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Part 1

Finite Element Method
The goal is to approximate the solution of a PDE that lives in an infinite dimensional vector
space by the solution of the same PDE restricted to a finite dimensional vector space.
See more in the following book: The Mathematical Theory of Finite Element Methods, [BS08].

I - Weak formulation

1) Parametrized Partial Differential Equation

Take any regular set open Ω ⊂ Rd, d ∈ {1, 2, 3}. Define ∂Ω := Ω\Ω.
We consider field variables ω : Ω −→ Rdv .
Set (ΓD

i )1≤i≤dv such that ΓD :=
⋃

ΓD
i ⊂ ∂Ω (not necessary equal).

Define Vi :=
{
v ∈ H1(Ω,R) / v|ΓD

i
= 0

}
(v : Ω → R).

V :=
dv∏
i=1

Vi of infinite dimension.

Remark :

Vi is the space of the i− th coordinate in Rdv of a solution.

v ∈ V ⇒ v ∼=
dv∑
i=1

vi φi︸︷︷︸
∈Vi

⇒ V ∼=
{
v ∈ H1(Ω) / v : Ω → Rdv , v

∣∣
ΓD = 0

}
Note that V ⊂ H1, s.t. if ⟨·|·⟩V induces ∥·∥V ∼ ∥·∥H1 , then (V, ⟨·|·⟩V) is an Hilbert.
We focus on P ⊂ RP closed set of parameters.

Definition 1.1: Parametrized PDE

Let f : V× P → R continuous linear with respect to V.
ℓ : V× P → R linear with respect to V.
a : V× V× P → R bilinear coercive continuous symmetric with respect to V× V.
We consider {

Solve for u ∈ V a(u, v ;µ) = f(v ;µ) ∀v ∈ V
Evaluate for µ ∈ P s(µ) := ℓ(u ;µ)

Let α(µ) be the coercive constant, γ(µ) the continuous one.
The symmetry and continuity ensure well-posedness of the PDE through Lax-Milgram.

Let µ ∈ P, µ = (µ[1], . . . , µ[P ]), then we define the solution of the PPDE u(µ) = (u1, . . . , udv).
Remark :
ℓ is any linear function to define depending on which output correlation we’re looking
for.

Raphaël LECOQ Chapter 1 | Summary



I - WEAK FORMULATION 2

2) Dicretization

Take µ ∈ P.
Suppose there exists Vδ ⊂ V finite dimensional vector space that approximates well V, we
search uδ(µ) ∈ Vδ solution of the PPDE on Vδ.
Let Nδ = dim (Vδ) such that Vδ = V ect

(
{φi}Nδ

i=1

)
.

Definition 1.2: Discretized PDE

Find uδ(µ) such that {
a(uδ(µ), vδ;µ) = f(vδ;µ) ∀ vδ ∈ Vδ

sδ(µ) = ℓ(uδ(µ);µ)

Since a(uδ(µ), vδ;µ) = f(vδ;µ) = a(u(µ), vδ;µ) there holds

Proposition 1.3: Galerkin’s orthogonality

For all vδ in Vδ the following orthogonality holds:

a(uδ(µ)− u(µ), vδ;µ) = 0

One important lemma is the following one, which states that the error induced by the solution
of the equation is proportional to the best estimation of u we could hope in the discrete space.

Lemma 1.4: Céa’s lemma

For all vδ ∈ Vδ:

∥u(µ)− uδ(µ)∥V ≤
(
1 +

γ(µ)

α(µ)

)
inf

vδ∈Vδ

∥u(µ)− vδ∥V

D

First note

α ∥u(µ)− uδ(µ)∥2V ≤ a(u(µ)− uδ(µ), u(µ)− uδ(µ)) = a(u(µ)− uδ(µ), u(µ))

= a(u(µ)− uδ(µ), u(µ))− vδ)

≤ γ ∥u(µ)− uδ(µ)∥V ∥u(µ)− vδ∥V

Then

∥u(µ)− uδ(µ)∥V ≤ ∥u(µ)− vδ∥V + ∥vδ − uδ(µ)∥V
≤ ∥u(µ)− vδ∥V +

γ

α
∥u(µ)− vδ∥V

= (1 +
γ

α
) ∥u(µ)− vδ∥V

Raphaël LECOQ Chapter 1 | Summary
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The solution of the discrete equation is easy to write and we define the Truth Solver or Full
order equation as follows:

Definition 1.5: Truth Solver

We call the truth solver, the solution of the linear system Aµ
δuδ(µ) = fµ

δ where
(Mδ)i,j = ⟨φi|φj⟩V
(Aµ

δ )i,j = a(φi, φj ;µ)
(fµ

δ )i = f(φi ;µ)
(ℓµδ )i = ℓ(φi ;µ)

Remark :
Mδ is the mass matrix that can have a role for defining the property of the space or
of the functions. It will not have a role in our report.

II - Solution approximation

1) Finite Elements

We cut Ω in Ne disjoints subspaces Ω(e) and we set Ni nodes that constitutes the nodal basis,
we note (xi)i≤Ni

their coordinates.
A subspace Ω(e) is called a Finite Element, the set of all the Finite Elements is called the mesh.
To have a well defined method, we need to do some assumptions on the geometry of a finite
element:

- Each element is a star shapped open set
- Each element is polygonal

Figure 1: Polygonal elements in 1D, 2D, 3D

Most importantly, the diameter of an element controls the polynomial approximation thanks
to Poincaré’s inequality 5.6. Hence a thinner grid gives better approximation.
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II - SOLUTION APPROXIMATION 4

2) Polynomial Approximation

The Bramble Hilbert lemma 5.5 shows that a polynomial approximation is a good candidate
for Sobolev spaces approximation. Moreover, the polynomials are the easiest functions to work
with.
On each nodes, we define a piece-wise polynomial function φi of degree lesser than m which is
such that

φi(xj) = δij

Such polynomial exists and form an orthogonal basis of functions using Averaged Taylor Poly-
nomials ([BS08] Chap 4). Define

Vδ = Span {(φi)i} ⊂ V

We will only consider the linear approximation :

x

y

x1 x2 x3 x4 x5

ϕ3ϕ1 ϕ4

Figure 2: Some basis functions of the nodal basis of linear functions

x

y

x1 = a x2 x3 x4 x5 = b

Figure 3: Finite Element approximation in 1D of the function (x− a)(x− b)
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Part 2

Certified Reduced Basis Method
This part sums up Certified Reduced Basis Methods for Parametrized Partial Differential Equa-
tions. [HRS16] chapters that were most important in our research. This framework allows to
do significantly faster computations in the case of FEM, see [Sta23].

