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Part 1

Finite Element Method
The goal is to approximate the solution of a PDE that lives in an infinite dimensional space by
the solution of the same PDE restricted to a finite dimensional dimension.
The Finite Element Method is one of the most used methods for solving such problems effi-
ciently.
See more in the following book: The Mathematical Theory of Finite Element Methods, [BS08]

I - Weak formulation

1) Parametrized Partial Differential Equation

Take any regular set open Ω ⊂ Rd, d ∈ {1, 2, 3}.
Define ∂Ω := Ω\Ω.
We consider field variables ω : Ω −→ Rdv .
Set (ΓD

i )1≤i≤dv such that ΓD :=
⋃

ΓD
i ⊂ ∂Ω (not necessary equal).

Define Vi :=
{
v ∈ H1(Ω,R) / v|ΓD

i
= 0
}

(v : Ω → R).

V :=
dv∏
i=1

Vi

Remark :

Vi is the space of the i− th coordinate in Rdv of a solution.

v ∈ V ⇒ v ∼=
dv∑
i=1

vi φi︸︷︷︸
∈Vi

⇒ V ∼=
{
v ∈ H1(Ω) / v : Ω → Rdv , v

∣∣
ΓD = 0

}
Note that V ⊂ H1, s.t. if ⟨·|·⟩V induces ∥·∥V ∼ ∥·∥H1 , then (V, ⟨·|·⟩V) is an Hilbert.
We focus on P ⊂ RP closed set of parameters.

Definition 1.1: Parametrized PDE

Let f : V× P → R continuous linear with respect to V.
ℓ : V× P → R linear with respect to V.
a : V× V× P → R bilinear coercive continuous symmetric with respect to V× V.
We consider {

Solve for u ∈ V a(u, v ;µ) = f(v ;µ) ∀v ∈ V
Evaluate for µ ∈ P s(µ) := ℓ(u ;µ)

Let α(µ) be the coercive constant, γ(µ) the continuous one.
The symmetry and continuity ensure well-posedness of the PDE through Lax-Milgram.

Let µ ∈ P, µ = (µ[1], . . . , µ[P ]), then we define the solution of the PPDE u(µ) = (u1, . . . , udv).

Raphaël LECOQ Chapter 1 | Summary



I - WEAK FORMULATION 2

Remark :
ℓ is any linear function to define depending on which output correlation we’re looking
for.

2) Dicretization

Take µ ∈ P.
Suppose there exists Vδ ⊂ V finite dimensional vector space, we search uδ(µ) ∈ Vδ solution of
the PDE on Vδ.
Let Nδ = dim (Vδ) such that Vδ = V ect

(
{φi}Nδ

i=1

)
.

Definition 1.2: Discretized PDE

Find uδ(µ) such that {
a(uδ(µ), vδ;µ) = f(vδ;µ) ∀ vδ ∈ Vδ

sδ(µ) = ℓ(uδ(µ);µ)

Since a(uδ(µ), vδ;µ) = f(vδ;µ) = a(u(µ), vδ;µ) there holds

Proposition 1.3: Galerkin’s orthogonality

For all vδ in Vδ the following orthogonality holds:

a(uδ(µ)− u(µ), vδ;µ) = 0

One important lemma is the following one, which states that the error induced by the solution
of the equation is proportional to the best estimation of u we could hope in the discrete space
Vδ.

Lemma 1.4: Céa’s lemma

For all vδ ∈ Vδ:

∥u(µ)− uδ(µ)∥V ≤
(
1 +

γ(µ)

α(µ)

)
inf

vδ∈Vδ

∥u(µ)− vδ∥V

D

First note

α ∥u(µ)− uδ(µ)∥2V ≤ a(u(µ)− uδ(µ), u(µ)− uδ(µ)) = a(u(µ)− uδ(µ), u(µ))

= a(u(µ)− uδ(µ), u(µ))− vδ)

≤ γ ∥u(µ)− uδ(µ)∥V ∥u(µ)− vδ∥V

Raphaël LECOQ Chapter 1 | Summary
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Then

∥u(µ)− uδ(µ)∥V ≤ ∥u(µ)− vδ∥V + ∥vδ − uδ(µ)∥V
≤ ∥u(µ)− vδ∥V +

γ

α
∥u(µ)− vδ∥V

= (1 +
γ

α
) ∥u(µ)− vδ∥V

The solution of the discrete equation is easy to write and we define the linear system as:

Definition 1.5: Truth Solver

We call the truth solver, the solution of the linear system Aµ
δuδ(µ) = fµ

δ where
(Mδ)i,j = ⟨φi|φj⟩V
(Aµ

δ )i,j = a(φi, φj ;µ)
(fµ

δ )i = f(φi ;µ)
(ℓµδ )i = ℓ(φi ;µ)

II - Space approximation

1) Finite Elements

We cut Ω in Ne disjoints subspaces Ω(e) and we set Ni nodes that constitutes the nodal basis,
we note (xi)i≤Ni

their coordinates.
A subspace Ω(e) is called a Finite Element the set of all the Finite Elements is called the mesh.
To be have a well defined method, we need to do some assumptions on the geometry of a finite
element:

- Each element is a star shapped open set
- Each element is polygonal

Figure 1: Polygonal elements in 1D, 2D, 3D

One can find conditions over the choice polygonal and how to place the nodes for best results.
Most importantly, the diameter of an element controls the polynomial approximation thanks
to Poincaré’s inequality 6.10. Hence a thinner grid gives better approximation.

Raphaël LECOQ Chapter 1 | Summary



II - SPACE APPROXIMATION 4

2) Polynomial Approximation

The Bramble Hilbert lemma 6.9 shows that a polynomial approximation is a good candidate
for Sobolev spaces approximation. Moreover, the polynomials are the easiest functions to work
with.
On each nodes, we define a piece-wise polynomial function φi of degree lesser than m which is
such that

φi(xj) = δij

Such polynomial exists and form an orthogonal basis of functions using Averaged Taylor Poly-
nomials ([BS08] Chap 4). Define

Vδ := SNe = Span {(φi)i} ⊂ V

We will only consider the linear approximation :

x

y

x1 x2 x3 x4 x5

ϕ3ϕ1 ϕ4

Figure 2: Some basis functions of the nodal basis of linear functions

x

y

x1 = a x2 x3 x4 x5 = b

Figure 3: Finite Element approximation in 1D of the function (x− a)(x− b)

3) Error estimation

The errors estimators of the FEM will be not adressed since the only one that is of our interest
will be studied in the following part.

Raphaël LECOQ Chapter 1 | Summary
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Part 2

Certified Reduced Basis Method
This part is a rewriting of the Certified Reduced Basis Methods for Parametrized Partial Dif-
ferential Equations. [HRS16] book’s chapters that are most important in our research.
The goal is to create a reduced space from Vδ. The idea is that we are willing to lose time on
an "Offline mode" that generate approximation space Vrb of Vδ with a dimension Nrb ≪ Nδ

which will allow fast computation of a reduced solution urb during the called "Online mode".

I - Reduced Basis Method

1) Solution manifold and Reduced Basis Approximation

Definition 2.1: Solution manifold

If we are able to write u(µ) in analytic form, the solution manifold is :

M = {u(µ) / µ ∈ P} ⊂ V

If we can’t, consider Vδ such as in 2) Discretization

Mδ = {uδ(µ) / µ ∈ P} ⊂ Vδ

Admits there exists Vrb ⊂ Vδ, dim (Vrb) = N such that N ≪ Nδ < dim (V) = +∞, there
exists ξ1, . . . , ξN ∈ Vδ, such that

Vrb = Span (ξ1, . . . , ξN)

and Vrb is such that for a certain ε > 0 tiny enough to be interesting,

∀vδ ∈ Vδ, inf
vrb∈Vrb

∥vδ − vrb∥V < ε

Definition 2.2: Reduced PDE

Find urb(µ) ∈ Vrb such that{
a(urb(µ), vδ;µ) = f(vrb;µ) ∀ vrb ∈ Vrb

srb(µ) = ℓ(urb(µ);µ)

For a given Vrb and µ ∈ P, Céa’s lemma holds with same proof as before:

∥u(µ)− urb(µ)∥V ≤
(
1 +

γ(µ)

α(µ)

)
inf

vrb∈Vrb

∥u(µ)− vrb∥V

The goal is to get ∥uδ(µ)− urb(µ)∥ as close to 0 as possible while keeping N = dim(Vrb) small.

inf
vrb∈Vrb

∥u(µ)− vrb∥V ≤ ∥u(µ)− urb(µ)∥V ≤ ∥uδ(µ)− urb(µ)∥V︸ ︷︷ ︸
to be controlled

+ ∥u(µ)− uδ(µ)∥V︸ ︷︷ ︸
controlled by 1.4

Raphaël LECOQ Chapter 2 | Summary



I - REDUCED BASIS METHOD 6

For that we will define some measure of the distance between the space of δ solutions and the
reduced space.

E(Mδ,Vrb) = sup
uδ∈Mδ

inf
vrb∈Vrb

∥uδ − vrb∥V

We some measure of the distance between the space of δ solutions and the reduced space.

E(Mδ,Vrb) = sup
uδ∈Mδ

inf
vrb∈Vrb

∥uδ − vrb∥V

Definition 2.3: Kolmogorov N-Width

Assuming a reduced space exists, the Kolmogorov N-width measures the best distance we
can hope with a N dimensional reduced basis and is defined as:

dN(Mδ) := inf
{Vrb/dim (Vrb)=N}

E(Mδ,Vrb)

Remark :
dN(Mδ) measures the best distance we can hope with a N dimensional reduced basis
(as long as long as we can find it).

Instead of
sup

uδ∈Mδ

inf
vrb∈Vrb

∥uδ − vrb∥V

we can consider a distance which has a faster computation and that gives the same amount of
information with regard to the distance between two spaces :

Definition 2.4: Least squared distance

√∫
µ∈P

inf
vrb∈Vrb

∥uδ(µ)− vrb∥2V

Once we defined some quantities that estimate the distance between a supposed reduced basis
and the discrete solution manifold, we present two algorithms that allow to compute the reduced
basis.

2) Reduced basis generation by Proper Orthogonal Decomposition

For anyone familiar with the Principal Component Analysis, this is the exact same process,
described in the functionnal analysis framework.

Let Ph = {µ1, . . . , µM} ⊂ P be a discrete and finite point-set.
Define :

Mδ(Ph) = {uδ(µ) / µ ∈ Ph}

of cardinality M = |Ph|.
We assume that M is big enough for Mδ(Ph) to efficiently approximate Mδ.

Raphaël LECOQ Chapter 2 | Summary



7 2) Reduced basis generation by Proper Orthogonal Decomposition

Let VM = Span {uδ(µ) / µ ∈ Ph}. The POD minimizes the least-squared distance for Ph on
all N-dimensional subspaces of VM :√

1

M

∑
µ∈Ph

inf
vrb∈Vrb

∥uδ(µ)− vrb∥2V

Let ψm = uδ(µm) for m ∈ {1, ...,M} (ψm is well-defined by unicity of Lax-Milgram). We project
any vδ ∈ VM on the space generated by the ψm :

C(vδ) =
1

M

M∑
m=1

⟨vδ|ψm⟩V ψm ∈ VM

This operator is linear and symmetric (OK). This operator is positive :

⟨C(vδ)|vδ⟩ =
1

M

M∑
m=1

⟨vδ|ψm⟩ ⟨ψm|vδ⟩ =
1

M

M∑
m=1

⟨vδ|ψm⟩2 ≥ 0

Since it is symmetric and PM is finite dimensional, there exists an orthonormal basis of eigen-
vectors and real eigenvalues (λn, ξn) ∈ R+ × VM such that

⟨C(ξn)|ψm⟩V = λn ⟨ξn|ψm⟩V
and we can chose the numerating (permutation matrices are orthogonals) such that λ1 ≥ . . . ≥
λM ≥ 0.

Remark :
C being SPD is a consequence of an algebra point of view C = SST where S is a
snapshot of solutions, i.e. it is the SVD matrix. See [Vol12].

