Interrogations or ales MP* $\,$

Quayle Sacha

2020-2021

Table des matières

1	Matrices, applications linéaires, dualité, déterminants	2
2	Réduction des endomorphismes	3
3	Espaces vectoriels euclidiens	4
4	Topologie des espaces vectoriels normés	6
5	Suites de fonctions	8
6	Intégration	9
7	Séries	10
8	Probabilités	12
9	Équations différentielles	13

1 Matrices, applications linéaires, dualité, déterminants

Exercice. On dit qu'une matrice A est à diagonale dominante si pour tout $i \in \{1, ..., n\}$, $\sum_{j \neq i} a_{i,j} < |a_{i,i}|$. Montrer qu'une matrice à diagonale dominante est inversible.

Exercice. Soient A, B deux matrices réelles. Montrer que si les matrices A et B sont \mathbb{C} -semblables, alors elles sont \mathbb{R} -semblables.

Exercice. Soient K un corps et E un K-espace vectoriel de dimension finie $n \in \mathbb{N}^*$.

- 1. Soit $r \in \mathbb{N}^*$. Soit $(\varphi, \varphi_1, ..., \varphi_r) \in (E^*)^{r+1}$. Montrer : $\bigcap_{i=1}^r ker\varphi_i \subset ker\varphi \Leftrightarrow \varphi \in \text{Vect}((\varphi_i)_{1 \leqslant i \leqslant r})$.
- 2. Soit $r \in \mathbb{N}^*$. Soit $(\varphi_1, ..., \varphi_r) \in (E^*)^r$ linéarement indépendantes. Montrer : $\dim \left(\bigcap_{i=1}^r ker\varphi_i\right) = n r$.
- 3. K désigne à présent le corps $\mathbb R$ ou $\mathbb C.$
 - (a) Montrer que $T: \mathcal{M}_n(\mathbb{K}) \to \mathcal{M}_n(\mathbb{K})^*$ où : $\forall A \in \mathcal{M}_n(\mathbb{K}), \quad T_A : \mathcal{M}_n(\mathbb{K}) \to K$ est un isomorphisme linéaire de $\mathcal{M}_n(\mathbb{K})$ dans $\mathcal{M}_n(\mathbb{K})^*$.
 - (b) Soit $(A, M) \in \mathcal{M}_n(\mathbb{K})^2$. Montrer : il existe $B \in \mathcal{M}_n(\mathbb{K})$ tel que M = AB BA si et seulement si : $\forall X \in Com(A), Tr(MX) = 0$.

Exercice. Soient E un \mathbb{R} -espace vectoriel non nul de dimension finie $n \in \mathbb{N}^*$. Soit $u \in \mathcal{L}(E)$.

- 1. Montrer que les hyperplans de E sont exactement les sous-espaces vectoriels de E de dimension n-1.
- 2. Montrer que u est une homothétie de E si et seulement si pour tout $x \in E$, u(x) est colinéaire à x.
- 3. Montrer que l'endomorphisme u est de trace nulle si et seulement s'il existe une base de E dans laquelle la matrice u est de diagonale nulle. Enoncé matriciel associé.
- 4. Déterminer le sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ engendré par les matrices nilpotentes. Retrouver ce résultat à l'aide d'une autre méthode.

Exercice. Un paysan a 2n + 1 vaches. On suppose que, quelle que soit la vache choisie, à partir des 2n vaches restantes, il peut former deux tas de masse totale égale, constitués chacune de n vaches. Que peut-on en conclure?

2 Réduction des endomorphismes

Exercice. Soit $n \in \mathbb{N}^*$ et $A \in \mathcal{M}_n(\mathbb{C})$. Montrer que A est nilpotente si et seulement si. $\forall k \in \mathbb{N}^*$, $\text{Tr}(A^k) = 0$.

Exercice. Soit $n \in \mathbb{N}^*$. Déterminer le sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ engendré par les matrices nilpotentes.

Exercice. Soit K un corps et E un K-espace vectoriel de dimension finie $n \in \mathbb{N}^*$.