I - Reduced Basis Method

The goal of the reduced basis method is to find an appropriate functional discrete space that
allows accurate approximation in the smallest dimension as it is possible.

1) Solution manifold and Reduced Basis Approximation

Definition 2.1: Solution manifold

If we are able to write u(µ) in analytic form, the solution manifold is:

M = {u(µ) / µ ∈ P} ⊂ V

If we can’t, consider Vδ such as in 2) Discretization

Mδ = {uδ(µ) / µ ∈ P} ⊂ Vδ

Admits there exists Vrb ⊂ Vδ, dim (Vrb) = N such that N ≪ Nδ < dim (V) = +∞, there
exists ξ1, . . . , ξN ∈ Vδ, such that

Vrb = Span (ξ1, . . . , ξN)

Definition 2.2: Reduced PDE

Find urb(µ) ∈ Vrb such that{
a(urb(µ), vδ;µ) = f(vrb;µ) ∀ vrb ∈ Vrb

srb(µ) = ℓ(urb(µ);µ)

For a given Vrb and µ ∈ P, Céa’s lemma holds with same proof as before:

∥u(µ)− urb(µ)∥V ≤
(
1 +

γ(µ)

α(µ)

)
inf

vrb∈Vrb

∥u(µ)− vrb∥V

The goal is to get ∥uδ(µ)− urb(µ)∥ as close to 0 as possible while keeping N = dim(Vrb) small.

inf
vrb∈Vrb

∥u(µ)− vrb∥V ≤ ∥u(µ)− urb(µ)∥V ≤ ∥uδ(µ)− urb(µ)∥V︸ ︷︷ ︸
to be controlled

+ ∥u(µ)− uδ(µ)∥V︸ ︷︷ ︸
controlled by 1.4

Raphaël LECOQ Chapter 2 | Summary



I - REDUCED BASIS METHOD 6

For that we will define some measure of the distance between the space of δ solutions and the
reduced space.

E(Mδ,Vrb) = sup
uδ∈Mδ

inf
vrb∈Vrb

∥uδ − vrb∥V

Definition 2.3: Kolmogorov N-Width

Assuming a reduced space exists, the Kolmogorov N-width measures the best distance we
can hope with a N dimensional reduced basis and is defined as:

dN(Mδ) := inf
{Vrb/dim (Vrb)=N}

E(Mδ,Vrb)

Instead of
sup

uδ∈Mδ

inf
vrb∈Vrb

∥uδ − vrb∥V

we can consider the least square distance which allows faster computations ;

Definition 2.4: Least square distance

dLS(Mδ) :=

√∫
µ∈P

inf
vrb∈Vrb

∥uδ(µ)− vrb∥2V

Now that we know what we are looking for, we study 2 algorithm for generating such spaces:

2) Reduced basis generation by Proper Orthogonal Decomposition

Let Ph = {µ1, . . . , µM} ⊂ P be a discrete and finite point-set.
Define:

Mδ(Ph) = {uδ(µ) / µ ∈ Ph}
of cardinality M = |Ph|.
We assume that Mδ(Ph) can efficiently approximate Mδ.
Let VM = Span {uδ(µ) / µ ∈ Ph}. The POD minimizes the least-squared distance for Ph on
all N-dimensional subspaces of VM:√

1

M

∑
µ∈Ph

inf
vrb∈Vrb

∥uδ(µ)− vrb∥2V

Let ψm = uδ(µm) for m ∈ {1, ...,M} (ψm is well-defined by unicity of Lax-Milgram). We project
any vδ ∈ VM on the space generated by the ψm:

C(vδ) =
1

M

M∑
m=1

⟨vδ|ψm⟩V ψm ∈ VM

This operator is linear and symmetric. This operator is positive:

⟨C(vδ)|vδ⟩ =
1

M

M∑
m=1

⟨vδ|ψm⟩ ⟨ψm|vδ⟩ =
1

M

M∑
m=1

⟨vδ|ψm⟩2 ≥ 0

Raphaël LECOQ Chapter 2 | Summary



7 2) Reduced basis generation by Proper Orthogonal Decomposition

C being SPD is a consequence of an algebra point of view C = SST where S is a snapshot of
solutions, i.e. it is the SVD matrix [Vol12].

Since it is symmetric and VM is finite dimensional, there exists an orthonormal basis of eigen-
vectors and real eigenvalues (λn, ξn) ∈ R+ × VM such that

⟨C(ξn)|ψm⟩V = λn ⟨ξn|ψm⟩V
we choose the numerating (permutation matrices are orthogonals) s.t. λ1 ≥ . . . ≥ λM ≥ 0.

Proposition 2.5: Proper Orthogonal Projection

VPOD = Span ({ξm}1≤m≤N) ⊂ V of dimension N (or less).

D

See the lecture notes “Proper Orthogonal Decomposition: Theory and Reduced-Order
Modelling” [Vol12].

Figure 4: A manifold and a possible plan POD representation

We can define the (orthogonal) projection on the subspace

PN [f ] =
N∑
i=1

⟨f |ξi⟩V ξi

The least square distance is such that:

d2LS =
1

M

M∑
m=1

∥ψm − PN(ψm)∥2V =
M∑

m=N+1

λm

It is a classical result proven in [Vol12].
Remark :
Notice that when the projection space grows, this error estimation tends to 0.

This method has a major flaw: the complexity scales as O(NN2
δ ).

