Banach-Nečas-Babuška theorem and proof

Raphael Lecoq

July 2024

I - Theorem

The scalar field is always $\mathbb{K} = \mathbb{R}$ or \mathbb{C} .

Theorema 0.1: Banach–Nečas–Babuška

Let V, W be respectively Banach and reflexive Banach space.

 $a: V \times W$ continuous bilinear form. $f: W \to \mathbb{R}$ continuous linear form.

$$(\star\star): \quad \text{find } u \in V, \ a(u,w) = f(w) \ \forall w \in W$$

 $(\star\star)$ is well-posed if and only if

$$(BNB1) \qquad \exists C_{\text{sta}} > 0, \forall v \in V, \quad \sup_{w \in W \setminus \{0\}} \frac{a(v, w)}{\|w\|_W} \ge C_{\text{sta}} \|v\|_V$$
$$(BNB2) \qquad \forall w \in W, \quad (\forall v \in V, a(v, w) = 0) \Longrightarrow w = 0$$

The following control holds true :

$$||u||_V \le \frac{1}{C_{\text{sta}}} ||f||_{W'}$$

II - Proof

1) Definitions

Definition 0.2: Well-posedness

 $(\star\star): \text{ find } u \in V, \ a(u,w) = \mathbf{f}(w) \ \forall w \in W$

is well-posed in the sense of Hadamard if and only if there exists a unique solution u and

 $\exists c > 0, \ \forall f \in W', \ \|u\|_V \le c \|f\|_{W'}$

In the next section we always consider V, W real Banach spaces. We also denote $A \in \mathcal{L}(V, W)$ a linear continuous operator.

Definition 0.3: Dual space

The dual space of V is $V' := \mathcal{L}(V, \mathbb{R})$ the space of continuous linear forms. We denote $\langle A | v \rangle_{V',V} = Av$.

Remark :

Being given an operator $A: V \to W$, one can define a unique linear operator A^T by Riesz representation theorem that has the following property :

 $\forall v \in V, \forall w' \in W', \ \left\langle A^T w' \middle| v \right\rangle_{V',V} = \left\langle w' \middle| A v \right\rangle_{W',W}$

Definition 0.4: Dual operator

The dual operator $A^T: W' \to V'$ is defined by

$$\forall v \in V, \forall w' \in W', \quad \left\langle A^T w' \middle| v \right\rangle_{V',V} = \left\langle w' \middle| A v \right\rangle_{W',W}$$

Definition 0.5: Annihilator

For
$$M \subset V, N \subset V'$$

$$M^{\perp} = \left\{ v' \in V' \ \middle/ \ \forall m \in M, \langle v' | m \rangle_{V,V'} = 0 \right\} \subset V'$$

$$N^{\perp} = \left\{ v \in V \ \middle/ \ \forall n' \in N, \langle n' | v \rangle_{V',V} = 0 \right\} \subset V$$
We note that $V^{\perp} = \{0_{V'}\}$ and $\{0_V\}^{\perp} = V'$.

2) Preliminary results

From these definitions, we can characterise the range and the kernel of an operator.

Lemma 0.6: Characterisation of the range and kernel

• Ker
$$A = (\operatorname{Im} A^T)^{\perp}$$

- Ker $A^T = (\text{Im } A)^{\perp}$
- $\overline{\operatorname{Im} A} = (\operatorname{Ker} A^T)^{\perp}$
- $\overline{\operatorname{Im} A^T} \subset (\operatorname{Ker} A)^{\perp}$

Functional Analysis, Sobolev Spaces and Partial Differential Equations, [Bre10] p.45 \Box

Theorema 0.7: Closed Range	
EQU :	
• Im A is closed	
• Im A^T is closed	
• Im $A = (\text{Ker } A^T)^{\perp}$	
• Im $A^T = (\text{Ker } A)^{\perp}$	

\mathcal{D}

Functional Analysis, Sobolev Spaces and Partial Differential Equations, [Bre10] p.46 \Box

Theorema 0.8: Open Mapping
If A is surjective and U is an open set then
A(U) is open in W

\mathcal{D}

Functional Analysis, Sobolev Spaces and Partial Differential Equations, [Bre10] p.35

3) Characterisation of a functionnal operator

Lemma 0.9

EQU

- Im A is closed
- There exists $\alpha > 0$ such that for all $w \in \text{Im } A$, there exists $v_w \in V$

 $Av_w = w$ and $||w||_W \ge \alpha ||v_w||_V$

\mathcal{D}

 \Rightarrow : Suppose Im $A \subset W$ is closed.

Since W is Banach, Im A is also one.

Considering $B = B_V(0,1)$ the open unity sphere and using the Open Mapping theorem 0.8 with $A \simeq A|_{\operatorname{Im} A} : V \to \operatorname{Im} A$ surjective, A(B) is open.

Since $0 \in A(B)$, there exists $\gamma > 0$ such that $B_W(0, \gamma) \subset A(B)$. Let $w \in \text{Im } A$, then $\frac{\gamma}{2} \frac{w}{\|w\|_W} \in B_W(0,\gamma) \subset A(B)$.