Check that
⟨C(ξn)|ψm⟩V = λn ⟨ξn|ψm⟩V ⇐⇒ C(ξn) = λnξn

D

⇒ Suppose ⟨C(ξn)|ψm⟩V = λn ⟨ξn|ψm⟩V

For any vδ ∈ VM, vδ =
M∑
i=1

⟨vδ|ψi⟩V ψi

Then C(ξm) =
M∑
i=1

⟨C(ξm)|ψi⟩V ψi

=
M∑
i=1

λm ⟨ξm|ψi⟩V ψi

= λm

M∑
i=1

⟨ξm|ψi⟩V ψi

= λmξm

⇐ OK

Raphaël LECOQ Chapter 2 | Summary



I - REDUCED BASIS METHOD 8

Proposition 2.5: Proper Orthogonal Projection

VPOD = Span ({ξm}1≤m≤N) ⊂ V of dimension N (or less).

D

See the lecture notes “Proper Orthogonal Decomposition: Theory and Reduced-Order
Modelling” [Vol12].

Figure 4: A manifold and a possible plan POD representation

We can define the (orthogonal) projection on the subspace

PN [f ] =
N∑
i=1

⟨f |ξi⟩V ξi

If the projection is applied to all element of Mδ(Ph)

1

M

M∑
m=1

∥ψm − PN(ψm)∥2V =
M∑

m=N+1

λm

D

First, [Vol12] proves that inf
vrb∈Vrb

∥uδ(µm)− vrb∥2V = ∥uδ(µm)− ψm∥2V.

Then, we note that:

∥ψi − PN [ψi]∥2V =
1

M

∥∥∥∥∥
M∑

m=1

⟨ψi|ξm⟩Vξm −
N∑

m=1

⟨ψi|ξm⟩V

∥∥∥∥∥
2

V

=
1

M

M∑
m=N+1

∥⟨ψi|ξm⟩V ξm∥
2
V

=
1

M

M∑
m=N+1

⟨ψi|ξm⟩2V orthonormality and Pythagore

Raphaël LECOQ Chapter 2 | Summary



9 3) Reduced basis generation by Greedy algorithm

Then

C(ξm) =
1

M

M∑
i=1

⟨ξm|ψi⟩V ψi = λmξm

Applying the inner product against ξm, we recall that ∥ξm∥V = 1 :

⟨C(ξm)|ξm⟩ =
1

M

M∑
i=1

⟨ξm|ψi⟩V ⟨ψi|ξm⟩V =
1

M

M∑
i=1

⟨ξm|ψi⟩2V = λm

Hence
1

M

M∑
i=1

∥ψi − PN(ψi)∥2V =
1

M

M∑
i=1

M∑
m=N+1

⟨ψi|ξm⟩2V

=
1

M

M∑
m=N+1

M∑
i=1

⟨ψi|ξm⟩2V︸ ︷︷ ︸
=Mλm

=
M∑

m=N+1

λm

Notice that when the projection space grows, this error estimation tend to 0 which is exactly
the expected behavior of the reduced basis.

Remark :
One first major flaw of this algorithm is that we have no control over the approxi-
mation other than the first non considered eigenvalue of the SVD matrix.

Second major flaw : we need to produce M times the truth solver that solves in
dimension Nδ which costs at best MN2

δ to obtain all the solutions to compute VM
and since M ≫ N the complexity scales as O(NN2

δ ) complexity.

Hence we seek an alternative, less precise approach that will allows faster computing with
an error estimator.

3) Reduced basis generation by Greedy algorithm

The goal is to construct a basis thanks to an error estimator that should behaves as the error
behaves. Its expected behavior is described in the next section.
This estimator has been the main focus of our research in the framework of Finite Volume
Methods, that will also be studied later.

Assume there exists be an upper bound of the error approximation η(µ) such that

∥uδ(µ)− urb(µ)∥µ ≤ η(µ) ∀µ ∈ P

At dimensionality n, choose ψn+1 = uδ(µn+1) such that

µn+1 = arg max
µ∈P

ηn(µ)

Raphaël LECOQ Chapter 2 | Summary



I - REDUCED BASIS METHOD 10

i.e. we add the parametrized solution that the current space worst approximates.
Remark :

Note ηn depends on the iteration (otherwise we take the same µ each time).

As usual, we introduce Ph discrete and finite set-point of parameter to compute the arg max.

Remark :
We only need to control from above η(µ) to estimate the arg max. If we find a good
η the computation is much faster, but there still need to find such one.

General form (without considering PDE) :
Let F = {f(µ)\µ ∈ P} where f(µ) : Ω → R.
Take f1 ∈ F such that f1 = arg max

µ∈P
∥f(µ)∥V. Suppose we chose f1, . . . , fn. Let fn+1 such

that
fn+1 = arg max

µ∈P
∥f(µ)− Pn[f(µ)]∥V

where Pn is the projection onto Fn = Span (f1, . . . , fn).

Theorema 2.6

Assume that F has exponentially small Kolmogorov N-width, i.e. dN(F ) ≤ ce−aN with
a > log(2).
Then there exists β > 0 such that

∥f − PN [f ]∥V ≤ Ce−βN

This result can be applied to the Greedy Algorithm and its generic quantities:

Theorema 2.7

Assume that M has exponentially small Kolmogorov N-width, i.e. dN(F ) ≤ ce−aN with

a > log(1 +

√
γ

α
).

Then there exists β > 0 such that

∀µ ∈ P, ∥uδ(µ)− urb(µ)∥V ≤ Ce−βN

Remark :
α(µ) ∥u(µ)∥2V ≤ a(u(µ), u(µ);µ) ≤ γ(µ) ∥u(µ)∥2V
⇒ α ≤ γ

⇒ 1 ≤ γ

α
⇒ a > log(1 +

γ

α
) ≥ log(2)

Hence the condition on a is stronger than in the previous theorem.

D

“Apriori convergence of the greedy algorithm for the parametrized reduced basis method.”

Raphaël LECOQ Chapter 2 | Summary



11 4) Reduced solution computation

[Buf+21]

Remark :
The reduced basis generation using a Greedy method realizes the same asymptotic
rate of decay as the Kolmogorov N-width [Bin+11].

Example 1: Some Kolmogorov N-width for several PDEs [Sta23]

4) Reduced solution computation

Suppose there exists an affine decomposition of a,f ,ℓ i.e. there exists :

Qa ∈ N, (aq(v, w))1≤q≤Qa aq : V× V → R
Qf ∈ N, (fq)1≤q≤Qf

fq : V → R
Qℓ ∈ N, (ℓq)1≤q≤Qℓ

ℓq : V → R

such that 

a(v, w ;µ) =
Qa∑
q=1

θqa(µ)aq(v, w)

f(v ;µ) =

Qf∑
q=1

θqf (µ)fq(v)

ℓ(v ;µ) =

Qℓ∑
q=1

θℓq(µ)ℓq(v)

With: θqa : P → R θqf : P → R θqℓ : P → R

i.e. it is supposed that the equation is described by linear functions independents of µmultiplied
by a scalar dependent of µ. It is called the affine assumption.

Example 2: Affine assumption example

The heat equation admits an affine decomposition, see 2.3.1 and 3.4.1 [HRS16]. It can also
be forced through the Empirical Interpolation Method, see Part 5 of the same reference.

Compute for each 1 ≤ q ≤ Qa,Qf ,Qℓ the quantities

Aq
δ f q

δ ℓqδ
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which are the representation of these functions in the basis of discretization (as for the Truth
Solver 1.5). Then compute for each q 

Aq
rb = BAq

δB
T

f q
rb = BTf q

δ

ℓqrb = BT ℓqδ

where B is the projection matrix from Span (φ1, . . . , φNδ
) to Span (ξ1, . . . , ξN) which is the

orthonormed reduced basis (by Gram-Schmidt) for stability.
Then for each µ ∈ P, considering the dependency in µ being only on the θq, we can rapidly

compute the Xµ quantities such that

Aµ
rb =

Qa∑
q=1

θqa(µ)A
q
rb

f q
rb =

Qf∑
q=1

θqf (µ)fδ

ℓµrb =

Qℓ∑
q=1

θqℓ (µ)ℓ
q
δ

We can finally solve
Aµ

rbu
µ
rb = fµ

rb

that gives us the reduced basis solution, and ℓµrb gives us the output.
The advantage after having created all the Xq

rb (offline procedure), we only have to compute
the Xµ for each µ by computing θqx(µ) (online procedure).

II - Error estimation
Lets introduce the discrete coercivity and continuous constants such that

Definition 2.8: Discrete constants

αδ(µ) = inf
vδ ∈ Vδ

∥vδ∥V = 1

|a(vδ, vδ ;µ)|, and γδ(µ) = sup
vδ, wδ ∈ Vδ

∥vδ∥V = ∥wδ∥V = 1

|a(vδ, wδ ;µ)|

Since the supremum and the infimum are taken on a subset of V, there holds :

α ≤ αδ and γδ ≤ γ

1) Expected behavior of an error estimate

Following “Error Analysis and Estimation for the Finite Volume Method With Applications to
Fluid Flows” [Jas96], we expect the following behavior from an error estimate :

• Give reliable informations about the distribution of the error

• Work well on coarse mesh
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13 2) Error estimator

• Scale corresponding to mesh refinement

• Scale corresponding to discretisation

• Based on local solution and mesh information, cell-by-cell

• Asymptotically correct

• Over-estimate of the actual error

Definition 2.9: Asymptotically correct

Let N be the number of computation points.
Let EN the exact error of the approximation solution uN with respect to the exact solution
u for a prescribed PDE.

EN = ∥uN − uh∥

Let eN be an error estimate of EN .
eN is asymptotically correct if

eN − EN

EN

−→
N→∞

0

or equivalently
ξN :=

eN
EN

−→
N→∞

1

where ξN ≥ 1 is the effectivity of the error estimate.
It means the error estimate tends to the exact error faster than the estimated solution
tends to the exact solution.

2) Error estimator

We define naturally the error and its classic error residual that quantifies how much the reduced
solution satisfies the discrete equation :

Definition 2.10: Error and classic error equation

For µ ∈ P, we define the error of the discrete space by the reduced basis such that

e(µ) = uδ(µ)− urb(µ)

which satisfies the equation

a(e(µ), vδ ;µ) = r(vδ ;µ) ∀vδ ∈ Vδ

where r(· ;µ) ∈ V′
δ (the topological dual),

r(vδ ;µ) = f(vδ ;µ)− a(urb, vδ ;µ)

Note that r(· ;µ) being in the dual of Vδ, we can apply Riesz (see Theorem 6.5) hence it exists
r̂δ satisfying

⟨r̂δ(µ)|vδ⟩V = r(vδ ;µ)
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We recall that
∥r̂δ(µ)∥V = ∥r(· ;µ)∥V′

δ
= sup

vδ ∈ Vδ

∥vδ∥V = 1

|r(vδ ;µ)|

Proposition 2.11

For a compliant problem, it holds for all µ ∈ P

sδ(µ)− srb(µ) = ∥uδ(µ)− urb(µ)∥2µ

Hence
sδ(µ) ≥ srb(µ)

D

Set µ ∈ P. By Definition 1.2 and Definition 2.2, Galerkin’s Orthogonality 1.3 holds :

a(uδ(µ)− urb(µ), vrb ;µ) = 0 ∀vrb ∈ Vrb

Then

sδ(µ)− srb(µ) = ℓ(uδ ;µ)− ℓ(urb ;µ)

= ℓ(uδ(µ)− urb(µ) ;µ)

= ℓ(e(µ) ;µ) the problem is compliant
= f(e(µ) ;µ) note that e(µ) ∈ Vδ

= a(uδ, e(µ) ;µ)

= a(e(µ), e(µ) ;µ) + a(urb, e(µ) ;µ) a is symmetric
= a(e(µ), e(µ) ;µ) + a(e(µ), urb ;µ)︸ ︷︷ ︸

=0

by Galerkin’s orthogonality

= a(e(µ), e(µ) ;µ)

= ∥e(µ)∥2µ ≥ 0

Assume there is a known lower bound αLB of αδ in a way that’s independent of Nδ.
The construction of such lower bound is adressed in [HRS16] and in the following parts of the
report.
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15 2) Error estimator

The following error estimator is the main interest of this report.

Definition 2.12: Energy norm, output, relative output error estimators

We define computable upper bound of the energy norm, output and relative output :

ηen(µ) =
∥r̂δ(µ)∥V
αLB(µ)1/2

ηs(µ) =
∥r̂δ(µ)∥2V
αLB(µ)

= (ηen(µ))
2

ηs,rel =
∥r̂δ(µ)∥2V

αLB(µ)srb(µ)
=

ηs(µ)

srb(µ)

Remark :
ηen is a natural upper bound :

Recalling the definition of ∥r̂δ(µ)∥V p.14

∥r̂δ(µ)∥2V ≥
(
|r(e(µ) ;µ)|
∥e(µ)∥V

)2

=

(
a(e(µ), e(µ) ;µ)

∥e(µ)∥V

)2

≥ a(e(µ), e(µ) ;µ)

∥e(µ)∥2V
αLB(µ) ∥e(µ)∥2V

= αLB(µ) ∥e(µ)∥2µ

Hence
∥r̂δ(µ)∥V√
αLB(µ)

≥ ∥e(µ)∥µ

And ∥·∥µ is called the energy norm induced by the PDE (thus a(·, · ;µ) ) since it’s
the natural norm defined by the PDE.