Hence we seek an alternative, less precise approach that will allows faster computing with an
error estimator.
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I - REDUCED BASIS METHOD 8

3) Reduced basis generation by Greedy algorithm

Assume there exists η(µ) dependant of µ be an upperbound of the error approximation such
that:

∥uδ(µ)− urb(µ)∥µ ≤ η(µ) ∀µ ∈ P

At dimensionality n, choose ψn+1 = uδ(µn+1) such that:

µn+1 = arg max
µ∈P

ηn(µ)

i.e. we add the parametrized solution that the current space worst approximates.

Remark :
Note ηn depends on the iteration (otherwise we take the same µ each time).
It will be taken s.t. ηn(ψi) = 0 ∀i.

The reduced basis generation using a Greedy method realizes the same asymptotic rate of
decay as the Kolmogorov N-width [Bin+11].
The following theorem shows that under the right conditions, a very small amount of basis
functions will be enough to have an accurate reduced basis.

Theorema 2.6

Assume that M has exponentially small Kolmogorov N-width, i.e. dN(F ) ≤ ce−aN with

a > log(1 +

√
γ

α
).

Then there exists β > 0 such that

∀µ ∈ P, ∥uδ(µ)− urb(µ)∥V ≤ Ce−βN

D

See paper “Apriori convergence of the greedy algorithm for the parametrized reduced basis
method.” [Buf+21]

Example 1: Some Kolmogorov N-width for several PDEs

See [Sta23] and references therein.
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9 4) Reduced solution computation

4) Reduced solution computation

Suppose there exists an affine decomposition of a,f ,ℓ i.e. there exists:

Qa ∈ N, (aq(v, w))1≤q≤Qa aq : V× V → R
Qf ∈ N, (fq)1≤q≤Qf

fq : V → R
Qℓ ∈ N, (ℓq)1≤q≤Qℓ

ℓq : V → R

such that 

a(v, w ;µ) =
Qa∑
q=1

θqa(µ)aq(v, w)

f(v ;µ) =
Qf∑
q=1

θqf (µ)fq(v)

ℓ(v ;µ) =
Qℓ∑
q=1

θℓq(µ)ℓq(v)

with
θqa : P → R θqf : P → R θqℓ : P → R

i.e. it is supposed that the equation is described by linear functions independents of µmultiplied
by a scalar dependent of µ. This is called the affine assumption.

Example 2: Affine assumption example

The heat equation admits an affine decomposition, see 2.3.1 and 3.4.1 [HRS16]. It can also
be forced through the Empirical Interpolation Method, see Part 5 of the same reference.

Compute for each 1 ≤ q ≤ Qa,Qf ,Qℓ the quantities

Aq
δ f q

δ ℓqδ

which are the representation of these functions in the basis of discretization (as for the Truth
Solver 1.5). Then compute for each q 

Aq
rb = BAq

δB
T

f q
rb = BTf q

δ

ℓqrb = BT ℓqδ

where B is the projection matrix from Span (φ1, . . . , φNδ
) to Span (ξ1, . . . , ξN) which is the

orthonormed reduced basis (by Gram-Schmidt) for stability.
Then for each µ ∈ P, considering the dependency in µ being only on the θq, we can rapidly

compute the Xµ quantities such that

Aµ
rb =

Qa∑
q=1

θqa(µ)A
q
rb

f q
rb =

Qf∑
q=1

θqf (µ)fδ

ℓµrb =
Qℓ∑
q=1

θqℓ (µ)ℓ
q
δ

We can finally solve
Aµ

rbu
µ
rb = fµ

rb

Raphaël LECOQ Chapter 2 | Summary



II - ERROR ESTIMATION 10

II - Error estimation
Lets introduce the discrete coercivity and continuous constants such that

Definition 2.7: Discrete constants

αδ(µ) = inf
vδ ∈ Vδ

∥vδ∥V = 1

|a(vδ, vδ ;µ)|, and γδ(µ) = sup
vδ, wδ ∈ Vδ

∥vδ∥V = ∥wδ∥V = 1

|a(vδ, wδ ;µ)|

Since the supremum and the infimum are taken on a subset of V, we get α ≤ αδ and γδ ≤ γ

1) Expected behavior of an error estimate

Following “Error Analysis and Estimation for the Finite Volume Method With Applications to
Fluid Flows” [Jas96], we expect the following behavior from an error estimate:

• Give reliable informations about the distribution of the error

• Work well on coarse mesh

• Scale corresponding to mesh refinement

• Scale corresponding to discretisation

• Based on local solution and mesh information, cell-by-cell

• Asymptotically correct

• Over-estimate of the actual error

Definition 2.8: Asymptotically correct

Let N be the number of computation points.
Let EN the exact error of the approximation solution uN with respect to the exact solution
u for a prescribed PDE.

EN = ∥uN − uh∥

Let eN be an error estimate of EN . eN is asymptotically correct if

eN − EN

EN

−→
N→∞

0

Which is strictly equivalent to

ξN :=
eN
EN

−→
N→∞

1

where ξN ≥ 1 is the effectivity of the error estimate.
The error estimate tends to the exact error faster than the estimated solution tends to the
exact solution.

Raphaël LECOQ Chapter 2 | Summary



11 2) Error estimator

2) Error estimator

We define naturally the error and the residual as the difference between the discrete and reduced
solutions to see how well the reduced solution verifies the PDE.

Definition 2.9: Error and classic error equation

For µ ∈ P, we define the error of the discrete space by the reduced basis such that

e(µ) = uδ(µ)− urb(µ)

which satisfies the equation

a(e(µ), vδ ;µ) = r(vδ ;µ) ∀vδ ∈ Vδ

where r(· ;µ) ∈ V′
δ (the topological dual),

r(vδ ;µ) = f(vδ ;µ)− a(urb, vδ ;µ)

Note that r(· ;µ) being in the dual of Vδ, we can apply Riesz (see Theorem 5.1) hence it exists
r̂δ satisfying

⟨r̂δ(µ)|vδ⟩V = r(vδ ;µ)

We recall that
∥r̂δ(µ)∥V = ∥r(· ;µ)∥V′

δ
= sup

vδ ∈ Vδ

∥vδ∥V = 1

|r(vδ ;µ)|

Proposition 2.10

For a compliant problem, it holds for all µ ∈ P

sδ(µ)− srb(µ) = ∥uδ(µ)− urb(µ)∥2µ

Hence
sδ(µ) ≥ srb(µ)

Assume there is a known lower bound αLB of αδ in a way that’s independent of Nδ. An efficient
estimator of such lower bound will be given later.
We can use this lower bound to define a upper bound of the error independent of the dimension
N .