- 1. Montrer que deux endomorphismes sur E sont diagonalisables et commutent si et seulement s'ils sont codiagonalisables.
- 2. Soit A une sous-algèbre de $\mathcal{L}(E)$ dont tout élément est diagonalisble. Soit $u \in A$.
 - (a) Montrer que les applications φ . $\mathcal{L}(E) \to \mathcal{L}(E)$ et ψ . $\mathcal{L}(E) \to \mathcal{L}(E) \to \mathcal{L}(E)$ sont des endomorphismes diagonalisables de $\mathcal{L}(E)$. L'endomorphisme θ . $\mathcal{L}(E) \to \mathcal{L}(E) \to \mathcal{L}(E)$ est-il diagonalisble?
 - (b) Justifier que A est stable par θ . On note θ_A l'endomorphisme induit par la restriction de θ à A.
 - (c) Soit $\lambda \in Sp(\theta_A)$, et w un vecteur propre de θ_A associé à la valeur propre λ . Montrer. $\forall k \in \mathbb{N}$, $\theta_A(w^k) = k\lambda w^k$. En déduire la valeur de λ . En déduire que A est commutative.

Exercice.

- 1. Soit K un corps, et E un K-espace vectoriel de dimension finie $n \in \mathbb{N}^*$. Soit $(u, v) \in \mathcal{L}(E)^2$. Montrer que u et v sont codiagonalisables si et seulement s'ils sont diagonalisables et commutent.
- 2. Soit $n \in \mathbb{N}^*$, et $(A, B) \in \mathcal{M}_n(\mathbb{C})^2$. On considère $\varphi : \mathcal{M}_n(\mathbb{C}) \to \mathcal{M}_n(\mathbb{C})$ $M \mapsto AM - MB$.
 - (a) Montrer que φ est un endomorphisme du \mathbb{R} -espace vectoriel $\mathcal{M}_n(\mathbb{C})$.
 - (b) Montrer que $Sp_{\mathbb{C}}(A) \cap Sp_{\mathbb{C}}(B) = \emptyset$ si et seulement si φ est inversible. En déduire $Sp(\varphi)$.
 - (c) On suppose que A et B sont \mathbb{C} -diagonalisables. Montrer que φ est diagonalisable.

3 Espaces vectoriels euclidiens

Exercice. Soit $n \in \mathbb{N}^*$. Soit $A = (a_{ij})_{1 \leq i,j \leq n} \in O_n(\mathbb{R})$.

- 1. Montrer. $|\sum_{1\leqslant i,j\leqslant n}a_{i,j}|\leqslant n^{3/2}.$
- 2. Trouver $X \in \mathbb{R}^n$ tel que $\sum_{1 \leq i,j \leq n} a_{ij} = {}^t X A X$. En déduire que $|\sum_{1 \leq i,j \leq n} a_{i,j}| \leq n$. Caractériser le cas d'égalité.
- 3. On suppose que les coefficients de A sont positifs. Caractériser alors le cas d'égalité de la question précédente.

Exercice. Soit $n \in \mathbb{N}^*$. On considère la matrice de Hilbert $H_n = (\frac{1}{i+j+1})_{0 \le i,j \le n-1} \in \mathcal{M}_n(\mathbb{R})$.

- 1. Montrer que $H_n \in S_n^{++}(\mathbb{R})$.
- 2. On note ainsi $0 < \mu_1 \le ... \le \mu_n$ les valeurs propres de H_n comptées avec multiplicité, rangées dans l'ordre croissant. Soit $X \in \mathbb{R}^n$. Montrer. $X \in E_{\mu_n}(H_n) \Leftrightarrow {}^tXH_nX = \mu_n||X||^2$.

Exercice. Soit $n \in \mathbb{N}^*$. On note $S_n^{++}(\mathbb{R}) = \{A \in S_n(\mathbb{R}) / \operatorname{Sp}_{\mathbb{R}}(A) \subset \mathbb{R}_+^* \}$.