Proposition 2.13: Upper bound control

∥uδ(µ)− urb(µ)∥µ ≤ ηen(µ)

sδ(µ)− srb(µ) ≤ ηs(µ)

Suppose sδ > 0,

sδ(µ)− srb(µ)

sδ(µ)
≤ ηs,rel

D

Recall ⟨r̂δ(µ)|vδ⟩V = r(vδ ;µ) = a(e(µ), vδ ;µ).
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With e(µ) ∈ Vδ and Cauchy-Schwarz, we deduce

∥e(µ)∥2µ = a(e(µ), e(µ) ;µ) = ⟨r̂δ(µ)|e(µ)⟩V ≤ ∥r̂δ(µ)∥V ∥e(µ)∥V
By hypothesis, αLB ≤ α hence

αLB ∥e(µ)∥2V ≤ α ∥e(µ)∥2V ≤ a(e(µ), e(µ) ;µ) = ∥e(µ)∥2µ ≤ ∥r̂δ(µ)∥V ∥e(µ)∥V

Thus

∥e(µ)∥V ≤ 1

αLB

∥r̂δ(µ)∥V

And
∥e(µ)∥2µ ≤ 1

αLB

∥r̂δ(µ)∥2V

It follows the first inequality.
Then by Proposition 2.11

sδ(µ)− srb(µ) = ∥e(µ)∥2µ
Since

ηs(µ) = ηen(µ)
2 and uδ(µ)− urb(µ) = e(µ)

By taking the square

sδ(µ)− srb(µ) = ∥uδ(µ)− urb∥2µ ≤ ηen(µ)
2 = ηs(µ)

hence second inequality holds.

Last, by Proposition 2.11 sδ(µ) ≥ srb(µ), hence
1

sδ(µ)
≤ 1

srb(µ)
.

Then
e(µ)

sδ(µ)
≤ e(µ)

srb(µ)
≤ ηs(µ)

srb(µ)
= ηs,rel(µ)

We proved that ηen is a error estimator that we can use for the Greedy Algorithm ! Following
Definition 2.9, we will then define the effectivity of theses estimates :

Definition 2.14: Effectivity

We define the effectivity of the computable estimators :

effen(µ) =
ηen(µ)

∥e(µ)∥µ

effs(µ) =
ηs(µ)

sδ(µ)− srb(µ)

effs,rel(µ) =
ns,rel(µ)

(sδ(µ)− srb(µ))/sδ(µ)

It mesures the sharpness of the estimators.

These effectivities are ≥ 1 by Proposition 2.13.
We require them to be as close as possible to 1 according to Def 2.9.
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17 2) Error estimator

Defined like that, there is no fast way to compute the effectivities. The following property gives
computables upper bounds:

Proposition 2.15: Effectivity control

For all µ ∈ P

1 ≤ effen ≤
√
γδ/αLB

1 ≤ effs ≤ γδ/αLB

Suppose sδ > 0

1 ≤ effs,rel ≤ (1 + ηs,rel)γδ/αLB

D

Inequality 1 : by definition p.14 and Cauchy-Schwarz with the dot product a(·, · ;µ) :
∥r̂δ(µ)∥2V = a(e(µ), r̂δ(µ)︸ ︷︷ ︸

∈Vδ

) ≤ ∥e(µ)∥µ ∥r̂δ(µ)∥µ.

And ∥r̂δ(µ)∥2µ = a(r̂δ(µ), r̂δ(µ)) ≤ γδ(µ) ∥r̂δ(µ)∥2V ≤ γδ(µ) ∥e(µ)∥µ ∥r̂δ(µ)∥µ.

Hence ηen(µ)
2 ≤ γδ(µ)

αLB(µ)
.

Inequality 3 :

ηs,rel = ηs/srb ⇒ effs,rel =
sδ
srb

effs

Yet
sδ
srb

=
sδ − srb
srb

+ 1 ≤ ηs
srb

+ 1 = ηs,rel + 1

Hence
effs,rel ≤ (ηs,rel + 1)

γδ
αLB

The estimator effectivity of the energy norm and output error is bounded from above by inde-
pendent of N .
Thus we will only have to compute this quantities once for each parameter considered.
We then try to provide error bounds with respect to the V-norm for e(µ).

Definition 2.16: V-norm error estimator

The V-norm can be replaced by any Vδ norm adapting the definition of αLB.

ηV(µ) =
∥r̂δ(µ)∥V
αLB(µ)

ηV,rel(µ) =
2

∥urb(µ)∥V
ηV(µ)

As for the previous estimator, the next property proves that this define real error estimator.
What’s most important is that these are fast to compute.
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Proposition 2.17: V-norm error control

∥e(µ)∥V ≤ ηV(µ)

Furthermore, if ηV,rel ≤ 1 for a µ ∈ P, then the relative error verifies

∥e(µ)∥V
∥uδ(µ)∥V

≤ ηV,rel(µ)

D

First inequality : ∥r̂δ(µ)∥V ≥ r

(
e(µ)

∥e(µ)∥V
;µ

)
= a

(
e(µ),

e(µ)

∥e(µ)∥V
;µ

)
≥ αLB(µ) ∥e(µ)∥V.

Definition 2.18: V-effectivity

As per the µ-control case, we define the effictivity of the estimators such that

effV(µ) =
ηV(µ)

∥e(µ)∥V

effV,rel =
ηV,rel(µ)

∥e(µ)∥V / ∥uδ(µ)∥V

Proposition 2.19: V-effectivity control

It holds that
1 ≤ effV ≤ γδ

αLB

Furthermore, if ηV,rel(µ) ≤ 1 for a µ ∈ P then

effV,rel(µ) ≤ 3
γδ(µ)

αLB(µ)

D

The first inequality follows from 2.15 and ∥e(µ)∥µ ≤
√
γδ(µ) ∥e(µ)∥V as

effV(µ) =
effen(µ)√
αLB(µ)

∥e(µ)∥µ
∥e(µ)∥V

≤
√
γδ(µ)

αLB(µ)

∥e(µ)∥µ
∥e(µ)∥V

≤ γδ(µ)

αLB(µ)
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19 3) Computation of the estimator

3) Computation of the estimator

Goal :
Compute ∥r̂δ(µ)∥V

Recall the affine assumption

r(vδ ;µ) = a(e(µ), vδ ;µ)

= a(uδ(µ), vδ ;µ)− a(urb(µ), vδ ;µ)

= f(vδ;µ)− a(urb(µ), vδ ;µ)

=

Qf∑
q=1

θqf (µ)fq(vδ)−
Qa∑
q=1

θqa(µ)aq(urb(µ), vδ) affine assumption 4)

Then we know

urb(µ) =
N∑

n=1

(uµrb)
nξn

Hence

r(vδ ;µ) = a(e(µ), vδ ;µ)

=

Qf∑
q=1

θqf (µ)fq(vδ)−
Qa∑
q=1

N∑
n=1

(uµrb)
nθqa(µ)aq(ξn, vδ)

Let Qr := Qf +NQa and define

r(µ) :=
(
θ1f (µ), . . . , θ

Qf

f (µ),−(uµrb)1θ
1
a(µ), . . . ,−(uµrb)Nθ

1
a(µ),−(uµrb)1θ

2
a(µ), . . . ,−(uµrb)Nθ

Qa
a (µ)

)T
=
(
θ1f (µ), . . . , θ

Qf

f (µ),−(uµrb)
T θ1a(µ), . . . ,−(uµrb)

T θQa
a (µ)

)T
∈ RQr

Then consider the vectors of forms F ∈ (V′
δ)

Qf and Aq ∈ (V′
δ)

N for 1 ≤ q ≤ Qa such that

F =
(
f1, . . . , fQf

)
, and Aq = (A1, . . . , AQa , aq(ξ1, ·), . . . , aq(ξN , ·))

and define the vector of forms R ∈ (V′
δ)

Qr as

R := (F,A1, . . . , AQa)

It allows us to write the inner product representation of r̂δ :

⟨r̂δ(µ)|vδ⟩V = r(vδ ;µ) =
Qr∑
q=1

rq(µ)Rq(vδ) ∀vδ ∈ Vδ

Since Rq is a form on Vδ, Riesz 6.5 ensures it exists r̂qδ for each 1 ≤ q ≤ Qr such that

Rq(vδ) = ⟨r̂qδ |vδ⟩

Hence

r̂δ =
Qr∑
q=1

rq(µ)r̂
q
δ

and

∥r̂δ∥2V =
Qr∑

q,q′=1

rq(µ)rq′(µ)
〈
r̂qδ

∣∣∣r̂q′δ 〉V
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4) Computation of a lower bound of the Stability Constant

The goal here is to provide a computable lower bound of the stability constant α(µ).
Recall the definition of the discrete coercivity constant:

αδ(µ) = inf
vδ∈Vδ

a(vδ, vδ ;µ)

∥vδ∥2V

Theorema 2.20: Representation of SP(D) bilinear forms

a : Vδ × Vδ × P → R being a symmetric positive (definite) bilinear form, there exists a
SP(D) matrix A such that

a(x, y) = ⟨Ax|y⟩V

D

We know L(E,L(F,R)) ≡ L(E × F,R).
Claim : A is SPD.

Ai,j = ⟨AEi|Ej⟩ = a(ei, ej)

where ei is a basis of Vδ and Ei the basis vectors.
Since a is SPD, A is also SPD.

Since A is SPD, there exists λ1, . . . , λNδ
∈ R+,wi ∈ Vδ orthonormal basis, such that Awi = λiwi.

One can verify that λ eigenvalue of A if and only if :

a(wi, vδ) = λi ⟨wi|vδ⟩V ∀vδ ∈ Vδ

Proposition 2.21: Eugenvalue problem

The coercive constant is such that αδ = inf {λ / ∃w, a(w, vδ) = λ ⟨w|vδ⟩V , ∀vδ ∈ Vδ}

D

Define λmin = inf {λ / ∃w, a(w, vδ) = λ ⟨w|vδ⟩V ,∀vδ ∈ Vδ} the smallest eigenvalue of A.
Recall λmin ≥ 0 because A is positive.

Take v ∈ Vδ. Then v =

Nδ∑
i=1

viwi.

a(v, v) =

Nδ∑
i=1

λiv
2
i ≥ λmin ∥v∥2V

Hence
∀v ∈ Vδ,

a(v, v)

∥v∥2V
≥ λmin
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The right quantity is independant of v, we can take the infimum

αδ ≥ λmin

Then take w such that Aw = λminw, by the very definition of the coercive constant :

a(w,w)

∥w∥2V
= λmin ≥ αδ

Hence the equality.

For computation, one can rewrite the equation p.20 as

Find smallest λ > 0 such that Aµ
δwδ = λMδwδ

where Aµ
δ = (a(φi, φj ;µ)i,j and Mδ = (⟨φi|φj⟩V)i,j.