Recall that we want η(µ) s.t.

∥uδ(µ)− urb(µ)∥µ ≤ η(µ) ∀µ ∈ P

Thus we search for an energy norm ∥·∥µ error estimator. It is also the most natural norm to
consider since it is the one induced by the PDE.

Raphaël LECOQ Chapter 2 | Summary
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The following error estimator is the main interest of this report.

Definition 2.11: Energy norm, output, relative output

We define computable upper bound control of the energy norm, output and relative output:

ηen(µ) =
∥r̂δ(µ)∥V
αLB(µ)1/2

ηs(µ) =
∥r̂δ(µ)∥2V
αLB(µ)

= (ηen(µ))
2

ηs,rel =
∥r̂δ(µ)∥2V

αLB(µ)srb(µ)
=

ηs(µ)

srb(µ)

Remark :
ηen is a natural upper bound:

Recalling the definition of ∥r̂δ(µ)∥V p.11

∥r̂δ(µ)∥2V ≥
(
|r(e(µ) ;µ)|
∥e(µ)∥V

)2

=

(
a(e(µ), e(µ) ;µ)

∥e(µ)∥V

)2

≥ a(e(µ), e(µ) ;µ)

∥e(µ)∥2V
αLB(µ) ∥e(µ)∥2V

= αLB(µ) ∥e(µ)∥2µ

Hence
∥r̂δ(µ)∥V√
αLB(µ)

≥ ∥e(µ)∥µ

And ∥·∥µ is called the energy norm induced by the PDE (thus a(·, · ;µ) ) since it’s
the natural norm defined by the PDE.

Proposition 2.12: Upper bound control

∥uδ(µ)− urb(µ)∥µ ≤ ηen(µ)

sδ(µ)− srb(µ) ≤ ηs(µ)

Suppose sδ > 0,

sδ(µ)− srb(µ)

sδ(µ)
≤ ηs,rel

We can define the error estimator effectivity that evaluates the sharpness of the estimator.
Following Definition 2.8, we will need them to be as close as possible to 1.

Raphaël LECOQ Chapter 2 | Summary



13 3) Online and Offline computation

Definition 2.13: Effectivity

We define the effectivity of the computable estimators:

effen(µ) =
ηen(µ)

∥e(µ)∥µ

effs(µ) =
ηs(µ)

sδ(µ)− srb(µ)
= effen(µ)

2

effs,rel(µ) =
ns,rel(µ)

(sδ(µ)− srb(µ))/sδ(µ)

These effectivities are ≥ 1 by Proposition 2.12.
One may see that these are not computable quantities. To evaluate their sharpness, we can use
the following upper bounds:

Proposition 2.14: Effectivity control

For all µ ∈ P

1 ≤ effen ≤
√
γδ/αLB

1 ≤ effs ≤ γδ/αLB

Suppose sδ > 0

1 ≤ effs,rel ≤ (1 + ηs,rel)γδ/αLB

The estimators are independent of N , we won’t have to evaluate αn
LB for all n.

3) Online and Offline computation

We know how to :
Compute αLB(µ), see [HRS16] part 4.3. or p.24.
Compute ∥r̂δ(µ)∥V see [HRS16] part 4.2.5. or p.24.

To use the ROM with the Greedy Algorithm we proceed as follow:

• Offline mode:
Estimate ηen(µ)∀µ ∈ Ph. Following p.8, add the worst estimate solution to the basis.
Do it until ηen(µ) is lesser than a set tolerance.

• Online mode:
For a new µ ∈ P, compute all the θqa(µ), θ

q
f (µ), θ

q
ℓ (µ).

Solve the reduced basis linear system to get urb.

The hope is that the Online Mode will be significantly faster and still accurate.
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I - INTEGRAL OF FINITE VOLUME 14

Part 3

Finite Volume Method
This part is mostly written from The Finite Volume Method in Fluid Dynamics [MMD16]. We
present the Finite Volume Method used in CFD which is cell centered. The FVM does not
have an established Reduced Basis Method yet, and we want to work in that direction later.

I - Integral of Finite Volume
We consider the General Conservation Equation for a scalar quantity ϕ in a fluid

∂t(ρϕ) +∇ · (ρvϕ) = ∇ · (Γ∇ϕ) +Q

Suppose the steady-state
∇ · (ρvϕ) = ∇ · (Γ∇ϕ) +Q

Integrate in a Control Volume∫
VC

∇ · (ρvϕ) =
∫
VC

∇ · (Γ∇ϕ) +
∫
VC

Q

Using Green-Ostrogradsky on the gradients∫
∂VC

(ρvϕ− Γ∇ϕ) · dS =

∫
VC

Q

We then decompose the integrand over the complete border with the sum of the integrands on
the faces: ∫

∂VC

(ρvϕ− Γ∇ϕ) · dS =
∑
f

∫
f

(ρvϕ− Γ∇ϕ) · dSf

Figure 5: Conservation in a controle volume, from [MMD16]

The 1 cell centered FVM make use of this proposition:
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Proposition 3.1: Centroid

Suppose f is linear and Ω convex.