- 1. Montrer. $A \in S_n^{++}(\mathbb{R}) \Leftrightarrow \forall X \in \mathbb{R}^n, \ ^tXAX > 0.$
- 2. Soit $A = (a_{ij})_{1 \leq i,j \leq n} \in S_n^{++}(\mathbb{R})$
 - (a) Montrer. $\forall i \in [|1, n|], a_{ii} > 0.$
 - (b) Montrer. $(\det A)^{\frac{1}{n}} \leqslant \frac{1}{n} Tr(A)$.
 - (c) On considère $D \in \mathcal{D}_n(\mathbb{R})$ définie par. $\forall i \in [|1, n|], d_{ii} = \frac{1}{\sqrt{a_{ii}}}$. En considérant DAD, montrer que $\det(A) \leqslant \prod_{i=1}^n a_{ii}$.

Exercice. Soit E un espace euclidien non nul. Soit p un projecteur de E.

- 1. Montrer l'équivalence entre les assertions suivantes.
 - (a) p est un projecteur orthogonal de E.
 - (b) p est symétrique.
 - (c) $\operatorname{Im}(p)$ et $\ker(p)$ sont orthogonaux.
- 2. On suppose. $\forall x \in E$, $||p(x)|| \le ||x||$. En écrivant p(x) = p(x) x + x, montrer. $\forall x \in \ker(p)^{\perp}$, p(x) = x. En déduire que $\ker(p)^{\perp} \subset \operatorname{Im}(p)$.
- 3. Montrer que p est un projecteur orthogonal de E si et seulement si. $\forall x \in E, \|p(x)\| \leq \|x\|$.

Exercice. Soit $(u, v) \in S^+(E)^2$. Montrer. $0 \le \text{Tr } (u \circ v) \le \text{Tr}(u)\text{Tr}(v)$.

Exercice. Soit E un espace vectoriel euclidien de dimension $n \in \mathbb{N}^*$.

Un endomorphisme u est E est une similitude de E s'il existe k > 0 tel que. $\forall x \in E$, ||u(x)|| = k||x||. On dit alors que u est la similitude de rapport k. On note Sim(E) l'ensemble des similitudes de E.

On dit qu'un endomorphisme u de E conserve l'orthogonalité si. $\forall (x,y) \in E^2$, $\langle x,y \rangle = 0 \Rightarrow \langle u(x), u(y) \rangle = 0$. On se propose de montrer que $u \in Sim(E)$ si et seulement si u conserve l'orthogonalité.

- 1. Montrer que E admet une base orthonormale.
- 2. Soit $u \in \mathcal{L}(E)$. Montrer que $u \in Sim(E)$ si et seulement si u est la composée d'une homothétie vectorielle non nulle de E et d'un élément de O(E).
- 3. Montrer que toute similitude de E conserve l'orthogonalité.
- 4. Réciproquement, soit $u \in \mathcal{L}(E)$ conservant l'orthogonalité. En considérant une base orthonormale de E, montrer que u est une similitude de E. Indication. calculer $\langle e_i + e_j, e_i e_j \rangle$ pour tout $(i, j) \in [|1, n|]^2$.

Exercice. Soit $A \in \mathcal{M}_n(\mathbb{R})$. Montrer. $A \in S_n^+(\mathbb{R}) \Leftrightarrow \forall U \in O_n(\mathbb{R}), |\operatorname{Tr}(AU)| \leqslant \operatorname{Tr}(A)$.

4 Topologie des espaces vectoriels normés

Exercice. Soit $n \in \mathbb{N}^*$.

- 1. On admet. $\forall A \in S_n^+(\mathbb{R}), \exists ! B \in S_n^+(\mathbb{R}), B^2 = A$ (racine carrée euclidienne). Soit $A \in GL_n(\mathbb{R})$. Montrer qu'il existe un unique couple $(O, S) \in O_n(\mathbb{R}) \times S_n^{++}(\mathbb{R})$ tel que A = OS (il s'agit de la décomposition polaire de A).
- 2. Soit $A \in GL_n(\mathbb{R})$. Montrer qu'il existe $D \in \mathcal{D}_n(\mathbb{R})$ et $(P,Q) \in O_n(\mathbb{R})^2$ tel que A = QDP.
- 3. Montrer que $O_n(\mathbb{R})$ est un sous-groupe compact maximal de $GL_n(\mathbb{R})$, i.e si H est un sous-groupe compact de $GL_n(\mathbb{R})$ contenant $O_n(\mathbb{R})$, alors $H = O_n(\mathbb{R})$.