It allows fast computation of the constant.

a) Min-θ-approach

Recall the affine assumption :

a(u, v ;µ) =
Qa∑
q=1

θqa(µ)aq(u, v)

Definition 2.22: Parametrically coercive problem

• θqa(µ) > 0

• aq is positive semi-definite

Assume there exists µ′ such that we computed αδ(µ
′). Then

aδ(µ) = inf
v∈Vδ

a(v, v)

∥v∥2V

= inf
v∈Vδ

Qa∑
q=1

θqa(µ)
aq(v, v)

∥v∥2V

= inf
v∈Vδ

Qa∑
q=1

θqa(µ)

θqa(µ′)
θqa(µ

′)
aq(v, v)

∥v∥2V

≥ inf
v∈Vδ

min
q=1,...,Qa

θqa(µ)

θqa(µ′)

Qa∑
q=1

θqa(µ
′)
aq(v, v)

∥v∥2V

= αδ(µ
′) min

q=1,...,Qa

θqa(µ)

θqa(µ′)︸ ︷︷ ︸
αLB

Then assuming we computed αδ(µ1), . . . , αδ(µM) stability constants.
A sharper lower bound is

αLB(µ) := max
m=1,..,M

αLB(µm)
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This is an expensive approach that is used in practice because very easy to compute, and we
are willing to lose time during the offline mode (when we compute the reduced basis) in order
to have the best online mode (when we compute the solution of the reduced basis for a new
given parameter).

b) Successive Constraint Method

We present this other method that is faster but more complex. It is based on a functional
analysis approach. The goal is to minimise the following functional :

S : P×RQa −→ R

(µ, y) 7−→
Qa∑
q=1

θqa(µ)yq

over the set of admissible solutions

Y :=

{
y = (y1, . . . , yQa) ∈ RQa

/
∃vδ, ∀q, yq =

aq(vδ, vδ)

∥vδ∥2V

}
Remark :

It is equivalent to define:

Y :=

{
y =

(
a1(vδ, vδ)

∥vδ∥2V
, . . . ,

aQa(vδ, vδ)

∥vδ∥2V

)
∈ RQa

/
vδ ∈ Vδ

}
Then there holds

αδ(µ) = min
y∈Y

S(µ, y)

To find αLB and αUB we search for YUB ⊂ Y ⊂ YLB.
Then

αLB(µ) := min
y∈YLB

S(µ, y), and αUB(µ) := min
y∈YUB

S(µ, y)

Let Pa ⊂ P such that µ1, µ2 ∈ Pa, µ1 ̸= µ2 ⇒ a(·, · ;µ1) ̸= a(·, · ;µ2). Set Θa ⊂ Pa be
representative discrete point-set of Pa.

Define B =
Qa∏
q=1

[σ−
q ;σ

+
q ] where

σ−
q = inf

vδ∈Vδ

aq(vδ, vδ)

∥vδ∥2V
, and σ+

q = sup
vδ∈Vδ

aq(vδ, vδ)

∥vδ∥2V

We get directly Y ⊂ B.
Define

PM(µ ;E) :=

{
M closest points to µ in E if Card (E) > M

E if Card (E) ≤M

For n = 1 :
Set α0

LB(µ) = 0 ∀µ ∈ Θa. Take µ1 ∈ Pa. Denote

P1 = {µ1}
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Solve the Eigenvalue problem p.20 for µ1 which gives (αδ(µ), w
1
δ).

Define y1 such that

(y1)q =
aq(w

1
δ , w

1
δ)

∥w1
δ∥

2
V

We then define
Y1

UB := {y1}

and

Y1
LB(µ) =

{
y ∈ B

/
S(µ′, y) ≥ αδ(µ

′), ∀µ′ ∈ PMe(µ ;P1)
S(µ′, y) ≥ α0

LB(µ
′) = 0, ∀µ′ ∈ PMp(µ ; Θa\P1)

}

Finally we define

α1
LB(µ) = min

y∈Y1
LB(µ)

S(µ, y), and α1
UB(µ) = min

y∈Y1
UB

S(µ, y)

Set n ≥ 1.
Suppose we constructed Pn−1 = {µ1, . . . , µn−1} ⊂ Pa and αn−1

LB (µ) > 0 ∀µ ∈ Θa.
Define for each µ ∈ P

η(µ,Pn−1) = 1− αn−1
LB

αn−1
UB

Choose µn such that
µn := arg max

µ∈P
η(µ,Pn−1)

Then set
Pn := Pn−1 ∪ {µn}

Solve the Eigenvalue problem p.20 which gives αδ(µ
n) and yn. As before, define

Yn
UB := {y1, . . . , yn}, and Yn

LB(µ) =

{
y ∈ B

/
S(µ′, y) ≥ αδ(µ

′), ∀µ′ ∈ PMe(µ ;Pn)
S(µ′, y) ≥ αn−1

LB (µ′), ∀µ′ ∈ PMp(µ ; Θa\Pn)

}
We can prove “A successive constraint linear optimization method for lower bounds of para-
metric coercivity and inf–sup stability constants” [Huy+07] :

YUB ⊂ Y ⊂ YLB(µ) ∀µ

and the construction of such sets make them naturally increasing for inclusion (resp. decreas-
ing).

Once n0 fixed by a tol over the estimator η, the Online Procedure goes as follow :

αLB(µ) = min
y∈YLB(µ)

S(µ, y)

where YLB(µ) := Yn0
LB(µ).
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5) Online and Offline computation

We know how to :
Compute αLB(µ).
Compute ∥r̂δ(µ)∥V.

To use the ROM with the Greedy Algorithm we proceed as follow:

• Offline mode:
Estimate ηen(µ) ∀µ ∈ Ph. Following p.9, add the worst estimate solution to the basis.
Do it until ηen(µ) is lesser than a set tolerance.

• Online mode:
For a new µ ∈ P, compute all the θqa(µ), θ

q
f (µ), θ

q
ℓ (µ).

Solve the reduced basis linear system.

The hope is that the Online Mode will be significantly faster.
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Part 3

Finite Volumes Method
The Finite Volume Method in Fluid Dynamics [MMD16]
I will only consider the cell centered FVM.

I - Integral of Finite Volume
We consider the General Conservation Equation for a scalar quantity ϕ in a fluid

∂t(ρϕ) +∇ · (ρvϕ) = ∇ · (Γ∇ϕ) +Q

Suppose the steady-state
∇ · (ρvϕ) = ∇ · (Γ∇ϕ) +Q

Integrate in a Control Volume∫
VC

∇ · (ρvϕ) =
∫
VC

∇ · (Γ∇ϕ) +
∫
VC

Q

Using Green-Ostrogradsky on the gradients∫
∂VC

(ρvϕ− Γ∇ϕ) · dS =

∫
VC

Q

Consider the integrand as the sum of the integrand on each faces∫
∂VC

(ρvϕ− Γ∇ϕ) · dS =
∑
f

∫
f

(ρvϕ− Γ∇ϕ) · dSf

Figure 5: Conservation in a controle volume, from [MMD16]

From here, the Gauss-Legendre quadrature can be used to prove mathematically that we can
approximate efficiently the integrand on the faces by a sum. Using one point, it is equivalent
to the Mean Value Theorem for Integrals.
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Theorema 3.1: Mean Value Theorem for Integrals

Consider Ω ⊂ Rn, n ≥ 1, measurable with finite measure, connected set.
Consider f : Ω → R a function which is

• Continuous

• Integrable

• Bounded

Then it exists c ∈ Ω such that

f(c) =
1

mes(Ω)

∫
Ω

f(x)dx

D

Since f is bounded on the set, it exists m,M such that

m ≤ f ≤M

One can integrate this inequality

mes(Ω)m ≤
∫
Ω

f ≤ mes(Ω)M ⇐⇒ m ≤ 1

mes(Ω)

∫
Ω

f ≤M

Then by Intermediate Value Theorem for real valued functions it exists c ∈ Ω̊ such that

f(c) =
1

mes(Ω)

∫
Ω

f

One can interpret this equation such that the mean of f over the set is attained by one point
c in the set.

Proposition 3.2: Centroid

Suppose f is linear and Ω convex.

Then the centroid of the considered set c =
∫
Ω
xdx

mes(Ω)
∈ Ω is such that

f(c) =
1

mes(Ω)

∫
Ω

f

D

∫
Ω
xdx

mes(Ω)
∈ Ω comes by convexity.
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Search c0 ∈ Ω such that

f(c0) =
1

mes(Ω)

∫
Ω

f(x)dx

=
1

mes(Ω)
f

(∫
Ω

xdx

)
by linearity

= f

(
1

mes(Ω)

∫
Ω

xdx

)

Then c0 =
1

mes(Ω)
∫
Ω
xdx is a solution to the equation.

Uniqueness is not true in general.

Coming back to ∫
∂VC

(ρvϕ− Γ∇ϕ) · dS =
∑
f

∫
f

(ρvϕ− Γ∇ϕ)f · dSf

We suppose the grid thin enough to approximate linearity, hence using the centroid approxi-
mation 3.2 ∫

∂VC

(ρvϕ− Γ∇ϕ) · dS ≃
∑
f

(ρvϕ− Γ∇ϕ)f · Sf

and similarly ∫
VC

Q ≃ QCVC

Hence the discretized equation for each cell :

Definition 3.3: Discretized Conservation Equation

∑
f∼faces(C)

(ρvϕ− Γ∇ϕ)f · Sf = QCVC

Then suppose that we can linearise the flux

(ρvϕ− Γ∇ϕ)f · Sf = FluxCfϕC + FluxFfϕf + FluxVf

and the source
QCVC = FluxCϕC + FluxV

Then it is easy to write the equation such that

aCϕC +
∑

f∼faces(C)

aFϕF = bC

with aC ,aF ,bC depending on the FluxXf/C .

Raphaël LECOQ Chapter 3 | Summary



II - LINEARISATION OF THE DISCRETISED EQUATION 28

II - Linearisation of the discretised equation

1) Linearisation of the diffusion flux

In the general case, the grid and the centroids don’t have any reason to have create an orthogonal
mesh.

Figure 6: Non orthogonal mesh, from [MMD16]

We want to approximate JD = −Γ∇ϕ as a linear function of ϕC and ϕF . The orthogonal
situation would be

∇ϕ =
∂ϕ

∂n
≃ ϕF − ϕC

∥d∥
n

and
(∇ϕ)f · Sf ≃

ϕF − ϕC

∥d∥
Sf

with Sf = Sfn.
In the non-orthogonal case :

∇ϕ =
∂ϕ

∂e
≃ ϕF − ϕC

∥d∥
e+ ((∇ϕ) · t)t

Sf = Efe+ Tft = Ef +Tf

Hence
(∇ϕ)f · Sf =

ϕF − ϕC

∥d∥
Ef + (∇ϕ)f ·Tf

The choice of Ef and Tf is not discussed.
We need to compute (∇ϕ)f :

∇ϕf = gC∇ϕC + gF∇ϕF

where gC + gF = 1 are geometric interpolation factors with respect to F and C (coefficients of
the barycenter).
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2) Implicit computation of (∇ϕ)f
a) Green-Gauss gradient

∇ϕC =
1

VC

∑
f

ϕfSf

It is still needed to compute ϕf .
A simple and natural way is

ϕf = gcϕC + gFϕF

F being the centroid of the neighbour cell that shares the face. Another more accurate way is
to compute a mean based on the vertices and F .
Both way are just using convex combination of neighbour cells.

b) Least-square distance

Considering the 1st order approxmiation

ϕF = ϕC + (∇ϕ)C · rCF

We want to minimize the quantity

GC =

NB(C)∑
k=1

(
wk [ϕF − (ϕC +∇ϕC · rCF)]

2)
=

NB(C)∑
k=1

(
wk

[
∆ϕk −∆xk

(
∂ϕ

∂x

)
C

−∆yk

(
∂ϕ

∂y

)
C

−∆zk

(
∂ϕ

∂z

)
C

]2)

where ∆X = XF −XC .
Remark :

It’s the squared error on each faces that we minimze with regard to the unknown
coefficients of the gradient.

This quantity is minimised when

∂GC

∂

(
∂ϕ

∂x

) = 0

∂GC

∂

(
∂ϕ

∂y

) = 0

∂GC

∂

(
∂ϕ

∂z

) = 0
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which is equivalent to

NB(C)∑
k=1

(
2∆xkwk

[
−∆ϕk +∆xk

(
∂ϕ

∂x

)
C

+∆yk

(
∂ϕ

∂y

)
C

+∆zk

(
∂ϕ

∂z

)
C

])
= 0

NB(C)∑
k=1

(
2∆ykwk

[
−∆ϕk +∆xk

(
∂ϕ

∂x

)
C

+∆yk

(
∂ϕ

∂y

)
C

+∆zk

(
∂ϕ

∂z

)
C

])
= 0

NB(C)∑
k=1

(
2∆zkwk

[
−∆ϕk +∆xk

(
∂ϕ

∂x

)
C

+∆yk

(
∂ϕ

∂y

)
C

+∆zk

(
∂ϕ

∂z

)
C

])
= 0

that can also be written under the follozing form :

A(∇ϕ)C = b

The choice of wk has to be discussed. It can be a constant or depend on the inverse to the

distance
1

rnCF

on any power n ≥ 1.