Then there exists $z \in B$ such that

$$Az = \frac{\gamma}{2} \frac{w}{\|w\|_W} \iff A(\underbrace{\frac{2 \|w\|_W}{\gamma}}_{v_w}z) = w$$

and

$$\|v_w\|_V = \underbrace{\|z\|_V}_{\leq 1} \frac{2}{\gamma} \|w\|_W \leq \frac{2}{\gamma} \|w\|_W \iff \underbrace{\frac{\gamma}{2}}_{:=\alpha} \|v_w\|_V \leq \|w\|_W$$

 \Leftarrow Suppose there exists $\alpha > 0$ such that for all $w \in \text{Im } A$, there exists $v_w \in V$

 $Av_w = w$ and $||w||_W \ge \alpha ||v_w||_V$

Let $(w_n)_n \in (\text{Im } A)^{\mathbb{N}}$ be a converging sequence to $w \in W$. There exists $(v_n)_n$ such that $\begin{cases} Av_n = w_n \\ \|w_n\|_W \ge \alpha \|v_n\|_V \end{cases} \forall n.$

 $(w_n)_n$ convergence implies $(w_n)_n$ is a Cauchy sequence and by the inequality $(v_n)_n$ is a Cauchy sequence in V.

Yet V is a Banach thus $(v_n)_n$ converge to $v \in V$. A being continuous we can then write

Av = w

Hence $w \in \text{Im } A$ i.e. Im A is closed.

Lemma 0.10

EQU :

- (i) A^T is surjective
- (ii) A is injective and Im A is closed
- (iii) There exists $\alpha > 0$ such that $\forall v \in V, ||Av||_W \ge \alpha ||v||_V$.
- (iv) There exists $\alpha > 0$ such that $\forall v \in V, \inf_{W'} \sup_{V} \frac{\langle A^T w' | v \rangle_{V',V}}{\|w'\|_{W'} \|v\|_{V}} \ge \alpha.$

(i) \Rightarrow (ii) : A^T is surjective hence Im $A^T = V'$ is closed because V' is a Banach. Hence Im A is closed using Closed Range Theorem 0.7. Then (Im A^T)^{\perp} = {0} = Ker A.

(ii) \Rightarrow (i) : By Closed Range Theorem 0.7, Im A closed \Rightarrow Im $A^T = (\text{Ker } A)^{\perp}$. Yet A is injective hence Ker $A = \{0\}$ thus Im $A^T = V'$ i.e. A^T is surjective.

(ii) \Rightarrow (iii) : Im A is closed and Im $A = \{Av \mid v \in V\}$. Using Lemma 0.9 one can construct α as in the proof to have

 $\|Av\|_{w} \ge \alpha \|v\|_{V}$

 $(iii) \Rightarrow (ii) :$

The injectivity of A comes directly from the inequality. Im A is closed using the same proof as 3 in the \Leftarrow part.

 $(iii) \Rightarrow (iv) :$

Using the corollary of Hahn-Banach theorem :

$$\sup_{w' \in W'} \frac{\langle w' | Aw \rangle_{W',W}}{\|w'\|_W} = \|Av\|_W \ge \alpha \|v\|_V$$

Hence dividing by $||v||_V$ and taking the inf

$$\inf_{v \in V} \sup_{w' \in W'} \frac{\langle w' | Aw \rangle_{W',W}}{\|w'\|_W \|v\|_V} \ge \alpha$$

 $(iv) \Rightarrow (iii) :$ Take $v \in V$.

$$\begin{split} \|Av\|_{W} &= \sup_{w' \in W'} \frac{\langle w' | Aw \rangle_{W',W}}{\|w'\|_{W}} \\ &= \sup_{w' \in W'} \frac{\langle w' | Aw \rangle_{W',W}}{\|w'\|_{W} \|v\|_{V}} \|v\|_{V} \\ &\geq \inf_{v \in V} \sup_{w' \in W'} \frac{\langle w' | Aw \rangle_{W',W}}{\|w'\|_{W} \|v\|_{V}} \|v\|_{V} \ge \alpha \|v\|_{V} \end{split}$$

Theorema 0.11: Bijectivity characterisation

A is bijective if and only if

$$\begin{cases} A^T : W' \to V' \text{ injective} \\ \exists \alpha > 0, \ \forall v \in V, \ \|Av\|_W \ge \alpha \|v\|_V \end{cases}$$

\mathcal{D}

 $\begin{array}{l} \Rightarrow: \\ \text{Ker } A^T \stackrel{0.6}{=} (\text{Im } A)^{\perp} = \{0\} \text{ because } A \text{ is surjective. i.e. } A^T \text{ injective.} \\ \text{Yet Im } A = W \text{ is closed. Using Lemma } 0.10: \|Av\|_W \geq \alpha \|v\|_V. \end{array}$

 \Leftarrow :

Using Lemma 0.10 (iii) \Rightarrow (ii), we get Im A closed and A injective. Since Im A is closed by Closed Range theorem 0.7, Im $A = (\text{Ker } A^T)^{\perp} = W$ hence A bijective.