Exercice. Soit $n \in \mathbb{N}$. \mathbb{K} désigne le corps \mathbb{R} ou \mathbb{C} .

- 1. Soit $(M_k)_{k\in\mathbb{N}} \in \mathcal{M}_n(\mathbb{K})^{\mathbb{N}}$ convergeant vers une matrice $M \in \mathcal{M}_n(\mathbb{K})$. Montrer qu'il existe $N \in \mathbb{N}$ tel que : $\forall k \geq N, \operatorname{rg} M_k \geq \operatorname{rg} M$.
- 2. Soit $r \in [|0, n|]$. Montrer que l'adhérence de l'ensemble des matrices de rang égal à r est l'ensemble des matrices de rang inférieur ou égal à r.

Exercice. Soit $n \in \mathbb{N}^*$.

- 1. Montrer que l'application χ qui à une matrice $A \in \mathcal{M}_n(\mathbb{R})$ associe χ_A , est continue sur $\mathcal{M}_n(\mathbb{R})$.
- 2. On note $\mathcal{C}(A) = \{PAP^{-1}, P \in GL_n(\mathbb{R})\}$. On suppose A diagonalisable.
 - (a) Montrer que $C(A) = \chi^{-1}(\{\chi_A\}) \cap \pi_A^{-1}(\{0\}).$
 - (b) En déduire que $\mathcal{C}(A)$ est une partie fermée de $\mathcal{M}_n(\mathbb{R})$.

Exercice. Soit $n \in \mathbb{N}^*$. On admet : $\forall A \in S_n^+(\mathbb{R}), \exists ! B \in S_n^+(\mathbb{R}), B^2 = A$.

- 1. Soit $A \in GL_n(\mathbb{R})$. Montrer qu'il existe un unique couple $(O, S) \in O_n(\mathbb{R}) \times S_n^{++}(\mathbb{R})$ tel que A = OS (il s'agit de la décomposition polaire de A). Indication : on commencera par montrer que ${}^tAA \in S_n^{++}(\mathbb{R})$.
- 2. (a) Montrer que $GL_n(\mathbb{R})$ est dense dans $\mathcal{M}_n(\mathbb{R})$.
 - (b) Montrer que $O_n(\mathbb{R})$ est un compact de $\mathcal{M}_n(\mathbb{R})$.
 - (c) Montrer que $S_n^+(\mathbb{R})$ est un fermé de $\mathcal{M}_n(\mathbb{R})$.
- 3. Soit $A \in \mathcal{M}_n(\mathbb{R})$. Montrer qu'il existe un couple $(O, S) \in O_n(\mathbb{R}) \times S_n^+(\mathbb{R})$ tel que A = OS. Le couple (O, S) est-il unique?

Exercice. Soit E un espace vectoriel euclidien non nul.

On note $S^{++}(E) = \{ u \in S(E), \forall x \in E \setminus \{0\}, \langle x, u(x) \rangle > 0 \}$, et $S^{+}(E) = \{ u \in S(E), \forall x \in E, \langle x, u(x) \rangle \geq 0 \}$. On rappelle, $u \in S^{++}(E)$ (resp. $S^{+}(E)$) \Leftrightarrow Sp $(u) \subset \mathbb{R}_{+}^{*}$ (resp. \mathbb{R}_{+}).

- 1. (a) Question de cours. Énoncer le théorème de caractérisation séquentielle des fermés.
 - (b) Montrer que $S^+(E)$ est un fermé de $\mathcal{L}(E)$. $S^{++}(E)$ est-il un fermé de $\mathcal{L}(E)$?
- 2. (a) Soit $u \in S(E)$. Montrer. $u \in S^{++}(E) \Leftrightarrow \exists \alpha \in \mathbb{R}_+^*, \forall x \in E, \langle x, u(x) \rangle \geqslant \alpha ||x||^2$.
 - (b) Montrer que $S^{++}(E)$ est un ouvert de S(E).

Exercice. Soit $(E, \|.\|)$ un EVN et $u = (u_n)_{n \in \mathbb{N}} \in E^{\mathbb{N}}$.

