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I - Theorem

The scalar field is always K = R or C.

Theorema 0.1: Banach–Nečas–Babuška

Let V,W be respectively Banach and reflexive Banach space.

a : V ×W continuous bilinear form.
f : W → R continuous linear form.

(⋆⋆) : find u ∈ V, a(u,w) = f(w) ∀w ∈ W

(⋆⋆) is well-posed if and only if

(BNB1) ∃Csta > 0,∀v ∈ V, sup
w∈W\{0}

a(v, w)

∥w∥W
≥ Csta ∥v∥V

(BNB2) ∀w ∈ W, (∀v ∈ V, a(v, w) = 0) =⇒ w = 0

The following control holds true :

∥u∥V ≤ 1

Csta
∥f∥W ′

II - Proof

1) Definitions

Definition 0.2: Well-posedness

(⋆⋆) : find u ∈ V, a(u,w) = f(w) ∀w ∈ W

is well-posed in the sense of Hadamard if and only if there exists a unique solution u and

∃c > 0, ∀f ∈ W ′, ∥u∥V ≤ c ∥f∥W ′
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In the next section we always consider V,W real Banach spaces.
We also denote A ∈ L(V,W ) a linear continuous operator.

Definition 0.3: Dual space

The dual space of V is V ′ := L(V,R) the space of continuous linear forms.
We denote ⟨A|v⟩V ′,V = Av.

Remark :
Being given an operator A : V → W , one can define a unique linear operator AT by
Riesz representation theorem that has the following property :

∀v ∈ V, ∀w′ ∈ W ′,
〈
ATw′∣∣v〉

V ′,V
= ⟨w′|Av⟩W ′,W

Definition 0.4: Dual operator

The dual operator AT : W ′ → V ′ is defined by

∀v ∈ V, ∀w′ ∈ W ′,
〈
ATw′∣∣v〉

V ′,V
= ⟨w′|Av⟩W ′,W

Definition 0.5: Annihilator

For M ⊂ V , N ⊂ V ′

M⊥ =
{
v′ ∈ V ′

/
∀m ∈ M, ⟨v′|m⟩V,V ′ = 0

}
⊂ V ′

N⊥ =
{
v ∈ V

/
∀n′ ∈ N, ⟨n′|v⟩V ′,V = 0

}
⊂ V

We note that V ⊥ = {0V ′} and {0V }⊥ = V ′.

2) Preliminary results

From these definitions, we can characterise the range and the kernel of an operator.

Lemma 0.6: Characterisation of the range and kernel

• Ker A = (Im AT )⊥

• Ker AT = (Im A)⊥

• Im A = (Ker AT )⊥

• Im AT ⊂ (Ker A)⊥
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D

Functional Analysis, Sobolev Spaces and Partial Differential Equations, [Bre10] p.45

Theorema 0.7: Closed Range

EQU :

• Im A is closed

• Im AT is closed

• Im A = (Ker AT )⊥

• Im AT = (Ker A)⊥

D

Functional Analysis, Sobolev Spaces and Partial Differential Equations, [Bre10] p.46

Theorema 0.8: Open Mapping

If A is surjective and U is an open set then

A(U) is open in W

D

Functional Analysis, Sobolev Spaces and Partial Differential Equations, [Bre10] p.35

3) Characterisation of a functionnal operator

Lemma 0.9

EQU

• Im A is closed

• There exists α > 0 such that for all w ∈ Im A, there exists vw ∈ V

Avw = w and ∥w∥W ≥ α ∥vw∥V
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⇒ : Suppose Im A ⊂ W is closed.
Since W is Banach, Im A is also one.
Considering B = BV (0, 1) the open unity sphere and using the Open Mapping theorem
0.8 with A ≃ A|Im A : V → Im A surjective, A(B) is open.
Since 0 ∈ A(B), there exists γ > 0 such that BW (0, γ) ⊂ A(B).
Let w ∈ Im A, then

γ

2
w

∥w∥W
∈ BW (0, γ) ⊂ A(B).

Then there exists z ∈ B such that

Az =
γ

2

w

∥w∥W
⇐⇒ A(

2 ∥w∥W
γ

z)︸ ︷︷ ︸
vw

= w

and
∥vw∥V = ∥z∥V︸ ︷︷ ︸

≤1

2

γ
∥w∥W ≤ 2

γ
∥w∥W ⇐⇒ γ

2︸︷︷︸
:=α

∥vw∥V ≤ ∥w∥W

⇐ Suppose there exists α > 0 such that for all w ∈ Im A, there exists vw ∈ V

Avw = w and ∥w∥W ≥ α ∥vw∥V

Let (wn)n ∈ (Im A)N be a converging sequence to w ∈ W .

There exists (vn)n such that
{

Avn = wn

∥wn∥W ≥ α ∥vn∥V
∀n.

(wn)n convergence implies (wn)n is a Cauchy sequence and by the inequality (vn)n is a
Cauchy sequence in V .
Yet V is a Banach thus (vn)n converge to v ∈ V .
A being continuous we can then write

Av = w

Hence w ∈ Im A i.e. Im A is closed.

Lemma 0.10

EQU :

• (i) AT is surjective

• (ii) A is injective and Im A is closed

• (iii) There exists α > 0 such that ∀v ∈ V, ∥Av∥W ≥ α ∥v∥V .

• (iv) There exists α > 0 such that ∀v ∈ V, inf
W ′

sup
V

〈
ATw′

∣∣v〉
V ′,V

∥w′∥W ′ ∥v∥V
≥ α.
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(i) ⇒ (ii) :
AT is surjective hence Im AT = V ′ is closed because V ′ is a Banach.
Hence Im A is closed using Closed Range Theorem 0.7.
Then (Im AT )⊥ = {0} = Ker A.