Then the centroid of the considered set c =
∫
Ω
xdx

mes(Ω)
∈ Ω is such that

f(c) =
1

mes(Ω)

∫
Ω

f

Coming back to ∫
∂VC

(ρvϕ− Γ∇ϕ) · dS =
∑
f

∫
f

(ρvϕ− Γ∇ϕ)f · dSf

We suppose the grid thin enough to approximate linearity, hence using the centroid approxi-
mation 3.1 ∫

∂VC

(ρvϕ− Γ∇ϕ) · dS ≃
∑
f

(ρvϕ− Γ∇ϕ)f · Sf

and similarly ∫
VC

Q ≃ QCVC

Definition 3.2: Discretized Conservation Equation

∑
f∼faces(C)

(ρvϕ− Γ∇ϕ)f · Sf = QCVC

Then suppose that we can linearise the flux

(ρvϕ− Γ∇ϕ)f · Sf = FluxCfϕC + FluxFfϕf + FluxVf

and the source
QCVC = FluxCϕC + FluxV

Then it is straightforward to write the equation such that

aCϕC +
∑

f∼faces(C)

aFϕF = bC

with aC ,aF ,bC depending on the FluxXf/C .

II - Linearisation of the discretised equation

1) Linearisation of the diffusion flux

In the general case, the grid and the centroids don’t have any reason to have create an orthogonal
mesh.
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II - LINEARISATION OF THE DISCRETISED EQUATION 16

Figure 6: Non orthogonal mesh, from [MMD16]

We want to approximate JD = −Γ∇ϕ as a linear function of ϕC and ϕF . The orthogonal
situation would be

∇ϕ =
∂ϕ

∂n
≃ ϕF − ϕC

∥d∥
n

and
(∇ϕ)f · Sf ≃

ϕF − ϕC

∥d∥
Sf

with Sf = Sfn. In the non-orthogonal case:

∇ϕ =
∂ϕ

∂e
≃ ϕF − ϕC

∥d∥
e+ ((∇ϕ) · t)t

Sf = Efe+ Tft = Ef +Tf

Hence
(∇ϕ)f · Sf =

ϕF − ϕC

∥d∥
Ef + (∇ϕ)f ·Tf

The choice of Ef and Tf is not discussed.
We need to compute (∇ϕ)f :

∇ϕf = gC∇ϕC + gF∇ϕF

where gC + gF = 1 are geometric interpolation factors with respect to F and C (coefficients of
the barycenter).

2) Computation of (∇ϕ)f
a) Green-Gauss gradient

∇ϕC =
1

VC

∑
f

ϕfSf

It is still needed to compute ϕf . A simple and natural way is

ϕf = gcϕC + gFϕF
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17 3) Convection flux and source term

F being the centroid of the neighbour cell that shares the face. Another more accurate way is
to compute a mean based on the vertices and F .
Both way are just using convex combination of neighbour cells.

b) Gradient on faces

Once we computed the gradient on centroids, we can approximate the gradient on faces:

∇ϕf = gC∇ϕC + gF∇ϕF

and consider
∇ϕf = ∇ϕf +

(
ϕF − ϕC

dCF

−∇ϕf · eCF

)
eCF︸ ︷︷ ︸

Correction interpolated face gradient

where

dCF = |rF − rC |
eCF = rF − rC

3) Convection flux and source term

We admit the linearisation process of these terms.
Convection term will be approximated by Upwind Scheme.
Source term will be admitted to be constant or at least independent of the solution.

4) Error estimates

We refer to “Error Analysis and Estimation for the Finite Volume Method With Applications
to Fluid Flows” [Jas96] for details on the error estimators.

The main issue of the FVM is that there is no such thing as "basis functions" : we do not
create the solution by using discrete spaces. There is not much mathematical framework other
than classical approximations.
The only basis function that create the method is piecewise constant fonctions on each control
volume.

The second flaw is the estimates that are not standards nor mathematically well established.
That is why we try to see the FVM as a derivation of FEM with piecewise constant fonctions
approximation instead of piecewise linear.
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I - FINITE VOLUME WEAK FORMULATION 18

Part 4

Cell centered FVM Reduced Basis
Method
The goal is to apply the well established Certified Reduced Basis Method error estimators to a
Weak Finite Volumes formulation in the cell centered with two flux points.
Since FVM searches the solution in the piecewise constant functions, we want to find a bilinear
form a(·, ·) : P0 × P0 → R with P0 the piecewise constant functions.

I - Finite Volume Weak Formulation

1) Construction of the weak formulation

We follow the Weak Formulation from Raphaele Herbin presentation that is also described in
“Analysis tools for finite volume schemes” [Eym+07]

Problem: let b ≥ 0, Q ∈ L2(Ω) and v ∈ Rd{
−∆u+∇·(vu) + bu = Q in Ω

u = 0 on ∂Ω

Define B the set of control volumes and E the set of its faces. We suppose the mesh to be
admissible in the sense that orthogonality conditions holds.
Recall:

P0(B) =
{
u ∈ L2(Ω)

/
∀C ∈ B, u

∣∣
b
∈ P0(b)

}
Bilan on a control volume C ∈ B with faces f :∑

f∈F(C)

∫
f

−∇u · nfdγ(x) +
∑

f∈F(C)

∫
f

(vu) · nfdγ(x) +

∫
VC

bu =

∫
VC

Q

Remark :
γ(x) is the (d− 1)-Lesbegue measure.

We then approximate the equation with Upwind Finite Volume scheme:∑
f∈F(C)

FC,f +
∑

f∈F(C)

(v+f uC + v−f uF ) + bC |VC |uC = |VC | fC

where

v+ := max(0, v) & v− := max(0,−v)

Define

Eint := E ∩ Ω & Eext := E ∩ ∂Ω
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19 1) Construction of the weak formulation

Then we define FC,f such that:

FC,f :=


−γ(f)
rCF

(uF − uC) if f ∈ Eint

−γ(f)
rCf

(−uC) if f ∈ Eext

Note rCf is the distance between C and the border.
We do a sumation over B:

∑
C∈B

 ∑
f∈F(C)

FC,f +
∑

f∈F(C)

(v+f uC + v−f uF ) +

∫
VC

bu

 =
∑
C∈B

∫
VC

Q

⇐⇒
∑
f∈Eint
f=C|F

−γ(f)
rCF

(uF − uC) +
∑

f∈Eext

γ(f)

rCf

uC +
∑
C∈B

 ∑
f∈F(C)

