2. Tribus et Mesures - Suite

Exercice 1. Soit μ une mesure finie sur (E, \mathcal{A}) espace mesurable. Soit (A_n) une suite d'éléments de \mathcal{A} telle que $\mu(A_n) = \mu(E)$ pour tout n. Montrer que $\mu(\bigcap A_n) = \mu(E)$. Est-ce encore vrai si l'on ne suppose plus la mesure finie?

Exercice 2. Soit $f:(E,\mathcal{A})\to (\mathbb{R},\mathcal{B}(\mathbb{R}))$ une fonction mesurable (i.e. pour tout $B\in\mathcal{B}(\mathbb{R}),\ f^{-1}(B)\in\mathcal{A}$). Montrer que, si $\mu(E)\neq 0$ (resp. $\mu(\{f\neq 0\})\neq 0$), alors il existe $A\in\mathcal{A}$ tel que $\mu(A)>0$ et f soit bornée sur A (resp. |f| minorée par une constante strictement positive sur A).

Exercice 3. Soit μ une mesure finie sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Posons $F : x \mapsto \mu([x, +\infty[)$. Justifier que la mesure μ est entièrement déterminée par la donnée de F. Que dire de l'ensemble $D = \{x \in \mathbb{R}, \ \mu(\{x\}) = 0\}$?

Exercice 4 (Tribu complétée). Soit (E, \mathcal{A}, μ) un espace mesuré. Une partie $N \in \mathcal{P}(E)$ est dite μ -négligeable s'il existe $A \in \mathcal{A}$ tel que $N \subset A$ et $\mu(A) = 0$. Notons \mathcal{N} l'ensemble des μ -négligeables, et $\mathcal{C} = \{A \cup N, \ (A, N) \in \mathcal{A} \times \mathcal{N}\}$. Justifier que :

$$C \in \mathcal{C} \iff \exists A, B \in \mathcal{A}, \ A \subset C \subset B \ \text{ et } \ \mu(B \backslash A) = 0.$$

Montrer que \mathcal{C} est une tribu. Pour $C \in \mathcal{C}$, on définit $\overline{\mu}$ par $\overline{\mu}(C) = \mu(A)$ si $A \subset C \subset B$ avec $\mu(B \setminus A) = 0$. Montrer que $\overline{\mu}$ est une mesure sur \mathcal{C} , qui coïncide avec μ sur \mathcal{A} .

Exercice 5. Déterminer $A, B \in \mathcal{B}(\mathbb{R})$ de mesure de Lebesgue nulle, tels que A + B = [0, 1].

Exercice 6. Soit $\varepsilon > 0$. Montrer qu'il existe un fermé F d'intérieur vide tel que $\lambda(A \cap F) \ge \lambda(A) - \varepsilon$, pour tout $A \in \mathcal{B}(\mathbb{R})$.

Exercice 7. Soit (X, d) un espace métrique. Soit μ une mesure finie sur la tribu borélienne $\mathcal{B}(X)$. Montrer que tout borélien A de X vérifie la propriété de régularité suivante :

$$\mu(A) = \inf\{\mu(\Omega), A \subset \Omega, \Omega \text{ ouvert}\} = \sup\{\mu(F), F \subset A, F \text{ fermé}\}.$$

On dit que la mesure μ est régulière. (Ainsi, toute mesure finie sur un espace métrique est régulière.)

Exercice 8. (i) Soient (E, A) un espace mesurable et (μ_n) une suite de mesures sur (E, A) telle que :

$$\forall A \in \mathcal{A}, \ \forall n \in \mathbb{N}, \ \mu_n(A) \leq \mu_{n+1}(A).$$

Montrer que $\mu = \lim_{n \to \infty} \mu_n$ définit une mesure sur (E, A).

(ii) Trouver une suite de mesures décroissante dont la limite n'est plus une mesure.

Exercice 9 (Résultat d'unicité). Soient (E, \mathcal{A}) un espace mesurable, μ et ν deux mesures sur (E, \mathcal{A}) coïncidant sur $C \subset \mathcal{P}(E)$ stable par intersection finie et engendrant \mathcal{A} (i.e. $\sigma(C) = \mathcal{A}$).

- 1. Si $E \in C$ et $\mu(E) < +\infty$, montrer que μ et ν coïncident sur \mathcal{A} .
- 2. S'il existe une suite (E_n) d'éléments disjoints de C vérifiant $\mu(E_n) < +\infty$ pour tout n et formant une partition de E, montrer que μ et ν coïncident sur A.

Exercice 10. Soient $a, b \in \mathbb{R}$ et $f : x \in \mathbb{R} \mapsto ax + b$. Montrer que $f(A) \in \mathcal{B}(\mathbb{R})$ pour tout $A \in \mathcal{B}(\mathbb{R})$ et $\lambda(f(A)) = |a|\lambda(A)$.

Exercice 11. Soit E un ensemble non dénombrable muni de la tribu

$$\mathcal{A} = \{ A \in \mathcal{P}(\mathbb{R}); A \text{ dénombrable ou } A^c \text{ dénombrable} \}$$

et de la mesure de l'exercice 2.7.

Justifier que μ est une mesure de probabilité diffuse, i.e. $\forall x \in E, \ \mu(\{x\}) = 0$. Déterminer les atomes de μ , i.e. les $A \in \mathcal{A}$ tels que $\mu(A) > 0 \Rightarrow \forall B \in \mathcal{A}, \ B \subset A, \ \mu(B) = 0$ ou $\mu(A \setminus B) = 0$. En déduire que μ est purement atomique (i.e. E est l'union d'atomes de μ). Que dire pour la mesure de Lebesgue sur \mathbb{R} ?