Corollary 0.12

 $A \in \mathcal{L}(V, W)$ is associated with $a \in \mathcal{L}(Z_1 \times Z_2, \mathbb{R})$ such that

$$a(z_1, z_2) = \langle Az_1 | z_2 \rangle_{Z'_2, Z_2}$$

i.e. $V = Z_1$ and $W = Z'_2$. If Z_2 is reflexive the following equivalence holds :

• For all $f \in Z'_2$ there is a unique $u \in Z_1$ such that

$$a(u, z_2) = \langle f | z_2 \rangle_{Z'_2, Z_2} \,\forall z_2 \in Z_2$$

• There exists $\alpha > 0$ such that :

$$\inf_{z_1 \in Z_1} \sup_{z_2 \in Z_2} \frac{a(z_1, z_2)}{\|z_1\|_{Z_1} \|z_2\|_{Z_2}} \ge \alpha$$

and

$$\forall z_2 \in Z_2, \ (\forall z_1 \in Z_1, a(z_1, z_2) = 0) \Longrightarrow (z_2 = 0)$$

\mathcal{D}

$$\begin{aligned} \forall f \in Z'_2, \exists ! \ u \in Z_1, \ a(u, z_2) &= \langle f | z_2 \rangle_{Z'_2, Z_2} \quad \forall z_2 \in Z_2 \\ \Longleftrightarrow \quad \forall f \in Z'_2, \exists ! \ u \in Z_1, \langle Au | z_2 \rangle_{Z'_2, Z_2} &= \langle f | z_2 \rangle_{Z'_2, Z_2} \quad \forall z_2 \in Z_2 \\ \Leftrightarrow \quad \forall f \in Z'_2, \exists ! \ u \in Z_1, \ \langle Au - f | z_2 \rangle_{Z'_2, Z_2} &= 0 \quad \forall z_2 \in Z_2 \\ \Leftrightarrow \quad \forall f \in Z'_2, \exists ! \ u \in Z_1, \ Au - f \in (Z_2)^\perp = \{0\} \\ \Leftrightarrow \quad \forall f \in Z'_2, \exists ! \ u \in Z_1, \ Au = f \end{aligned}$$

 $\iff A \text{ is bijective.} \\ \iff \text{ Theorem } 0.11$

When the proceed to prove that the two results of this theorem are equivalent to those of the corollary :

$$\begin{aligned} \exists \alpha > 0, \ \forall z_1 \in Z_1, \ \|Az_1\|_{Z'_2} \geq \alpha \|z_1\|_{Z_1}. \\ \text{Yet } \|Az_1\|_{Z'_2} = \sup_{z_2 \in Z_2} \frac{\langle Az_1|z_2\rangle_{Z'_2,Z_2}}{\|z_2\|_{Z_2}} = \sup_{z_2 \in Z_2} \frac{a(z_1, z_2)}{\|z_2\|_{Z_2}}. \\ \text{Then dividing by } \|z_1\|_{2_1} \text{ and taking the infinimum gives the result.} \end{aligned}$$

Then with the second claim it follows :

 $\begin{aligned} A^T : Z_2 \to Z_1' \text{ injective} \\ \iff \forall z_2 \in Z_2, \quad A^T z_2 = 0 \Rightarrow z_2 = 0 \\ \iff \forall z_2 \in Z_2, \quad (\forall z_1 \in Z_1, \langle A^T z_2 | z_1 \rangle_{Z_1', Z_1} = 0) \Rightarrow (z_2 = 0) \\ \iff \forall z_2 \in Z_2, \quad (\forall z_1 \in Z_1, \langle z_2 | A z_1 \rangle_{Z_2, Z_2'} = 0) \Rightarrow (z_2 = 0) \\ \iff \forall z_2 \in Z_2, \quad (\forall z_1 \in Z_1, a(z_1, z_2) = 0) \Rightarrow (z_2 = 0) \end{aligned}$

D: Proof Banach-Nečas-Babuška theorem

The corollary 0.12 is a rewriting of Banach-Nečas-Babuška Theorem 0.1. The a priori estimate results from :

$$\|f\|_{V'} = \sup_{v \in V} \frac{|f(v)|}{\|v\|_{V}} = \sup_{v \in V} \frac{a(u,v)}{\|v\|_{V}} \ge \alpha \|u\|_{W}$$

Refer to *Theory and Practice of Finite Elements* [EG10], Ern and Guermond, for most of the results and further informations.

See also Norikazu Saito's *Notes on the Banach-Necas-Babuska theorem and Kato's minimum modulus of operators* for historical context and more results.

References

- [Bre10] Haïm Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer New York, NY, 2010. DOI: https://doi.org/10.1007/978-0-387-70914-7.
- [EG10] Alexandre Ern and Jean-Luc Guermond. Theory and Practice of Finite Elements. Springer New York, NY, 2010. DOI: https://doi.org/10.1007/978-1-4757-4355-5.
- [Sai17] Norikazu Saito. Notes on the Banach-Necas-Babuska theorem and Kato's minimum modulus of operators. Nov. 2017.