(v+f uC + v−f uF )

+

∫
Ω

bu =

∫
Ω

Q

We want to describe this equation only with bilinear form. Remark that:

γ(f)

rCF

(uC − uF ) =
γ(f)

rCF

(uC − uF )(1− 0) =
γ(f)

rCF

(uC − uF )(1C(xC)− 1C(xF ))

and

γ(f)

rCf

uC =
γ(f)

rCf

uC1C(xC)

Definition 4.1: Discrete inner product

⟨u|ϕ⟩B =
∑
f∈Eint
f=C|F

γ(f)

2rCF

(uF − uC)(ϕF − ϕC) +
∑

f∈Eext

γ(f)

rCf

uCϕC

Proposition 4.2

Let u ∈ P0(B):
⟨u|1C⟩B =

∑
f∈F(C)

FC,f

Choosing ϕ = 1C or u = 1C is equivalent to only consider the corresponding cell and its
fluxes.

D

We split the following sum between the set neighbour cells of K and the set of cells that
has K as neighbour cell:∑
f∈Eint
f=C|F

γ(f)

2rCF

(uF − uC)(1K(xF )− 1K(xC)) =
∑
f∈Eint
f=K|F

γ(f)

2rKF

(uF − uK)(1K(xF )− 1K(xK))
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I - FINITE VOLUME WEAK FORMULATION 20

+
∑
f∈Eint
f=C|K

γ(f)

2rCK

(uK − uC)(1K(xK)− 1K(xC))

=
∑
f∈Eint
f=K|F

γ(f)

2rKF

(uF − uK)(0− 1)

+
∑
f∈Eint
f=C|K

γ(f)

2rCK

(uK − uC)(1− 0)

=
∑
f∈Eint
f=K|F

− γ(f)

2rKF

(uF − uK) +
∑
f∈Eint
f=C|K

γ(f)

2rCK

(uK − uC)

= 2
∑
f∈Eint
f=K|F

− γ(f)

2rKF

(uF − uK) (⋆)

=
∑
f∈Eint
f=K|F

−γ(f)
rKF

(uF − uK)

=
∑

f∈(F (K))int

FK,f (u)

(⋆) the set of Control Volumes that has K as a neighbour is exactly (F (K))int.
and ∑

f∈Eext

γ(f)

rCf

uC1K(xC) =
∑

f∈(F (K))ext

γ(f)

rCf

uK =
∑

f∈(F (K))ext

FK,f (u)

The sum of both terms gives the result.

Remark :
The paper does not divide by 2. We believe it is a small mistake, but we may have
wrongly interpreted the sum.

The same way we want to define a bilinear form which gives the convection term of C when we
apply 1C , thus we define:

cB(u, ϕ) =
∑
C∈B

ϕC

 ∑
f∈F(C)

(v+f uC + v−f uF )


And the weak formulation of integrals is natural Proposition 3.1:

bCuC |VC | =
∫
VC

bu =

∫
Ω

bu1C

QC |VC | =
∫
VC

Q =

∫
Ω

Q1C

Hence we define the following weak FVM:
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21 1) Construction of the weak formulation

Find u ∈ P0(B) s.t. ⟨u|ϕ⟩B + cB(u, ϕ) +

∫
Ω

buϕ =

∫
Ω

Qϕ ∀ϕ ∈ P0(B)

D: Weak FVM ⇐⇒ FVM

=⇒: ϕ = 1K

⇐=: Take ϕ ∈ P0(B), multiply the strong form on a control volume and sum over C ∈ B.

Proposition 4.3: WFVM Poincaré inequality

Take u ∈ P0(B).

∥u∥L2 ≤ diam(Ω) ∥u∥1,B

D

“Finite Volume Methods” [EGH00] Lemma 9.1

By analogy with Poincaré inequality on H1
0 we can define:

Definition 4.4: Discrete H1
0(B) norm

∥u∥1,B := (⟨u|u⟩B)
1/2

From here the most important point is to have the Hilbertian structure to make all the developed
theory beforehand works. Thanksfully, the following property holds:

Proposition 4.5: Hilbert structure

(P0(B), ⟨·|·⟩B) is an Hilbert.

D

Let ε > 0. Let (fn)n ∈ P0(B)N a Cauchy sequence:

∃n0 s.t. ∥fp − fq∥1,B ≤ ε ∀p, q ≥ n0

Then by WFVM Poincaré 4.3 ∥fp − fq∥L2(Ω) −→
p,q→∞

0. Yet L2 is complete hence fn −→
n→∞

f

in L2(Ω).
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It is easy to verify that f is piecewise constant on B and that fn|b −→ f |b.
Hence FC,σ(fn) −→ FC,σ(f).

What we can learn from that is that we will be able to apply all the existence theorems we
want.
We can hope that if u ∈ H1(Ω):

∥u∥1,B ∼ ∥∇u∥L2(Ω)

This is most likely possible regarding the jump norm equivalence proven in [BR87].
We can define the discrete P0(B) norm:

∥u∥B := ∥u∥L2(Ω) + ∥u∥1,B
that is defined by analogy with the H1(Ω) norm.
Discrete Poincaré gives:

∥·∥1,B ∼ ∥·∥B
The paper shows the existence of an unique solution, the L2 strong convergence towards

u ∈ H1
0 (Ω) when the mesh tends to 0 which is solution of the weak formulation and of the

strong FVM. It writes a reformulation of the classics FEM a priori estimates.

II - Elliptic case: Diffusion

This part presents our work. We apply Certified Reduced Basis Methods for Parametrized
Partial Differential Equations. [HRS16] to the previous Weak FVM construction.

1) Model

We will consider a diffusion problem in a simple square divided in 9 smaller squares with dif-
ferent diffusion constants.

Γ3

Γ4

Γ1 Γ2

D1 D2 D3

D4 D5 D6

D7 D8 D9

Figure 7: Parametrized diffusion problem
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23 2) Theoretical properties

Let Si be the i-th square associated to Di. We define:

D(x) =
9∑

i=1

D[i]1Si

Hence the parameter µ =


D[1]

D[2]
...