On dit que la suite u est de Cauchy si. $\forall \epsilon > 0$, $\exists N \in \mathbb{N}$, $\forall n, m \ge N$, $||u_n - u_m|| \le \epsilon$.

On dit que $(E, \|.\|)$ est complet si toute suite de Cauchy converge dans E pour la norme $\|.\|$.

- 1. Montrer qu'une suite convergente est de Cauchy, et qu'une suite de Cauchy est bornée.
- 2. Montrer qu'un EVN de dimension finie est complet.
- 3. Montrer que $(\mathbb{R},|.|)$ est complet. En déduire que l'EVN $(\mathcal{B}(E,\mathbb{R}),\|.\|_{\infty})$, est complet.
- 4. L'EVN $(\mathcal{C}([0,1],\mathbb{R}),\|.\|_{\infty})$ est-il complet ?

5 Suites de fonctions

Exercice. Soit $a < b \in \mathbb{R}^2$. Soit $f \in \mathcal{C}_m([a, b], \mathbb{R})$.

- 1. Soit $g \in \mathcal{C}_m(\mathbb{R}, \mathbb{C})$ périodique. On note μ sa valeur moyenne. Montrer. $\int_a^b f(t)g(xt) dt \xrightarrow[x \to +\infty]{} \mu \int_a^b f$.
- 2. Application avec $g = |\sin|$.

6 Intégration

Exercice. On considère la fonction F définie par $F(x) = \int_0^{+\infty} \frac{e^{-t}}{x+t} dt$.

- 1. Montrer que le domaine de définition I de la fonction F est \mathbb{R}_+^* .
- 2. Montrer que F est continue sur I.
- 3. Déterminer la limite de F en $+\infty$ (resp. 0) ainsi qu'un équivalent de F en $+\infty$ (resp. 0).

Exercice. Soit $f \in C^1([0,1], \mathbb{R})$. Déterminer une condition nécessaire et suffisante pour que la fonction $x \mapsto \frac{f(x)}{x}$ soit intégrable sur]0,1[. Montrer que $\int_{\varepsilon}^{1} \frac{f(x)}{x} dx + f(0) \ln(\varepsilon)$ admet une limite lorsque $\varepsilon \to 0$.

Exercice. On considère la fonction F définie par $\forall x \in \mathbb{R}_+^*$, $F(x) = \int_0^{+\infty} \frac{1 - \cos(t)}{t} e^{-xt} dt$.

- 1. Montrer que F est bien définie.
- 2. Montrer que F est de classe C^1 sur I et calculer sa dérivée.
- 3. En déduire une expression simplifiée de F.

Exercice. Montrer.
$$\forall x \in \mathbb{R}_+^*$$
, $\int_0^{+\infty} \frac{\arctan(x/t)}{1+t^2} dt = \int_0^x \frac{\ln(t)}{t^2-1} dt$.

Exercice. Soit $\alpha \in \mathbb{R}_+^*$. Étudier la nature de l'intégrale $\int_0^{+\infty} \frac{1}{1 + t^{\alpha} \sin^2(t)} dt$.

Exercice. On pose, pour tout t > 0, $A(t) = \left(\int_0^t e^{-x^2} dx\right)^2$ et $B(t) = -\int_0^1 \frac{e^{-t^2(1+x^2)}}{1+x^2} dx$.

- 1. Montrer que A et B ont la même dérivée.
- 2. Montrer que A et B sont continues en 0.
- 3. En déduire la valeur de l'intégrale de Gauss. $\int_0^{+\infty} e^{-x^2} dx$.

Exercice. On se propose de démontrer l'irrationalité de π . On suppose par l'absurde qu'il existe $(a,b) \in (\mathbb{N}^*)^2$ tel que $\pi = \frac{a}{b}$. On note. $\forall n \in \mathbb{N}^*$, $I_n = \frac{1}{n!} \int_0^{\pi} t^n (a - bt)^n \sin(t) dt$.