This equation also gives the usual solution of 1st order gradient for the cartesian grid

∂xϕ ≃ ϕF − ϕC

xF − xC

We also can write the linear equation first and realize the GC quantity appears :

ϕF = ϕC + (∇ϕ)C · rCF ∀F ⇐⇒ R∇ϕC = [ϕN − ϕC ]

where R is a N × 3 matrix of the rCFi,j, j ∈ {x, y, z}. This equation is overdetermined, one
can use the least square quantity writing

∇ϕC = (dTd)−1dT [ϕN − ϕC ]

and the least-square method makes GC appears naturally.

3) Gradient on faces

Once we computed the gradient on centroids, we can approximate the gradient on faces :

∇ϕf = gC∇ϕC + gF∇ϕF

and consider
∇ϕf = ∇ϕf +

(
ϕF − ϕC

dCF

−∇ϕf · eCF

)
eCF︸ ︷︷ ︸

Correction interpolated face gradient

where

dCF = |rF − rC |
eCF = rF − rC

4) Convection flux and source term

We admit the linearisation process of these terms.
Source term will be admitted to be constant or at least independent of the solution.
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III - Error estimation of full order FV
“Error Analysis and Estimation for the Finite Volume Method With Applications to Fluid
Flows” “Error Analysis and Estimation for the Finite Volume Method With Applications to
Fluid Flows”

1) Taylor Extension estimates

Consider u the exact solution, hoping u is smooth.
Then one could write the Taylor Expansion

u(x) =
∞∑
n=0

1

n!
(x− xC)

n ⊗n (∇nu)C

A discretisation is of p-order if one approximate u such that

ϕ(x) =

p−1∑
n=0

1

n!
(x− xC)

n ⊗n (∇nϕ)C

And put that into the equation.
The discretisation error is then

e(x) =
∞∑
n=p

1

n!
(x− xP )

n ⊗n (∇nϕ)C

The error on the control volume is introduced as

et(ϕ) =

∥∥∥∥ 1

VC

∫
VC

e(x)dx

∥∥∥∥ ≤ 1

VC

∞∑
n=p

∥∥∥∥∫
VC

1

n!
(x− xC)

n ⊗n (∇nϕ)C

∥∥∥∥
The error estimate can be then defined

E(ϕ) =
1

VC

∞∑
n=p

∥∥∥∥∫
VC

1

n!
(x− xC)

n ⊗n (∇nϕ)C

∥∥∥∥ =
1

VC

∞∑
n=p

1

n!

∥∥∥∥[∫
VC

(x− xC)
n

]
⊗n (∇nϕ)C

∥∥∥∥
which can’t be computed. One use a more computable estimate

Definition 3.4: Taylor error estimate

et(ϕ) =
1

VC

1

p!

∥∥∥∥[∫
VC

(x− xC)
n

]
⊗n (∇nϕ)C

∥∥∥∥
This error estimate really surprise me since it’s not greater than the exact error.
For the FVM, the discretisation is of order 2.

et(ϕ) =
1

VC
· 1
2

∥∥M⊗ (∇2ϕ)C
∥∥

where M =
∫
VC
(x− xC)

2dV is the order 2 geometric moment of the control volume.
The hope is that when the function is smooth, the n-th value tend quickly to 0.
One have to add the diffusion numerical error to the truncated error, where T is the caracteristic
time length.

enum =

∥∥∥∫VC
∇(·Γnum∇ϕ)

∥∥∥T
VC
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2) Moment Estimates

We consider the steady-state scalar transport equation

∇·(ρUϕ)−∇·(ρΓϕ∇ϕ) = Sϕ(ϕ) = Sp︸︷︷︸
non linear part

+ Suϕ︸︷︷︸
linear part

The solution verifies all the higher moments equations.
We consider the 2nd moment :

m =
1

2
ϕ2

It holds

∇·(ρUm)︸ ︷︷ ︸
= 1

2
∇·(ρUϕ)+ 1

2
ρU·∇ϕ)

−∇·(ρΓϕ∇m︸︷︷︸
=ϕ∇ϕ

) =
1

2
∇·(ρUϕ)ϕ+

1

2
ρUϕ · ∇ϕ−∇·(ρΓϕϕ∇ϕ)︸ ︷︷ ︸

=
1

2
∇·(ρUϕ)ϕ︸ ︷︷ ︸

=− 1
2
∇·(ρUϕ)ϕ+∇·(ρUϕ)ϕ

+
1

2
ρU · ϕ∇ϕ−∇·(ρΓϕ∇ϕ)ϕ− ρΓϕ(∇ϕ · ∇ϕ)

= −1

2
∇·(ρUϕ)ϕ+

1

2
ρUϕ · ∇ϕ+ (∇·(ρUϕ)−∇·(ρΓϕ∇ϕ))︸ ︷︷ ︸

=Sϕ(ϕ)

ϕ

− ρΓϕ(∇ϕ · ∇ϕ)

= −1

2
(∇·(ρUϕ)− ρU · ∇ϕ)ϕ+ Sϕ(ϕ)ϕ− ρΓϕ(∇ϕ · ∇ϕ)

= −1

2
∇·(ρU)︸ ︷︷ ︸

=0

ϕ+ Sϕ(ϕ)ϕ− ρΓϕ(∇ϕ · ∇ϕ) (⋆)

= Sϕ(ϕ)ϕ− ρΓϕ(∇ϕ · ∇ϕ)

(⋆) holds for a steady-state equation with no source term.

Since ϕ is an approximation, one can define the local imbalance denoted res such that

resm(mϕ) =

∫
ΩC

[∇(ρUm)−∇(ρΓϕ∇m)− (Sϕ(ϕ)ϕ− ρΓϕ(∇ϕ · ∇ϕ))] dV

Then considering the steady-state transport equation for a general vector property a :

∇ · (ρUa)−∇(ρΓa∇a) = Su+ Sp a

and define

ma =
1

2
a · a

In the same way, we can obtain the equation

∇(ρUma)−∇(ρΓa∇ma) = Su · a+ 2Sp ma − ρΓa(∇a⊗∇a)

and the local imbalance

resm(ma) =

∫
ΩC

[∇(ρUma)−∇(ρΓa∇ma)− (Su · a+ 2Sp ma − ρΓa(∇a⊗∇a))] dV
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Note that everything is scalar.
res has a defined dimension [ϕ]2[L]3/[T ] and we need to normalise it : define the caracteristic
time T such that

T =
h

Utransport

where

Utransport = ∥U∥+ Γ

h

hence we define the error on the cell

em(ϕ) = 2

√
∥resm(mϕ)∥T

VC

3) Residual Estimates

"The residual is a function that measures how well the local solution satisfies the original
governing equations. It is therefore natural to associate the level of residual with the local
solution error."
The following choice is made in the definition of the residual estimates :

resC =

∫
VC

[∇·(ρUϕ)−∇·(ργϕ∇ϕ)− Su− SpϕC ]dV

=
∑
f

[(ρUϕ)f − (ργϕ)f (∇ϕ)f ] · Sf − SuVC − SpϕCVC

One could have worked on the estimate error for the faces.
We recall that

ϕf = ϕC + (xf − xC) · ∇ϕC

(∇ϕ)f = ∇ϕC

This expression dimension is [ϕ][L]3/[T ] thus need to be normalised.
It is built on the caracteristic diffusion and convection.

Fdiff =
1

VC

∑
f

[
∥S∥ (ργϕ)f

∥d∥

]
Fconv =

1

VC

∑
f

max(F, 0)

Fnorm = Fdiff + Fconv + Sp

Hence
er(ϕ) =

res[ϕ)]
VCFnorm

IV - Issue of the FVM and its estimates
The main issue of the FVM is that there is no such thing as "basis functions" : we do not
create the solution by using discrete spaces. There is not much mathematical framework other
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than classical approximations.
The only basis function that create the method is piecewise constant fonctions on each control
volume.

The second flaw is the estimates that are not standards nor mathematically well established.

That is why we try to see the FVM as a derivation of FEM with piecewise constant fonc-
tions approximation instead of piecewise linear.

Raphaël LECOQ Chapter 3 | Summary



35

Part 4

Discontinous Galerkin Method
I - Theoretical aspects
Following Mathematical aspects of discontinuous Galerkin method [PE12]

1) Definitions

Definition 4.1: Petrov-Galerkin approximation

a(·, ·) : V ×W → R, V,W Hilberts.
f ∈ L(W,R).

(⋆⋆) : find u ∈ V, a(u, v) = f(v) ∀v ∈ W

One can invoke Banach–Nečas–Babuška theorem 6.7 to ensure well posedness.

Definition 4.2: Jump and average

Consider a finite element T1 of and its interface ∂T of dimension dim(T )− 1 with another
finite element T2.
We define the componentwise average of v on ∂T as

{{v}}(x) := 1

2

(
v
∣∣
T1
(x) + v

∣∣
T2
(x)
)

and the componentwise jump of v on ∂T as

JvK(x) = v
∣∣
T1
(x) · n1 + v

∣∣
T2
(x) · n2

where ni is the normal vector defined by the borders.

The average is used to approximate the function on interfaces.

Definition 4.3: Discontinuous Galerkin Method

Trial basis of the Petrov-Galerkin approximation made of piecewise polynomials of certain
degree : P is defined on each element T such that P |T is polynomial but JP (x)K ̸= 0 in
general.
The test basis is also made of piecewise polynomials of certain degree.

Using the DGM, the solution u ∈ V lives in W s,p(T ) := {v ∈ L2(Ω) / ∀T ∈ T , u|T ∈ W s,p(T )},
where T is the set of finite elements.
We define the the solutions, gradients, spaces the trial basis and the tests basis as piecewise
spaces that are called "broken whose objects are defined on each elements.
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2) Equivalence with FEM

This equivalence is direct since one just have to add a continuity condition on the interfaces
i.e. JvK ≡ 0 for all considered functions and chose trial and test functions in VT polynomials
functions.

3) Equivalence with FVM

We note that FVM can be written as DGM with 1C as basis function. This equivalence is
harder to write since you have to define the gradient reconstruction depending on which FVM
method is considered.
This is a case by case equivalence that we need to investigate further.

4) Local Problem Error Estimate for FVM

[Jas96]
Let Lu = −∇·(a∇u) + cu

Lu = f ∈ Ω

with boundary conditions {
ϕ = ϕD(x) x ∈ ΓD

a nf · ∇ϕf = g(x) x ∈ ΓN

where
ΓD ∪ ΓN = ∂Ω
ΓN ∩ ΓD = ∅

Let
a(u, v) =

∫
V

−∇·(a∇u)v + cuv =

∫
V

a∇u · ∇v + cuv

Define the error
e = u− uh

∥e∥2V = a(e, e) =

∫
V

a∇e · ∇e+ ce2

The error has the following convergence property

∥e∥V ≤ Chk

where k denotes the order of approximation and C is independant of k and h.

Theorema 4.4: Local problem estimate

For every control, a local error problem

−∇·∇ψC = rC x ∈ ΩC

with boundary conditions {
nf · ∇ψC = RC x ∈ ∂ΩCΓD

ψC = 0 x ∈ ∂ΩC ∩ ΓD
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where
RC :=

{
g − anf∇·uh on ∂ΩC ∩ ΓN

−αCJanf∇·uhK on ∂ΩC\ΓN

and
rC = f − Lu

produce an upper bound of the error energy norm

∥e∥2V ≤
N∑
C

ε2C(∇ψC)

where N is the number of subdomains.

It can be extended on Diffusion-Convection problems.

II - Box Method

Following “Some Error Estimates for the Box Method” [BR87] and “On the convergence of the
Rhie–Chow stabilized Box method for the Stokes problem” [NPV24]

This method could be used to create an error estimator without having to compute the Box
Method solution if uFVM = uB.

Construct a triangulation T and suppose there exists δ0 > 0 such that

∀t ∈ T , δ0 ≤
kt
ht

where ht, kt are respectively the diameter of the circumscribing (resp. inscribing) circle of the
triangle.
Denote by E the set of all edges of triangles in T .

For each vertices vi of T , we define Ωi the union of each triangles (and their border) that
have vi as vertex.
For each triangle t in Ωi, one can chose a point p that will be the vertex of the control volume
and define bi as the polygonal with vertices (pi,t)t.
One can construct the dual mesh such that there exists α > 0

∀(Ωi, bi), α ≤ |bi|
|Ωi|

(⋆)

The Delaunay and Volonoï dual meshes can satisfy such conditions. See Fig 1 of [NPV24]

Denote the piecewise constant polynomials space on the dual mesh

P0(B) =
{
v ∈ H1(Ω)

/
∀b ∈ B, v

∣∣
b
∈ P0(b)

}
and the piecewise linear polynomials space on the triangulation mesh

P1(T ) =
{
v ∈ H1(Ω)

/
∀t ∈ T , v

∣∣
t
∈ P1(t)

}
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Recall the broken Sobolev space

H1(B) =
{
v ∈ L2(Ω)

/
∀b ∈ B, v

∣∣
b
∈ H1(b)

}
As for H1

0, for any functional space X we denote by X0 the subset of X whose functions are
zero on ∂Ω.