D[9]

 lives in P =]0; 1]9 ≃ [ε; 1]9 where ε ≃ 0 (to have closed set of

parameters).
The FVM solve for u ∈ P0(B) in each VC :

−∇·(D∇u) = f ⇐⇒
∫
∂VC

D∇u = D(xC)

∫
∂VC

∇u =

∫
VC

f

Hence, defining the symmetric bilinear form:

a(u, ϕ ;µ) =
∑
f∈Eint
f=C|F

D(xC)
γ(f)

2rCF

(uF − uC)(ϕF − ϕC) +
∑

f∈Eext

γ(f)

rCf

D(xC)uCϕC

is enough to decribe the weak formulation for the FVM.
Then we will solve for u:

a(u, v ;µ) = ⟨f |v⟩L2 ∀v ∈ P0(B)
u = 0 on Γ

2) Theoretical properties

We still have coercivity:

a(u, u) ≥ min
i=1,...,9

Di ∥u∥21,B
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Note that we also proved α ≥ min
i=1,...,9

Di i.e. wan can define αLB(µ) = min
i=1,...,9

Di.

a is continuous:

|a(u, ϕ)| =

∣∣∣∣∣∣∣∣
∑
f∈Eint
f=C|F

D(xC)
γ(f)

2rCF

(uF − uC)(ϕF − ϕC) +
∑

f∈Eext

γ(f)

rCf

D(xC)uCϕC

∣∣∣∣∣∣∣∣
≤

∑
f∈Eint
f=C|F

∣∣∣∣D(xC)
γ(f)

2rCF

(uF − uC)(ϕF − ϕC)

∣∣∣∣+ ∑
f∈Eext

∣∣∣∣γ(f)rCf

D(xC)uCϕC

∣∣∣∣

≤ max
i=1,...,9

Di︸ ︷︷ ︸
=C

 ∑
f∈Eint
f=C|F

√
γ(f)

2rCF

|uF − uC | ×

√
γ(f)

2rCF

|ϕF − ϕC |

+
∑

f∈Eext

√
γ(f)

rCF

|uC | ×

√
γ(f)

rCF

|ϕC |



Cauchy-Schwarz ≤ C


√√√√√ ∑

f∈Eint
f=C|F

γ(f)

2rCF

(uF − uC)2 ×

√√√√√ ∑
f∈Eint
f=C|F

γ(f)

2rCF

(ϕF − ϕC)2

+

√√√√ ∑
f∈Eext

γ(f)

rCF

u2C ×

√√√√ ∑
f∈Eext

γ(f)

rCF

ϕ2
C


≤ C

(
∥u∥1,B ∥ϕ∥1,B + ∥u∥1,B ∥ϕ∥1,B

)
≤ 2C ∥u∥1,B ∥ϕ∥1,B

We can also write the affine assumption:

a(u, ϕ ;µ) =
9∑

i=1

D[i]

 ∑
f∈S⟩∩Eint
f=C|F

γ(f)

2rCF

(uF − uC)(ϕF − ϕC) +
∑

f∈Si∩Eext

γ(f)

rCf

uCϕC


=

9∑
i=1

D[i]ai(u, ϕ)

where
- ai(u, u) ≥ 0 (= 0 if u = 0 on Si) i.e. ai is a semi-definite bilinear form.
- D[i] > 0.

That fills the conditions for the affine assumption 4.3 [HRS16].

3) Computational methodology

Set B an orthogonal mesh. E be the set of edges of the mesh.
We will suppose that f(· ;µ) = f(·).
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25 3) Computational methodology

a) Precomputation

Compute Mδ:

〈
1Vi

∣∣1Vj

〉
B =


∑

f∈F (Vi)

γ(f)

rif
if i = j

−γ(fij)
rij

if i, j are neighbour

0 otherwise

Compute once for all q = 1, ..., 9 the matrices Aq
δ =

(
aq(1Vi

,1Vj
)
)
i,j

:

aq(1Vi
,1Vj

) =


∑

f∈F (Vi)

γ(f)

rif
if i = j and i ∈ Sq

−γ(fij)
rij

if i, j are neighbour and i ∈ Sq

0 otherwise

Compute fδ =
[
(f(1Vi

))i
]T .

b) Computation of αLB

Set PM ⊂ P be a set of M arbitrary chosen parameters.
For each µ ∈ PM , compute:

Aµ
δ =

9∑
i=1

D[q]A
q
δ

Solve for (λ,wδ) ∈ R+ × RNδ the eigenvalue problem:

Aµ
δwδ = λMδwδ

The smallest eigenvalues gives you M coercive constant αδ(µm).
Then define the function:

αLB(µ) = max
m=1,...,M

(
αδ(µm) min

q=1,...,9

D[q](µ)

D[q](µm)

)
c) Step by step offline generation

Set Ph =
[
µ[1] . . . µ[p]

]
all the chosen trial parameters.

Chose any µ1 ∈ Ph.

Loop at n:

• Compute the FOM solution uFVM(µn) for µn ∈ Ph computed in the last iteration or µ1 if
it’s the first loop iteration.
Define B =

[
uFVM(µ1) . . . uFVM(µn)

]
=

[
ξ1 . . . ξn

]
.

Compute for q = 1, ..., 9 :
Aq

rb = BTAq
δB

and
frb = BT fδ
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• For each µ ∈ Ph:

Compute Aµ
rb =

9∑
i=1

D[i]A
i
rb. Compute uµrb s.t.

Aµ
rbu

µ
rb = frb

We then compute η(µ). First compute

R =
(
fδ, A

1
δB, . . . , A

9
δB

)T
We then need to focus on

G = RTM−1
δ R

Solve the linear system Mδy = R then compute G = RTy.
Then compute

r(µ) =
[
1,−(uµrb)

TD[1], . . . ,−(uµrb)
TD[9]

]
and finally compute

∥r̂δ(µ)∥1,B =
√
r(µ)TGr(µ)

Note that min
i=1,...9

D[i] is a lower bound of α(µ) or compute αLB(µ) following p.25.