- 1. Montrer. $\forall n \in \mathbb{N}^*, I_n \in \mathbb{N}$.
- 2. Montrer. $I_n \underset{n \to +\infty}{\longrightarrow} 0$ et. $\forall n \in \mathbb{N}^*, I_n > 0$.
- 3. Conclure.

Exercice. Déterminer un équivalent simple de la fonction $x \mapsto \int_0^{\pi/2} \frac{|\sin(xt)|}{\sin(t)} dt$ en $+\infty$.

7 Séries

Exercice. Soit a > 0. Pour $n \in \mathbb{N}$ et $x \in \mathbb{R}_+$, on pose $f_n(x) = x^a e^{-nx}$.

- 1. Montrer que la série de fonctions $\sum f_n$ est simplement convergente sur \mathbb{R}_+ , et calculer sa fonction somme.
- 2. On suppose a > 1. Montrer qu'il y a convergence normale.
- 3. On suppose $a \leq 1$. Montrer qu'il n'y a pas convergence uniforme.
- 4. Soit $s \in \mathbb{R}_+^*$. Montrer qu'il y a convergence uniforme sur $[s, +\infty[$.

Exercice. On se propose dans cet exercice de calculer la somme $\sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1}$ par deux méthodes différentes.

- 1. Soit $(a,b) \in (\mathbb{R}_+^*)^2$. Montrer que $\int_0^1 \frac{t^{a-1}}{1+t^b} dt = \sum_{n=0}^{+\infty} \frac{(-1)^n}{a+bn}$. En déduire $\sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1}$.
- 2. Donner et démontrer le développement en série entière de la fonction arctan. En déduire $\sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1}$.

Exercice. Montrer.
$$\int_0^{+\infty} \frac{\sin(x)}{e^x - 1} dx = \sum_{n=1}^{+\infty} \frac{1}{n^2 + 1}.$$

Exercice. Pour $x \in \mathbb{R}$ et $n \in \mathbb{N}$, on pose $u_n(x) = -2n^2xe^{-n^2x^2}$.

- 1. On pose, pour tout $x \in \mathbb{R}$, $v_n(x) = u_n(x) u_{n+1}(x)$. Montrer que la série de fonctions $\sum v_n$ converge simplement sur \mathbb{R} , et calculer sa fonction somme, notée S.
- 2. Soit a > 0.
 - (a) Montrer que la série $\sum \int_0^a v_n(t) \ dt$ converge, et calculer sa somme. Calculer également $\int_0^a S(t) \ dt$.
 - (b) En déduire que la série de fonctions $\sum v_n$ ne converge pas uniformément sur [0,a].

Exercice. On pose, pour tout $n \in \mathbb{N}^*$, $f_n.\mathbb{R} \to \mathbb{R}$ définie par. $\forall x \in \mathbb{R}$, $f_n(x) = \frac{(-1)^{n-1}}{\sqrt{n+x^2}}$, et $f = \sum_{n=1}^{+\infty} f_n$.

- 1. Justifier la définition de f.
- 2. Montrer que la série de fonctions $\sum f_n$ converge uniformément sur \mathbb{R} .
- 3. Déterminer la limite de f en $+\infty$.
- 4. Montrer que la fonction f est de classe \mathcal{C}^1 sur \mathbb{R} et exprimer sa fonction dérivée.

Exercice. On pose, pour tout $x \in]-1,1[, f(x) = \sum_{n=1}^{+\infty} x^{n^2}$. Déterminer la limite et un équivalent simple de f

en 1⁻. Indication. on pourra utiliser l'intégrale de Gauss $\int_0^{+\infty} e^{-u^2} du = \frac{\sqrt{\pi}}{2}$.

Exercice. Soit $(u_n)_{n\in\mathbb{N}^*}$ une suite d'éléments de \mathbb{R}_+^* . On suppose que la série $\sum u_n$ est convergente. On considère la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par. $\forall n\in\mathbb{N}^*, v_n=\sqrt[n]{u_1u_2...u_n}$. On note $(S_n)_{n\in\mathbb{N}^*}$ la suite des sommes partielles de la série $\sum nu_n$.