1) Duality map

There is a natural map between P1(T ) and P0(B).
P1(T ) is the usual vector space of the finite elements method of nodal basis {ϕi) where, for
each node vertex vj :

ϕi(vj) = δij

The construction of P1(B) admits the control volume basis χi such that for each control volume
bi :

χi = 1bi

The construction of B ensures that for each vertex vi you can map a control volume bi hence
dim Span {ϕi} = dim Span {χi}.
We can then define the invertible mapping :

G :
(
P1(T ), ∥·∥H1(Ω)

)
−→

(
P0(B), ∥·∥H1(B)

)
u =

∑
i

uiϕi 7−→ u =
∑
i

uiχi

G is an isomorphism because it is surjective between two vector spaces of same dimension.
Note that

(
P1(T ), ∥·∥H1(Ω)

)
and

(
P0(B), ∥·∥H1(B)

)
are Hilbert spaces.

2) Property of the map

This lemma proves that the jumps can be effectively used to approximate the gradient and also
to behaves as the gradient norm. It can allow to create a piecewise constant H1 norm.

Lemma 4.5: Semi-norm control

For u ∈ P1(T ), denote u = G(u) ∈ P0(B).
There exists C0 = C0(δ0)> 0 s.t.

C−1
0 ∥∇u∥L2(Ω) ≤

(∑
e∈E

∥JuKe∥2
)1/2

≤ C0 ∥∇u∥L2(Ω)

i.e. the Broken Sobolev semi-norm and the Sobolev semi-norm are equivalent.
Note that the norm ∥·∥ can be any norm on Rd where d is the space dimension.

We can also find equivalence between the piecewise norm and the L2 norm.
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Lemma 4.6: L2 norm control

For u ∈ P1(T ), denote u = G(u) ∈ P0(B).
There exists C1 = C1(δ0)> 0 s.t.

∥u∥L2(Ω) ≤ C1(δ0) ∥u∥L2

Moreover suppose (⋆) p.37 then there exists C2(δ0,Ω) > 0 s.t.

∥u∥L2 ≤ C2(δ0,Ω) ∥u∥L2(Ω)

D

See paper for details.
See Generalized Rayleigh Quotient for the construction of C0. We get a computable ex-
pression of C0 which I will write later.
Same for C1 and C2 but the computation are more mysterious in the paper.

Proposition 4.7: Norm equivalence

Suppose (⋆) p.37. Then there exists α, β > 0 s.t.

α ∥u∥H1(Ω) ≤ ∥u∥H1(B) ≤ β ∥u∥H1(Ω)

where

∥u∥H1(B) := ∥u∥L2(Ω) +

(∑
e∈E

∥JuKe∥2
)1/2

D

Applying Lemma 4.5 and Lemma 4.6 directly gives the result.

Proposition 4.8: Integration equivalence

Let u, v ∈ P1(T ). Then it holds :∫
Ω

∇u · ∇v = −
∑
b∈B

∫
∂b

∂u

∂n
v

where n is the outward pointing normal with respect to the interior of b.
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3) The Poisson equation

For f ∈ L2(Ω) consider the equation :{
−∆u = f in Ω
u = 0 on ∂Ω

Define a(u, v) =
∫
Ω
∇u · ∇v, the weak form is written:

Find u ∈ H1
0(Ω), a(u, v) = ⟨f |v⟩L2 , ∀v ∈ H1

0(Ω)

Recall ∥u∥2µ = a(u, u) and define ∥v∥µ := ∥G−1(v)∥µ.

One can adapt this equation to H1
0(B) with Lemma 4.8 :∫

Ω

∇u·∇v = −
∑
b∈B

∫
∂b

∂u

∂n
v = −

∑
b∈B

∫
∂b

∂u

∂n
G(v) := a(u, v) ⇐⇒︸ ︷︷ ︸

G isomorphism

a(u, v) = −
∑
b∈B

∫
∂b

∂u

∂n
v

Define the box weak form

Find uB ∈ P1(T ), a(uB, v) = ⟨f |v⟩L2 , ∀v ∈ P0(B)

Denote by u the analytical solution and by uL the FEM solution.

Theorema 4.9: Box error control for Poisson Problem

There exists C = C(δ0,Ω) > 0

∥u− uL∥µ ≤ ∥u− uB∥µ ≤ C ∥u− uL∥µ

4) Self-adjoint problem

Let f ∈ L2(Ω). Let Γ be a bounded real valued function. Let σ be such that 0 ≤ σ(x) ≤ σ+.
Consider the equation {

−∇·(Γ∇u) + σu = f in Ω
u = 0 on ∂Ω

The box method weak form is

Find uB ∈ P1(T )a(uB, v) + ⟨σuB|v⟩L2 = ⟨f |v⟩L2 ∀v ∈ P0(B)

A natural generalization of the Galerkin formulation of the box method would use uB but using
uB allows to keep the discretisation of σu diagonal and symmetric.

Theorema 4.10: Box error control for the self-adjoint problem

There exists C = C(Γ, σ, α, δ0) > 0 such that :

∥u− uL∥µ ≤ ∥u− uB∥µ ≤ C
(
∥u− uL∥µ + ∥u− uL∥L2(Ω)

)
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Part 5

Cell centered FVM Reduced Basis
Method
The goal is to write the Finite Volume Method in the same framework as the Finite Element
Method i.e. with a bilinear form. The idea is to apply the well established Certified Reduced
Basis Method error estimators to a Weak Finite Volumes formulation.

It is possible to interpret FVM as a Discontinuous Galerkin Method of lowest order with
the test function to be basis V = Span (1C).
Since FVM searches the solution in the piecewise constant functions, we want to find a bilinear
form a(·, ·) : P0 × P0 → R with P0 the piecewise constant functions.
Wrote under this bilinear form, we hope to use the Dual Error Estimate 2.12 for faster reduced
basis generation.

It leads naturally first to Mathematical aspects of discontinuous Galerkin method [PE12].
This book proposes a DGM for the Cell Centered Finite Volume Method.
Unfortunately, to construct the FVM, the book consider a reconstruction of the Gradient then
look for a solution in P1 the piecewise linear functions.
This work still could be seen as looking for a solution in P0 then mapping in P1, but it didn’t
seemed direct to us.

A second book treats the problem : The Gradient Discretisation Method [Dro+18].
It handles the two-points flux approximation Finite Volumes on cartesian meshes and the multi-
point flux approximation.
Unfortunately, reserves are given in the book about such a bilinear form.
From the same authors, the article “Analysis tools for finite volume schemes” [Eym+07] that
writes explicitly the bilinear form.

This two books are very dense and hard to manipulate in a short amount of time. We
decided to follow the most explicit [Eym+07] for the numerical trials. Nonetheless, both books
will be considered in future research.

We also searched in the direction of the Box Method, that was introduced in [NPV24] that
follow Bank and Rose (1987) [BR87]. The main issue is that we can’t really define any coer-
civity, and we are unsure whether the estimate is interesting.

As of today, no simulations were run, and we don’t know whether or not it works as expected.
From a theoretical point of view, the proposed framework seems solid enough, and we firmly
believe that we may have found a good starting point.
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I - Box Method

See “Some Error Estimates for the Box Method” [BR87]
We consider B a control volume mesh.
We consider T a triangulation such that B is the dual mesh of T .
It is possible to have two admissible primal (FEM) and dual (FVM) meshes regarding Delaunay
and Volonoï.
Let uFVM ∈ P0(B) be the FVM approximation of the solution.

Suppose uB = G(uFVM).

Still to find proof.

Then for SFVM = [uFVM(µ1), . . . , uFVM(µn)] a snapshot of full-order solutions that we will
consider to be the RB, consider the primal snapshot :

SB := [G(uFVM(µ1)), . . . , G(uFVM(µn))] = [uB(µ1), . . . , uB(µn)]

uFVM,rb := PS(u) =
n∑

i=1

⟨uFVM(µi)|u⟩P0(B) uFVM(µi)

and
uB,rb = G(uFVM,rb)

Then we might expect somehow

∥uFEM − uFEM,rb∥µ ≤ ∥uB − uB,rb∥µ ≤ C ∥uFEM − uFEM,rb∥µ
recalling

∥uB − uB,rb∥µ = ∥uFVM − uFVM,rb∥µ
Then defining

r(v) = ⟨f |v⟩L2 − a(uB,rb, v) = a(uB, v)− a(uB,rb, v) = a(uB − uB,rb, v)

if we know a to be coercive we should have a Inf-Sup stable with constant β hence if we define
r̂ the Riesz representation on VBox we should have

∥uB − uB,rb∥µ ≤
∥∥r̂∥∥
β

The Box Method is not really satisfying because we only have inf-sup constant, because the
considered energy norm is one from FEM method that does not take into account the con-
servation of fluxes and lastly we are not sure that the FVM solution is mapped to the Box
Solution.

II - Finite Volume Weak Formulation

1) Construction of the weak formulation

Raphaele Herbin presentation that is also described in “Analysis tools for finite volume schemes”
[Eym+07]
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Problem : let b ≥ 0, Q ∈ L2(Ω) and v ∈ Rd{
−∆u+∇·(vu) + bu = Q in Ω

u = 0 on ∂Ω

Define B the set of control volumes and E the set of its faces. We suppose the mesh to be
admissible in the sense that orthogonality conditions holds.
Recall :

P0(B) =
{
u ∈ L2(Ω)

/
∀C ∈ B, u

∣∣
b
∈ P0(b)

}
Bilan on a control volume C ∈ B with faces f :∑

f∈F(C)

∫
f

−∇u · nfdγ(x) +
∑

f∈F(C)

∫
f

(vu) · nfdγ(x) +

∫
VC

bu =

∫
VC

Q

Remark :

γ(x) is the (d− 1)-Lesbegue measure.

We then use the FVM approximation with the Upwind scheme :∑
f∈F(C)

FC,f (u+
∑

f∈F(C)

(v+f uC + v−f uF ) + bC |VC |uC = |VC | fC

where

v+ := max(0, v) & v− := max(0,−v)

Define

Eint := E ∩ Ω & Eext := E ∩ ∂Ω

• •
F1

•

•
F2

•
C

•
F3

• •
F4 •

f = C|F4

γ(f)

rCF4

Then we define FC,f (u) such that :

FC,f (u) :=


−γ(f)
rCF

(uF − uC) if f ∈ Eint

−γ(f)
rCf

(−uC) if f ∈ Eext
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Note rCf is the distance between C and the border.
We do a sumation over B :

∑
C∈B

 ∑
f∈F(C)

FC,f (u) +
∑

f∈F(C)

(v+f uC + v−f uF ) +

∫
VC

bu

 =
∑
C∈B

∫
VC

Q

⇐⇒
∑
f∈Eint
f=C|F

−γ(f)
rCF

(uF − uC) +
∑

f∈Eext

γ(f)

rCf

uC +
∑
C∈B

 ∑
f∈F(C)

(v+f uC + v−f uF )

+

∫
Ω

bu =

∫
Ω

Q

We want to describe this equation only with bilinear form. Remark:

−γ(f)
rCF

(uF − uC) =
γ(f)

rCF

(uF − uC)(0− 1) =
γ(f)

rCF

(uF − uC)(1C(xF )− 1C(xC))

and

γ(f)

rCf

uC =
γ(f)

rCf

uC1C(xC)

Then we can define :

Definition 5.1: Discrete inner product

⟨u|ϕ⟩B =
∑
f∈Eint
f=C|F

γ(f)

2rCF

(uF − uC)(ϕF − ϕC) +
∑

f∈Eext

γ(f)

rCf

uCϕC

Note that we divided by 2. The following property explains why we decided to do so.

Proposition 5.2: Control volume

Let u ∈ P0(B) :
⟨u|1C⟩B =

∑
f∈F(C)

FC,f (u)

Choosing ϕ = 1C or u = 1C is equivalent to only consider the corresponding cell and its
fluxes.

