauchy sequence in V .

Yet V is a Banach thus $(v_n)_n$ converge to $v \in V$. A being continuous we can then write

 $Av = w$

 \Box

Hence $w \in \text{Im } A$ i.e. Im A is closed.

Lemma 0.10

EQU :

- (i) A^T is surjective
- (ii) A is injective and Im A is closed
- (iii) There exists $\alpha > 0$ such that $\forall v \in V$, $||Av||_W \ge \alpha ||v||_V$.
- (iv) There exists $\alpha > 0$ such that $\forall v \in V$, $\inf_{W'} \sup_{V}$ V $\left\langle A^T w' \middle| v \right\rangle_{V',V}$ $\frac{1}{\|w'\|_{W'}} \frac{1}{\|v\|_{V}} \ge \alpha.$

 $(i) \Rightarrow (ii)$: A^T is surjective hence Im $A^T = V'$ is closed because V' is a Banach. Hence Im A is closed using Closed Range Theorem [0.7.](#page-2-1) Then $(\text{Im } A^T)^{\perp} = \{0\} = \text{Ker } A.$

 $(ii) \Rightarrow (i)$: By Closed Range Theorem [0.7,](#page-2-1) Im A closed \Rightarrow Im $A^T = (\text{Ker } A)^{\perp}$. Yet A is injective hence Ker $A = \{0\}$ thus Im $A^T = V'$ i.e. A^T is surjective.

 $(ii) \Rightarrow (iii)$: Im A is closed and Im $A = \{Av \mid v \in V\}.$ Using Lemma 0.9 one can construct α as in the proof to have

$$
||Av||_w \ge \alpha ||v||_V
$$

 $(iii) \Rightarrow (ii)$:

The injectivity of A comes directly from the inequality. Im A is closed using the same proof as $3)$ in the \Leftarrow part.

 $(iii) \Rightarrow (iv)$:

Using the corollary of Hahn-Banach theorem :

$$
\sup_{w' \in W'} \frac{\langle w' | Aw \rangle_{W',W}}{\|w'\|_{W}} = \|Av\|_{W} \ge \alpha \|v\|_{W}
$$

Hence dividing by $||v||_V$ and taking the inf

$$
\inf_{v\in V}\sup_{w'\in W'}\frac{\langle w'|Aw\rangle_{W',W}}{\|w'\|_W\,\|v\|_V}\geq\alpha
$$

 $(iv) \Rightarrow (iii)$: Take $v \in V$.

$$
||Av||_{W} = \sup_{w' \in W'} \frac{\langle w'|Aw\rangle_{W',W}}{||w'||_{W}}
$$

=
$$
\sup_{w' \in W'} \frac{\langle w'|Aw\rangle_{W',W}}{||w'||_{W} ||v||_{V}} ||v||_{V}
$$

$$
\geq \inf_{v \in V} \sup_{w' \in W'} \frac{\langle w'|Aw\rangle_{W',W}}{||w'||_{W} ||v||_{V}} ||v||_{V} \geq \alpha ||v||_{V}
$$

Theorema 0.11: Bijectivity characterisation

A is bijective if and only if

$$
\begin{cases}\n A^T: W' \to V' \text{ injective} \\
\exists \alpha > 0, \ \forall v \in V, \ \|Av\|_W \ge \alpha \|v\|_V\n\end{cases}
$$

\mathcal{D}

⇒ : Ker $A^T \stackrel{0.6}{=} (\text{Im }A)^{\perp} = \{0\}$ $A^T \stackrel{0.6}{=} (\text{Im }A)^{\perp} = \{0\}$ $A^T \stackrel{0.6}{=} (\text{Im }A)^{\perp} = \{0\}$ because A is surjective. i.e. A^T injective. Yet Im $A = W$ is closed. Using Lemma $0.10 : ||Av||_W \ge \alpha ||v||_V$ $0.10 : ||Av||_W \ge \alpha ||v||_V$.

 \Leftrightarrow :

Using Lemma [0.10](#page-3-0) (iii) \Rightarrow (ii), we get Im A closed and A injective. Since Im A is closed by Closed Range theorem [0.7,](#page-2-1) Im $A = (\text{Ker } A^T)^{\perp} = W$ hence A bijective. \Box

Corollary 0.12

 $A \in \mathcal{L}(V, W)$ is associated with $a \in \mathcal{L}(Z_1 \times Z_2, \mathbb{R})$ such that

$$
a(z_1, z_2) = \langle Az_1 | z_2 \rangle_{Z'_2, Z_2}
$$

i.e. $V = Z_1$ and $W = Z'_2$. If Z_2 is reflexive the following equivalence holds :