- 1. Montrer que la série $\sum \frac{S_n}{n(n+1)}$ est convegente. Que vaut sa somme?
- 2. Montrer que la série $\sum v_n$ est convergente.
- 3. En déduire l'inégalité de Carleman. $\sum\limits_{n=1}^{\infty}v_n\leqslant e\sum\limits_{n=1}^{\infty}u_n.$

Exercice. On considère
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$$

- 1. Montrer que A admet une unique valeur propre réelle $\lambda > 1$.
- 2. En considérant la suite $(\operatorname{Tr}(A^n))_{n\in\mathbb{N}}$, étudier la nature de la série $\sum \sin(\pi\lambda^n)$.

Exercice. Soit $P \in \mathbb{C}[X]$ unitaire, que l'on note $P = a_0 + a_1X + ... + a_{d-1}X^{d-1} + X^d$ avec $d \ge 1$. On suppose que $a_0 \ne 0$. On note $\lambda_1, ..., \lambda_d$ les racines complexes de P comptées avec multiplicité. On pose, pour tout $n \ge 1$, $u_n = \lambda_1^n + ... + \lambda_d^n$.

- 1. On considère Q le polynôme réciproque de P : $Q(X) = X^d P(\frac{1}{X})$. Montrer : $Q = 1 + a_{d-1}X + ... + a_1X^{d-1} + a_0X^d = (1 \lambda_1X)(1 \lambda_2X)...(1 \lambda_dX)$.
- 2. On considère la fonction $f: \mathbb{R}\setminus(\mathbb{R}\cap\{\frac{1}{\lambda_1},...,\frac{1}{\lambda_d}\}) \to \mathbb{C}$ définie par $f(x)=\frac{Q'(x)}{Q(x)}$. Montrer que f est développable en série entière sur un intervalle de la forme]-r,r[(avec r à déterminer) et vérifie : $\forall x\in]-r,r[,f(x)=-\sum_{n=0}^{+\infty}u_{n+1}x^n.$
- 3. On suppose que : $\forall n \ge 1, u_n \in M$ ontrer que $P \in [X]$.

8 Probabilités

Exercice.

- 1. Soit $p \in]0,1[$. Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé. Soit X une VAD sur $(\Omega, \mathcal{A}, \mathbb{P})$ suivant une loi géométrique de paramètre p. Donner la loi, l'espérence, la variance, et la fonction génératrice de X.
- 2. On lance à plusieurs reprises deux pièces simultanément avec les probabilités respectives p et q de tomber sur pile. On note X la variable aléatoire donnant le numéro du premier lancer pour lequel les deux pièces tombent sur la même face. Déterminer la loi de X. Calculer son espérence et sa variance.

Exercice. Soit $(n, p) \in (\mathbb{N}^*)^2$. Un compteur devrait afficher les valeurs d'une variable aléatoire X suivant la loi $\mathcal{B}(n, p)$, mais, lorsque X = 0, il affiche un entier au hasard entre 1 et n, et lorsque $X \neq 0$, il affiche bien X. On note Y la variable aléatoire donnant le nombre affiché par le compteur.

- 1. Justifier que Y est bien une variable aléatoire et déterminer sa loi.
- 2. Calculer $\mathbb{E}(Y)$ et $\mathbb{V}(Y)$.

Exercice.

- 1. Soit $\lambda \in \mathbb{R}_+^*$. Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé. Soit X une VAD sur $(\Omega, \mathcal{A}, \mathbb{P})$ suivant une loi de poisson de paramètre λ . Donner la loi, l'espérence, la variance, et la fonction génératrice de X.
- 2. On considère un parc de 15 attractions dont la fréquentation journalière, donnée par la VAD Y, suit une loi de Poisson de paramètre $\lambda = 750$. On note X la variable aléatoire donnant le nombre de visiteurs qui commencent par le train fantôme. Déterminer la loi de X. Calculer $\mathbb{E}(X)$ et $\mathbb{V}(X)$.

Exercice. On lance à plusieurs reprises une pièce qui a la probabilité p de retomber sur la même face. Avant le premier lancer, la pièce est sur pile. Soit $n \in \mathbb{N}^*$. On se propose de calculer, par deux méthodes différentes, la probabilité que la pièce soit sur pile après le n-ième lancer (on pourra, par convention, considérer que cette probabilité vaut 1 pour n=0). On note, pour tout $n \in \mathbb{N}^*$, X_n la variable aléatoire qui vaut 1 si la pièce tombe sur pile après le n-ième lancer, et 0 sinon, et $p_n := \mathbb{P}(X_n = 1)$.