D

We split the following sum between the set neighbour cells of K and the set of cells that
has K as neighbour cell:∑
f∈Eint
f=C|F

γ(f)

2rCF

(uF − uC)(1K(xF )− 1K(xC)) =
∑
f∈Eint
f=K|F

γ(f)

2rKF

(uF − uK)(1K(xF )− 1K(xK))

+
∑
f∈Eint
f=C|K

γ(f)

2rCK

(uK − uC)(1K(xK)− 1K(xC))
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=
∑
f∈Eint
f=K|F

γ(f)

2rKF

(uF − uK)(0− 1)

+
∑
f∈Eint
f=C|K

γ(f)

2rCK

(uK − uC)(1− 0)

=
∑
f∈Eint
f=K|F

− γ(f)

2rKF

(uF − uK) +
∑
f∈Eint
f=C|K

γ(f)

2rCK

(uK − uC)

= 2
∑
f∈Eint
f=K|F

− γ(f)

2rKF

(uF − uK) (⋆)

=
∑
f∈Eint
f=K|F

−γ(f)
rKF

(uF − uK)

=
∑

f∈(F (K))int

FK,f (u)

(⋆) the set of Control Volumes that has K as a neighbour is exactly (F (K))int.∑
f∈Eext

γ(f)

rCf

uC1K(xC) =
∑

f∈(F (K))ext

γ(f)

rCf

uK =
∑

f∈(F (K))ext

FK,f (u)

The sum of both terms gives the result.

Remark :
The original paper does not divide by 2. Maybe we did not understand well the sum.

Proposition 5.3

Applying 1Vj
and 1Vi

where Vi is the i-th cell and Vj is the j-th gives the following sum.

〈
1Vi

∣∣1Vj

〉
B =



∑
f∈F (Vi)

γ(f)

rif
if i = j

−γ(fij)
rij

if i, j are neighbour

0 otherwise

It also proves the following result:

⟨u|1C⟩B = −
∑

f∈F (C)

Ff,C(u)

where Ff,C is the flux from the unique cell F that shares the face f to C. It should be
interpreted as the conservation of the flux accross all cells. Which is exactly what we would
expect from the inner product defined by the flux for a Weak FVM formulation.
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The same way we want to define a bilinear form which gives the convection term of C when we
apply 1C , thus we define :

cB(u, ϕ) =
∑
C∈B

ϕC

 ∑
f∈F(C)

(v+f uC + v−f uF )


And the weak formulation of integrals is natural since for linear functions:

bCuC =
1

|VC |

∫
VC

bu =
1

|VC |

∫
Ω

bu1C and QC =
1

|VC |

∫
VC

Q =
1

|VC |

∫
Ω

Q1C

Hence we define the following weak FVM :

Find u ∈ P0(B) s.t. ⟨u|ϕ⟩B + cB(u, ϕ) +

∫
Ω

buϕ =

∫
Ω

Qϕ ∀ϕ ∈ P0(B)

D: Weak FVM ⇐⇒ FVM

=⇒ : ϕ = 1K

⇐= : Take ϕ ∈ P0(B), multiply the strong form on a control volume and sum over C ∈ B.

2) Inequalities, norms, structure

Proposition 5.4: WFVM Poincaré inequality

Take u ∈ P0(B).

∥u∥L2 ≤ diam(Ω) ∥u∥1,B

D

“Finite Volume Methods” [EGH00] Lemma 9.1

Then by analogy with Poincaré inequality on H1
0 we can define :

Definition 5.5: Discrete H1
0(B) norm

∥u∥1,B := (⟨u|u⟩B)
1/2

From here the most important point is to have the Hilbertian structure to make all the developed
theory beforehand works. Thanksfully, the following property holds:
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Proposition 5.6: Hilbert structure

(P0(B), ⟨·|·⟩B) is an Hilbert.

D

Let ε > 0. Let (fn)n ∈ P0(B)N a Cauchy sequence :

∃n0 s.t. ∥fp − fq∥1,B ≤ ε ∀p, q ≥ n0

Then by WFVM Poincaré 5.4 ∥fp − fq∥L2(Ω) −→
p,q→∞

0. Yet L2 is complete hence fn −→
n→∞

f

in L2(Ω).
It is easy to verify that f is piecewise constant on B and that fn|b −→ f |b.
Hence FC,σ(fn) −→ FC,σ(f).
⋆ This property was not in the paper ⋆

Regarding the jump norm equivalence 4.5 we can hope that if u ∈ H1(Ω):

∥u∥1,B ∼ ∥∇u∥L2(Ω)

We can define the discrete P0(B) norm defined by analogy with the H1(Ω) norm:

∥u∥B := ∥u∥L2(Ω) + ∥u∥1,B ∼
5.4

∥u∥B

The following lemma allows a control over the oscillations which is used to prove the 5.8 theorem.

Lemma 5.7: Oscillations

For any v ∈ P0(B) :

∀η ∈ Rd, ∥v(·+ η)− v∥2L2 ≤ ∥η∥1 (∥η∥1 + 4hB) ∥v∥21,B

The paper shows the existence of an unique solution that has the following properties.

Theorema 5.8: Discrete Rellich

Let (Bn)n be a sequence of FVM mesh satisfying the orthogonality conditions, s.t. hBn −→
n→∞

0.
Let (un)n ∈ (P0(B))N s.t. ∥un∥1,B ≤ C.

Then there exists a subsequence (uφ(n))n with φ : N → N strictly increasing and u ∈ H1
0(Ω)

such that

uφ(n)
L2

−→
n→∞

u
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III - Elliptic case : Pure diffusion

1) Model

We will consider a diffusion problem in a simple square divided in 9 smaller squares with dif-
ferent diffusion constants.

Γ3

Γ4

Γ1 Γ2

D1 D2 D3

D4 D5 D6

D7 D8 D9

Figure 7: Parametrized diffusion problem

Let Si be the i-th square associated to Di. We define:

D(x) =
9∑

i=1

D[i]1Si

Hence the parameter µ =


D[1]

D[2]
...

D[9]

 lives in P =]0; 1]9 ≃ [ε; 1]9 where ε ≃ 0 (to have closed set of

parameters).
The FVM solve for u ∈ P0(B) in each VC :

−∇·(D∇u) = f ⇐⇒
∫
∂VC

D∇u = D(xC)

∫
∂VC

∇u =

∫
VC

f

Hence, defining the symmetric bilinear form:

a(u, ϕ ;µ) =
∑
f∈Eint
f=C|F

D(xC)
γ(f)

2rCF

(uF − uC)(ϕF − ϕC) +
∑

f∈Eext

γ(f)

rCf

D(xC)uCϕC

is enough to decribe the weak formulation for the FVM.
Then we will solve for u:

a(u, v ;µ) = ⟨f |v⟩L2 ∀v ∈ P0(B)
u = 0 on Γ
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2) Theoretical properties

We still have coercivity:

a(u, u) ≥ min
i=1,...,9

Di ∥u∥21,B

Note that we also proved α ≥ min
i=1,...,9

Di i.e. wan can define αLB(µ) = min
i=1,...,9

Di.

a is continuous:

|a(u, ϕ)| =

∣∣∣∣∣∣∣∣
∑
f∈Eint
f=C|F

D(xC)
γ(f)

2rCF

(uF − uC)(ϕF − ϕC) +
∑

f∈Eext

γ(f)

rCf

D(xC)uCϕC

∣∣∣∣∣∣∣∣
≤
∑
f∈Eint
f=C|F

∣∣∣∣D(xC)
γ(f)

2rCF

(uF − uC)(ϕF − ϕC)

∣∣∣∣+ ∑
f∈Eext

∣∣∣∣γ(f)rCf

D(xC)uCϕC

∣∣∣∣

≤ max
i=1,...,9

Di︸ ︷︷ ︸
=C

 ∑
f∈Eint
f=C|F

√
γ(f)

2rCF

|uF − uC | ×

√
γ(f)

2rCF

|ϕF − ϕC |

+
∑

f∈Eext

√
γ(f)

rCF

|uC | ×

√
γ(f)

rCF

|ϕC |



Cauchy-Schwarz ≤ C


√√√√√ ∑

f∈Eint
f=C|F

γ(f)

2rCF

(uF − uC)2 ×

√√√√√ ∑
f∈Eint
f=C|F

γ(f)

2rCF

(ϕF − ϕC)2

+

√√√√∑
f∈Eext

γ(f)

rCF

u2C ×

√√√√∑
f∈Eext

γ(f)

rCF

ϕ2
C


≤ C

(
∥u∥1,B ∥ϕ∥1,B + ∥u∥1,B ∥ϕ∥1,B

)
≤ 2C ∥u∥1,B ∥ϕ∥1,B

We can also write the affine assumption:

a(u, ϕ ;µ) =
9∑

i=1

D[i]

 ∑
f∈S⟩∩Eint
f=C|F

γ(f)

2rCF

(uF − uC)(ϕF − ϕC) +
∑

f∈Si∩Eext

γ(f)

rCf

uCϕC


=

9∑
i=1

D[i]ai(u, ϕ)

where
- ai(u, u) ≥ 0 (= 0 if u = 0 on Si) i.e. ai is a semi-definite bilinear form.
- D[i] > 0.

That fills the conditions for the affine assumption 4.3 [HRS16].
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Suppose Vrb ⊂ Vδ = P0(B) already exists. Define urb as the solution in Vrb of:

a(u, v ;µ) = ⟨f |v⟩L2 ∀v ∈ Vrb(B)
urb = 0 on Γ

Then define the error and residual error:

e(µ) = uFVM(µ)− urb(µ)

r : ϕ ∈ Vδ 7→ a(e(µ), ϕ ;µ)

By Riesz, there exists r̂(µ) such that:

r(ϕ ;µ) = ⟨r̂(µ)|ϕ⟩B

Define the energy norm error estimator:

ηen(µ) =
∥r̂(µ)∥B√
αLB(µ)

≥ ∥e(µ)∥µ =
√
a(e(µ), e(µ) ;µ)

3) Computational methodology

Recall that we want to solve for u ∈ Vδ = P0(B):

−∇·(D∇u) = f in Ω

u = 0 on Γ

where for (D[i])i ∈ [ε; 1]9 we define

D(x) =
9∑

i=1

D[i]1Si

Set B an orthogonal mesh. E be the set of edges of the mesh.

Sidenote :
- ξi is the i − th vector of the reduced basis and B the matrix of ξ coordinates in the 1Vi

basis.
- Mδ =

〈
1Vi

∣∣1Vj

〉
B for all i, j.

- We will suppose that f(· ;µ) = f(·).

a) Precomputation

Compute Mδ:

〈
1Vi

∣∣1Vj

〉
B =



∑
f∈F (Vi)

γ(f)

rif
if i = j

−γ(fij)
rij

if i, j are neighbour

0 otherwise
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Compute once for all q = 1, ..., 9 the matrices Aq
δ =

(
aq(1Vi

,1Vj
)
)
i,j

:

aq(1Vi
,1Vj

) =



∑
f∈F (Vi)

γ(f)

rif
if i = j and i ∈ Sq

−γ(fij)
rij

if i, j are neighbour and i ∈ Sq

0 otherwise

Compute fδ =
[
(f(1Vi

))i
]T .

b) Computation of αLB

Set PM ⊂ P be a set of M arbitrary chosen parameters.
For each µ =

[
D[1] . . . D[9]

]T ∈ PM , compute:

Aµ
δ =

9∑
i=1

D[q]A
q
δ

Solve for (λ,wδ) ∈ R+ × RNδ the eigenvalue problem:

Aµ
δwδ = λMδwδ

The smallest eigenvalues gives you M coercive constant αδ(µm).
Then define the function:

αLB(µ) = max
m=1,...,M

(
αδ(µm) min

q=1,...,9

D[q](µ)

D[q](µm)

)

c) Step by step offline generation

Set Ph =
[
µ[1] . . . µ[p]

]
all the chosen trial parameters.

Chose any µ1 ∈ Ph.

Loop at n:

• Compute the FOM solution uFVM(µn) for µn ∈ Ph computed in the last iteration or µ1 if
it’s the first loop iteration.
Define B =

[
uFVM(µ1) . . . uFVM(µn)

]
=
[
ξ1 . . . ξn

]
.

Compute for q = 1, ..., 9 :
Aq

rb = BTAq
δB

and
frb = BT fδ

• For each µ ∈ Ph:

Compute Aµ
rb =

9∑
i=1

D[i]A
i
rb. Compute uµrb s.t.