• For all $f \in Z'_2$ there is a unique $u \in Z_1$ such that

$$
a(u,z_2) = \langle f|z_2\rangle_{Z'_2,Z_2} \,\forall z_2 \in Z_2
$$

• There exists $\alpha > 0$ such that :

$$
\inf_{z_1 \in Z_1} \sup_{z_2 \in Z_2} \frac{a(z_1, z_2)}{\|z_1\|_{Z_1} \|z_2\|_{Z_2}} \ge \alpha
$$

and

$$
\forall z_2 \in Z_2, \ (\forall z_1 \in Z_1, a(z_1, z_2) = 0) \Longrightarrow (z_2 = 0)
$$

\mathcal{D}

$$
\forall f \in Z'_2, \exists! \ u \in Z_1, \ a(u, z_2) = \langle f | z_2 \rangle_{Z'_2, Z_2} \quad \forall z_2 \in Z_2
$$

\n
$$
\iff \forall f \in Z'_2, \exists! \ u \in Z_1, \langle Au | z_2 \rangle_{Z'_2, Z_2} = \langle f | z_2 \rangle_{Z'_2, Z_2} \quad \forall z_2 \in Z_2
$$

\n
$$
\iff \forall f \in Z'_2, \exists! \ u \in Z_1, \langle Au - f | z_2 \rangle_{Z'_2, Z_2} = 0 \quad \forall z_2 \in Z_2
$$

\n
$$
\iff \forall f \in Z'_2, \exists! \ u \in Z_1, \ Au - f \in (Z_2)^{\perp} = \{0\}
$$

\n
$$
\iff \forall f \in Z'_2, \exists! \ u \in Z_1, \ Au = f
$$

 \iff A is bijective. \iff Theorem 0.[11](#page-5-0)

When the proceed to prove that the two results of this theorem are equivalent to those of the corollary :

$$
\exists \alpha > 0, \ \forall z_1 \in Z_1, \ \|Az_1\|_{Z'_2} \ge \alpha \|z_1\|_{Z_1}.
$$

Yet
$$
\|Az_1\|_{Z'_2} = \sup_{z_2 \in Z_2} \frac{\langle Az_1|z_2 \rangle_{Z'_2, Z_2}}{\|z_2\|_{Z_2}} = \sup_{z_2 \in Z_2} \frac{a(z_1, z_2)}{\|z_2\|_{Z_2}}.
$$

Then dividing by $\|z_1\|_{2_1}$ and taking the infinimum gives the result.

Then with the second claim it follows :

 $A^T: Z_2 \to Z'_1$ injective $\iff \forall z_2 \in Z_2, \quad A^T z_2 = 0 \Rightarrow z_2 = 0$ $\Leftrightarrow \forall z_2 \in Z_2, \quad (\forall z_1 \in Z_1, \langle A^T z_2 | z_1 \rangle_{Z'_1, Z_1} = 0) \Rightarrow (z_2 = 0)$ $\Leftrightarrow \forall z_2 \in Z_2, \quad (\forall z_1 \in Z_1, \langle z_2 | Az_1 \rangle_{Z_2, Z'_2} = 0) \Rightarrow (z_2 = 0)$ $\iff \forall z_2 \in Z_2, \ \ (\forall z_1 \in Z_1, a(z_1, z_2) = 0) \Rightarrow (z_2 = 0)$

D: Proof Banach-Nečas-Babuška theorem

The corollary [0.12](#page-5-1) is a rewriting of Banach-Nečas-Babuška Theorem [0.1.](#page-0-0) The a priori estimate results from :

$$
||f||_{V'} = \sup_{v \in V} \frac{|f(v)|}{||v||_V} = \sup_{v \in V} \frac{a(u,v)}{||v||_V} \ge \alpha ||u||_W
$$

Refer to Theory and Practice of Finite Elements [\[EG10\]](#page-6-1), Ern and Guermond, for most of the results and further informations.

See also Norikazu Saito's Notes on the Banach-Necas-Babuska theorem and Kato's minimum modulus of operators for historical context and more results.

References

- [Bre10] Haïm Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer New York, NY, 2010. DOI: [https://doi.org/10.1007/978-0-387-70914-](https://doi.org/https://doi.org/10.1007/978-0-387-70914-7) [7](https://doi.org/https://doi.org/10.1007/978-0-387-70914-7).
- [EG10] Alexandre Ern and Jean-Luc Guermond. Theory and Practice of Finite Elements. Springer New York, NY, 2010. DOI: [https://doi.org/10.1007/978-1-4757-4355-](https://doi.org/https://doi.org/10.1007/978-1-4757-4355-5) [5](https://doi.org/https://doi.org/10.1007/978-1-4757-4355-5).
- [Sai17] Norikazu Saito. Notes on the Banach-Necas-Babuska theorem and Kato's minimum modulus of operators. Nov. 2017.

 \Box