(ii) ⇒ (i) :
By Closed Range Theorem 0.7, Im A closed ⇒ Im AT = (Ker A)⊥.
Yet A is injective hence Ker A = {0} thus Im AT = V ′ i.e. AT is surjective.

(ii) ⇒ (iii) :
Im A is closed and Im A = {Av / v ∈ V }.
Using Lemma 0.9 one can construct α as in the proof to have

∥Av∥w ≥ α ∥v∥V

(iii) ⇒ (ii) :
The injectivity of A comes directly from the inequality. Im A is closed using the same
proof as 3) in the ⇐ part.

(iii) ⇒ (iv) :
Using the corollary of Hahn-Banach theorem :

sup
w′∈W ′

⟨w′|Aw⟩W ′,W

∥w′∥W
= ∥Av∥W ≥ α ∥v∥V

Hence dividing by ∥v∥V and taking the inf

inf
v∈V

sup
w′∈W ′

⟨w′|Aw⟩W ′,W

∥w′∥W ∥v∥V
≥ α

(iv) ⇒ (iii) :
Take v ∈ V .

∥Av∥W = sup
w′∈W ′

⟨w′|Aw⟩W ′,W

∥w′∥W

= sup
w′∈W ′

⟨w′|Aw⟩W ′,W

∥w′∥W ∥v∥V
∥v∥V

≥ inf
v∈V

sup
w′∈W ′

⟨w′|Aw⟩W ′,W

∥w′∥W ∥v∥V
∥v∥V ≥ α ∥v∥V
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Theorema 0.11: Bijectivity characterisation

A is bijective if and only if{
AT : W ′ → V ′ injective

∃α > 0, ∀v ∈ V, ∥Av∥W ≥ α ∥v∥V

D

⇒ :
Ker AT 0.6

= (Im A)⊥ = {0} because A is surjective. i.e. AT injective.
Yet Im A = W is closed. Using Lemma 0.10 : ∥Av∥W ≥ α ∥v∥V .

⇐ :
Using Lemma 0.10 (iii) ⇒ (ii) , we get Im A closed and A injective.
Since Im A is closed by Closed Range theorem 0.7, Im A = (Ker AT )⊥ = W hence A
bijective.

Corollary 0.12

A ∈ L(V,W ) is associated with a ∈ L(Z1 × Z2,R) such that

a(z1, z2) = ⟨Az1|z2⟩Z′
2,Z2

i.e. V = Z1 and W = Z ′
2.

If Z2 is reflexive the following equivalence holds :

• For all f ∈ Z ′
2 there is a unique u ∈ Z1 such that

a(u, z2) = ⟨f |z2⟩Z′
2,Z2

∀z2 ∈ Z2

• There exists α > 0 such that :

inf
z1∈Z1

sup
z2∈Z2

a(z1, z2)

∥z1∥Z1
∥z2∥Z2

≥ α

and

∀z2 ∈ Z2, (∀z1 ∈ Z1, a(z1, z2) = 0) =⇒ (z2 = 0)

D

∀f ∈ Z ′
2,∃! u ∈ Z1, a(u, z2) = ⟨f |z2⟩Z′

2,Z2
∀z2 ∈ Z2

⇐⇒ ∀f ∈ Z ′
2,∃! u ∈ Z1, ⟨Au|z2⟩Z′

2,Z2
= ⟨f |z2⟩Z′

2,Z2
∀z2 ∈ Z2

⇐⇒ ∀f ∈ Z ′
2,∃! u ∈ Z1, ⟨Au− f |z2⟩Z′

2,Z2
= 0 ∀z2 ∈ Z2

⇐⇒ ∀f ∈ Z ′
2,∃! u ∈ Z1, Au− f ∈ (Z2)

⊥ = {0}
⇐⇒ ∀f ∈ Z ′

2,∃! u ∈ Z1, Au = f
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⇐⇒ A is bijective.
⇐⇒ Theorem 0.11

When the proceed to prove that the two results of this theorem are equivalent to those of
the corollary :
∃α > 0, ∀z1 ∈ Z1, ∥Az1∥Z′

2
≥ α ∥z1∥Z1

.

Yet ∥Az1∥Z′
2
= sup

z2∈Z2

⟨Az1|z2⟩Z′
2,Z2

∥z2∥Z2

= sup
z2∈Z2

a(z1, z2)

∥z2∥Z2

.

Then dividing by ∥z1∥21 and taking the infinimum gives the result.

Then with the second claim it follows :
AT : Z2 → Z ′

1 injective
⇐⇒ ∀z2 ∈ Z2, AT z2 = 0 ⇒ z2 = 0
⇐⇒ ∀z2 ∈ Z2, (∀z1 ∈ Z1,

〈
AT z2

∣∣z1〉Z′
1,Z1

= 0) ⇒ (z2 = 0)

⇐⇒ ∀z2 ∈ Z2, (∀z1 ∈ Z1, ⟨z2|Az1⟩Z2,Z′
2
= 0) ⇒ (z2 = 0)

⇐⇒ ∀z2 ∈ Z2, (∀z1 ∈ Z1, a(z1, z2) = 0) ⇒ (z2 = 0)

D: Proof Banach-Nečas-Babuška theorem

The corollary 0.12 is a rewriting of Banach-Nečas-Babuška Theorem 0.1.
The a priori estimate results from :

∥f∥V ′ = sup
v∈V

|f(v)|
∥v∥V

= sup
v∈V

a(u, v)

∥v∥V
≥ α ∥u∥W

Refer to Theory and Practice of Finite Elements [EG10], Ern and Guermond, for most of the
results and further informations.
See also Norikazu Saito’s Notes on the Banach-Necas-Babuska theorem and Kato’s minimum
modulus of operators for historical context and more results.
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