Aµ
rbu

µ
rb = frb
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We then compute η(µ). First compute

R =
(
fδ, A

1
δB, . . . , A

9
δB
)T

We then need to focus on
G = RTM−1

δ R

Solve the linear system Mδy = R then compute G = RTy.
Then compute

r(µ) =
[
1,−(uµrb)

TD[1], . . . ,−(uµrb)
TD[9]

]
and finally compute

∥r̂δ(µ)∥1,B =
√
r(µ)TGr(µ)

Note that αLB(µ) = min
i=1,...9

D[i] is a lower bound of α(µ). Hence we define:

η(µ) = ∥r̂δ(µ)∥1,B /
√
αLB(µ)

Or we can apply the min-θ approach p.51:

αLB(µ) = max
m=1,...,M

(
αδ(µm) min

q=1,...,9

D[q](µ)

D[q](µm)

)

• Choose µn+1 = arg max
µ∈Ph

η(µ).

• If η(µn+1) > tol (that was previously computed) then go back to the beginning of the
loop, otherwise terminate.

Ensuring stability: Apply the Gram-Schmidt algorithm and redefine

B = Gram-Schmidt(B)

d) Online procedure

Recall B =
[
ξ1 . . . ξN

]
.

For a new µ =
[
D[1] . . . D[9]

]
∈ P, compute:

Aµ
rb =

9∑
i=1

D[i]A
i
rb

Compute uµrb s.t.

Aµ
rbu

µ
rb = frb
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IV - Parabolic case: Heat equation

1) Model

We don’t change the geometry of the model:

Γ3

Γ4

Γ1 Γ2

D1 D2 D3

D4 D5 D6

D7 D8 D9

Figure 8: Parametrized heat problem

Let Si be the i-th square associated to Di. We define:

D(x) =
9∑

i=1

D[i]1Si

The parameter µ =


D[1]

D[2]
...

D[9]

 lives in P = [ε; 1]9 where ε ≃ 0.

Here, we try to solve: 
∂tu−∇·(D∇u) = g(t)f(v) in Ω× R∗

+

u(x, t) = 0 in ∂Ω× R+

u(x, 0) = u0 ∈ L2 in Ω

A weak formulation would be:
Find u ∈ L2(H1

0(Ω)× R+,R) such that ut ∈ L2(H−1(Ω),R+) and:⟨∂tu|φ⟩H−1,H1
0
+

∫
Ω

D∇u · ∇vdx = g(t) ⟨f(x)|φ⟩H1
0

∀φ ∈ H1
0(Ω)

u(x, 0) = u0 ∈ L2 in Ω

We discretise the time steps by finite difference, i.e.

∂tu =
un+1 − un

tn+1 − tn
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Consider T > 0 a final time, M the number of time steps and k = T/M the uniform time step.
The Weak FVM formulation can be written as:
Find (un)0≤n≤M−1 such that un ∈ P0(Ω) and:{1

k
⟨un+1 − un|ϕ⟩L2 + a(un+1, ϕ) = g(tn+1) ⟨f |ϕ⟩L2 ∀ϕ ∈ P0, 0 ≤ n ≤M − 1

⟨u0|ϕ⟩L2 = ⟨u0|ϕ⟩L2 ∀ϕ ∈ P0

where a(u, v) is defined as the diffusion symmetric continuous coercive bilinear form p.48.

Remark :

When applying cell control, we get
1

k
⟨un+1 − un|1C⟩L2 = VC

un+1
C − unC

∆t
which is the

transient approximation in FVM.

2) Computational methodology: POD-Greedy algorithm

Set T the final time of the simulation.
Set K the number of time steps.
Set N1 the number of chosen principal temporal modes.
Set N2 ≤ N1 for the POD compression.

a) Precompute

Compute Mδ such that

[Mδ]i,j =
〈
1Vi

∣∣1Vj

〉
B =



∑
f∈F (Vi)

γ(f)

rif
if i = j

−γ(fij)
rij

if i, j are neighbour

0 otherwise

Compute Lδ =
〈
1Vi

∣∣1Vj

〉
L2 = |Vi|δij.

Compute once for all q = 1, ..., 9 the matrices Aq
δ =

(
aq(1Vi

,1Vj
)
)
i,j

:

aq(1Vi
,1Vj

) =



∑
f∈F (Vi)

γ(f)

rif
if i = j and i ∈ Sq

−γ(fij)
rij

if i, j are neighbour and i ∈ Sq

0 otherwise

Compute fδ =
[
(f(1Vi

))i
]T .

Compute ∆t =
T

K
.

b) Step by step offline generation

Set Ph =
[
µ[1] . . . µ[p]

]
all the chosen trial parameters.

Set Z = 0.
Choose any µ1 ∈ Ph.
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Loop at n:

• Compute the full order solution (ukFVM(µn))1≤k≤K = (uFVM(k∆t ;µ)1≤k≤K for µn ∈ Ph

computed in the last iteration or µ1 if it’s the first loop iteration.
Apply the POD algorithm for the temporal reduction:

{ζ1, . . . , ζN1} = POD({u1FVM(µn), . . . , u
K
FVM(µn)}, N1)

Set Z = {Z, {ζ1, . . . , ζN1}}.
Set N = N +N2 and compute {ξ1, . . . , ξN} = POD(Z, N).
Define B =

[
ξ1 . . . ξn

]
.

Compute for q = 1, ..., 9 :
Aq

rb = BTAq
δB

and
frb = BT fδ

• For each µ =
[
D[1], ..., D[9]

]
∈ Ph:

Compute Aµ
rb =

9∑
i=1

D[i]A
i
rb and Lrb = BTLδB.

Compute (uµ,krb )1≤k≤K s.t.(
1

∆t
Lrb +Aµ

rb

)
uµ,k+1
rb =

1

∆t
Lrbu

µ,k
rb + g(tk)frb

We then compute η(tK , µ). First compute

R =
(
fδ,LδB, A

1
δB, . . . , A

9
δB
)T

Define ∆µ,k
rb = uµ,krb − uµ,k−1

rb .
Then compute

rk(µ) =
[
g(tk),− 1

∆t
(∆µ,k

rb )T ,−(uµrb)
TD[1], . . . ,−(uµrb)

TD[9]

]
We then need to focus on

G = RTM−1
δ R

Solve the linear system Mδy = R then compute G = RTy.
and finally compute ∥∥r̂kδ (µ)∥∥21,B = rk(µ)TGrk(µ)

Note that min
i=1,...9

D[i] is a lower bound of α(µ). Hence we define:

η(tK , µ) =

√√√√ ∆t

αLB(µ)

K∑
k=1

∥∥r̂kδ (µ)∥∥21,B
Or we can apply the min-θ approach p.51:

αLB(µ) = max
m=1,...,M

(
αδ(µm) min

q=1,...,9

D[q](µ)

D[q](µm)

)
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• Choose µn+1 = arg max
µ∈Ph

η(µ).

• If η(µn+1) > tol (that was previously computed) then go back to the beginning of the
loop, otherwise terminate.

Ensuring stability: Apply the Gram-Schmidt algorithm and redefine

B = Gram-Schmidt(B)

Store B and Lrb = BTLδB.

c) Online procedure

Recall B =
[
ξ1 . . . ξN

]
and Lrb = BTLδB.

For a new µ =
[
D[1] . . . D[9]

]
∈ P, compute:

Aµ
rb =

9∑
i=1

D[i]A
i
rb

Compute (uµ,krb )k such that:(
1

∆t
Lrb +Aµ

rb

)
uµ,k+1
rb =

1

∆t
Lrbu

µ,k
rb + g(tk)frb

V - Results and conclusion
Numerical results involve programming knowledge that I did not have the time to learn.
Giovanni is taking care of this part, but it is a time consuming part of the research and we will
be able to present in September 2024.

The work presented gives insights on a method enhance CFD with a given estimator, which
can be adapted to Inf-Sup problems. If the numerical results look promising, we could hope to
use this theory for libraries such that OpenFOAM (see ISTHACA-FV project).

The next step is probably to write the methodology for Inf-Sup problems, and also to create an
estimator that takes into account the Implict part of the gradient estimation for non-orthogonal
meshes.
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Part 6

Appendix
I - Standards definitions

Definition 6.1: Hilbert space

A space (H, ⟨·|·⟩) is a Hilbert if H is a vector space and ⟨·|·⟩ is a inner product that induces
a complete norm.

Definition 6.2: Coercive bilinear form

A bilinear form a is coercive over a Hilbert V if

∃α > 0 ∀v ∈ V : :
a(v, v)

∥v∥2V
≥ α

Definition 6.3: Inf-Sup form

A bilinear form a : V ×W → R is Inf-Sup stable over a Hilbert V ×W if

∃β0 > 0 : inf
w∈W

sup
v∈V

a(v, w)

∥v∥V ∥w∥W
≥ β0

Definition 6.4: Sobolev space

For Ω ⊂ Rd, we define the Sobolev space H1(Ω) as

H1(Ω) :=
{
f ∈ L2(Ω)

/
∀i, ∂if ∈ L2(Ω)

}
H1(Ω) is a Hilbert space for the norm ∥f∥ := ∥f∥L2 + ∥∇f∥L2 .

We also define H1
0 (Ω) := D(Ω)

H1(Ω)
the closure of D(Ω) := C∞

0 (Ω) in H1(Ω).

II - Representation theorems

Theorema 6.5: Riesz-Fréchet

Let (H, ⟨·|·⟩H) be a Hilbert space on K = R or C.
If ϕ ∈ H ′, then there exists a unique x0 ∈ H such as

∀x ∈ H,ϕ(x) = ⟨x|x0⟩
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Moreover the map

x0 ∈ H 7−→ φx0 ;

∣∣∣∣H → K
x 7→ ⟨x|x0⟩

∈ H ′

is bijective, antilinear and an isometry between H and H ′.

Theorema 6.6: Lax-Milgram

Let H be a Hilbert space, a : H ×H −→ R a continous coercive bilinear form on H.
Given any φ ∈ H ′, there exists a unique u ∈ H such that

a(u, v) = ⟨φ|v⟩ = φ(v) ∀v ∈ H

Moreover if a is symmetric then u is characterized by the property

u ∈ H and
1

2
a(u, u)− φ(u) = min

v∈H

{
1

2
a(v, v)− φ(v)

}

Theorema 6.7: Banach–Nečas–Babuška

Let V,W be respectively Banach and reflexive Banach space.

a : V ×W continuous bilinear form.
f : W → R continuous linear form.

(⋆⋆) : find u ∈ V, a(u,w) = f(w) ∀w ∈ W

(⋆⋆) is well-posed if and only if

(i) ∃Csta > 0,∀v ∈ V, sup
w∈W\{0}

a(v, w)

∥w∥W
≥ Csta ∥v∥V

(ii) ∀w ∈ W, (∀v ∈ V, a(v, w) = 0) =⇒ w = 0

(i) is equivalent to the Inf Sup 6.3 condition.
The following control holds true :

∥u∥V ≤ 1

Csta
∥f∥W ′

D: Proof of Banach–Nečas–Babuška

See “Banach-Nečas-Babuška theorem and proof.” [Lec24a].
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III - Standards inequalities

Lemma 6.8: Bramble Hilbert 1D

If u has m derivates on (a, b) and Pk is the space of polynomials of degree lesser than m−1.

inf
v∈Pm−1

∥∥u(k) − v(k)
∥∥
Lp ≤ C(m)(b− a)m−k

∥∥u(m)
∥∥
Lp

Hence for p = ∞ and m = 2 we have the linear interpolation :

inf
v∈P1

∥u− v∥∞ ≤ C(b− a)2 ∥u′′∥∞

Lemma 6.9: Bramble Hilbert

If Ω is regular enough and satisfies the strong cone property, u ∈ Wm,p(Ω) and Pk is the
space of polynomials of degree lesser than m− 1.

∀k ≤ m, inf
v∈Pm−1

∥u− v∥Wk,p ≤ Cdm−k ∥u∥Wm,p

Proposition 6.10: Poincaré’s inequality

Let K be a convex polygon, h its diameter, φ ∈ H1(K).

Let φK =
⟨φ|1⟩K
|K|

be the average estimation of φ. Then

∥φ− φK∥2K ≤ Ch2k ∥∇φK∥2K

where C is independent of K.

Proposition 6.11: Generalised Friedrichs’ inequality

Let K be a convex polygon, h its diameter, φ ∈ H1(K).

Let φσ =
⟨φ|1⟩σ
|σ|

be the average estimation of φ on the K border. Then

∥φ− φσ∥2K ≤ Ch2k ∥∇φK∥2K

where C depends on K geometry, dimension and its border.
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