η(µ) = ∥r̂δ(µ)∥1,B /αLB(µ)

• Choose µn+1 = arg max
µ∈Ph

η(µ).

• If η(µn+1) > tol (that was previously computed) then go back to the beginning of the
loop, otherwise terminate.

Ensuring stability: Apply the Gram-Schmidt algorithm and redefine

B = Gram-Schmidt(B)

d) Online procedure

Store B =
[
ξ1 . . . ξN

]
and Aq

rb = BTAq
δB.

For a new µ =
[
D[1] . . . D[9]

]
∈ P, compute:

Aµ
rb =

9∑
i=q

D[q]B
TAq

δB

Compute uµrb s.t.

Aµ
rbu

µ
rb = frb

III - Parabolic case: Heat equation

1) Model

We don’t change the geometry of the model. Here, we try to solve:
∂tu−∇·(D∇u) = g(t)f(v) in Ω× R∗

+

u(x, t) = 0 in ∂Ω× R+

u(x, 0) = u0 ∈ L2 in Ω
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27 2) Computational methodology: POD-Greedy algorithm

A weak formulation would be:
Find u ∈ L2(H1

0(Ω)× R+,R) such that ut ∈ L2(H−1(Ω),R+) and:⟨∂tu|φ⟩H−1,H1
0
+

∫
Ω

D∇u · ∇vdx = g(t) ⟨f(x)|φ⟩H1
0

∀φ ∈ H1
0(Ω)

u(x, 0) = u0 ∈ L2 in Ω

Consider T > 0 a final time, M the number of time steps and k = T/M the uniform time step.

∂tu =
un+1 − un

k

Find (un)0≤n≤M−1 such that un ∈ P0(Ω) and:{1

k
⟨un+1 − un|ϕ⟩L2 + a(un+1, ϕ) = g(tn+1) ⟨f |ϕ⟩L2 ∀ϕ ∈ P0, 0 ≤ n ≤M − 1

⟨u0|ϕ⟩L2 = ⟨u0|ϕ⟩L2 ∀ϕ ∈ P0

where a(u, v) is defined as the diffusion symmetric continuous coercive bilinear form p.??.
Remark :

When applying cell control, we get
1

k
⟨un+1 − un|1C⟩L2 = VC

un+1
C − unC

∆t
which is the

transient approximation in FVM.

2) Computational methodology: POD-Greedy algorithm

See the 6.1.2 [HRS16] for the general idea. We also wrote a step by step method in the longer
version of this report.

IV - Results and conclusion
Numerical results involve programming knowledge that I did not have the time to learn.
Giovanni is taking care of this part, but it is a time consuming part of the research and we will
be able to present in September 2024.

If the numerical results look promising, we could hope to use this theory for libraries such
that OpenFOAM (see ISTHACA-FV project).

If the numerical results align with our expectation, the next step is to create an estimator
that takes into account the Implict part of the gradient estimation for non-orthogonal meshes
and to generalize for Inf-Sup stable problems.
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Part 5

Appendix
I - Representation theorems

Theorema 5.1: Riesz-Fréchet

Let (H, ⟨·|·⟩H) be a Hilbert space on K = R or C.
If ϕ ∈ H ′, then there exists a unique x0 ∈ H such as

∀x ∈ H,ϕ(x) = ⟨x|x0⟩

Moreover the map

x0 ∈ H 7−→ φx0 ;

∣∣∣∣H → K
x 7→ ⟨x|x0⟩

∈ H ′

is bijective, antilinear and an isometry between H and H ′.

Theorema 5.2: Lax-Milgram

Let H be a Hilbert space, a : H ×H −→ R a continous coercive bilinear form on H.
Given any φ ∈ H ′, there exists a unique u ∈ H such that

a(u, v) = ⟨φ|v⟩ = φ(v) ∀v ∈ H

Moreover if a is symmetric then u is characterized by the property

u ∈ H and
1

2
a(u, u)− φ(u) = min

v∈H

{
1

2
a(v, v)− φ(v)

}

Theorema 5.3: Banach–Nečas–Babuška

Let V,W be respectively Banach and reflexive Banach space.

a : V ×W continuous bilinear form.
f : W → R continuous linear form.

(⋆⋆) : find u ∈ V, a(u,w) = f(w) ∀w ∈ W

(⋆⋆) is well-posed if and only if

(i) ∃Csta > 0,∀v ∈ V, sup
w∈W\{0}

a(v, w)

∥w∥W
≥ Csta ∥v∥V

(ii) ∀w ∈ W, (∀v ∈ V, a(v, w) = 0) =⇒ w = 0
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The following control holds true :

∥u∥V ≤ 1

Csta
∥f∥W ′

D: Proof of Banach–Nečas–Babuška

See “Banach-Nečas-Babuška theorem and proof.” [Lec24a].

II - Standards inequalities

Lemma 5.4: Bramble Hilbert 1D

If u has m derivates on (a, b) and Pk is the space of polynomials of degree lesser than m−1.

inf
v∈Pm−1

∥∥u(k) − v(k)
∥∥
Lp ≤ C(m)(b− a)m−k

∥∥u(m)
∥∥
Lp

Hence for p = ∞ and m = 2 we have the linear interpolation :

inf
v∈P1

∥u− v∥∞ ≤ C(b− a)2 ∥u′′∥∞

Lemma 5.5: Bramble Hilbert

If Ω is regular enough and satisfies the strong cone property, u ∈ Wm,p(Ω) and Pk is the
space of polynomials of degree lesser than m− 1.

∀k ≤ m, inf
v∈Pm−1

∥u− v∥Wk,p ≤ Cdm−k ∥u∥Wm,p

Proposition 5.6: Poincaré’s inequality

Let K be a convex polygon, h its diameter, φ ∈ H1(K).

Let φK =
⟨φ|1⟩K
|K|

be the average estimation of φ. Then

∥φ− φK∥2K ≤ Ch2k ∥∇φK∥2K

where C is independent of K.
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