- 1. Méthode 1. Trouver une relation de récurrence entre les $(p_n)_{n\in\mathbb{N}^*}$. Conclure.
- 2. Méthode 2. Calculer p_n en considérant, pour tout $i \in \mathbb{N}^*$, Y_i la variable aléatoire qui vaut 1 si la pièce change de face au i-ème lancer, et 0 sinon.

Exercice. On note $(p_n)_{n\in\mathbb{N}^*}$ la suite des nombres premiers rangés dans l'ordre croissant. Soit $s\in]1, +\infty[$. Soit X la variable aléatoire sur \mathbb{N}^* définie par : $\forall n\in\mathbb{N}^*$, $\mathbb{P}(X=n)=\frac{1}{n^s\zeta(s)}$. Calculer, pour tout $d\in\mathbb{N}^*$, $\mathbb{P}(d|X)$.

Montrer que $\prod_{i=1}^{n} (1 - \frac{1}{p_i^s})$ tend lorsque $n \to \infty$ vers $\frac{1}{\zeta(s)}$. Déterminer la nature de la série $\sum \frac{1}{p_n}$.

Exercice. Soit $n \in \mathbb{N}^*$. Pour tout $\sigma \in S_n$, pour tout $i \in [|1, n|]$, on note $X_i(\sigma)$ l'ordre de i sous σ (i.e le plus petit $p \in \mathbb{N}^*$ tel que $\sigma^p(i) = i$). Pour tout $\sigma \in S_n$, on note $N(\sigma)$ le nombre de cycles dans la décomposition de la permutation σ en produit de cycles à supports disjoints.

- 1. Soit $i \in [|1, n|]$. Déterminer la loi de la variable aléatoire X_i sur $(S_n, \mathcal{P}(S_n), \mathbb{P})$, où \mathbb{P} est la probabilité uniforme sur S_n .
- 2. Exprimer N en fonction de $X_1, ..., X_n$.
- 3. Déterminer un équivalent simple (lorsque n tend vers $+\infty$) du nombre moyen de cycles dans la décomposition d'une permutation de [|1,n|] en cycles à supports disjoints.

9 Équations différentielles

Exercice. Soit $f : \mathbb{R} \to \mathbb{R}$ de classe C^2 telle que : $\forall t \in \mathbb{R}$, $f(t) + f''(t) \ge 0$. Montrer que : $\forall t \in \mathbb{R}$, $f(t) + f(t + \pi) \ge 0$.

Correction.

On considère la fonction (1) : g = f + f''. Il s'agit d'une équation différentielle linéaire du second ordre à coefficients constants, donc on sait le résoudre.

- 1. L'équation homogène associée est (1'): f + f'' = 0, dont une base de solutions est (f_1, f_2) où $f_1 = \cos$ et $f_2 = \sin$.
- 2. On cherche une solution particulière sous la forme $\tilde{f}: t \mapsto \lambda_1(t) f_1(t) + \lambda_2(t) f_2(t)$. Alors \tilde{f} est solution de (1) si et seulement si : $\forall t \in \mathbb{R}, \begin{pmatrix} \lambda_1'(t) \\ \lambda_2'(t) \end{pmatrix} = \begin{pmatrix} f_1(t) & f_2(t) \\ f_1'(t) & f_2'(t) \end{pmatrix}^{-1} \begin{pmatrix} 0 \\ g(t) \end{pmatrix} = \begin{pmatrix} -g(t) \sin(t) \\ g(t) \cos(t) \end{pmatrix}$. Ainsi, une solution particulière de (1) est : $\tilde{f}: t \mapsto -\cos(t) \int_0^t \sin(u)g(u) du + \sin(t) \int_0^t \cos(u)g(u) du$.

La fonction f est donc de la forme $f: t \mapsto \cos(t)(A - \int_0^t \sin(u)g(u)du) + \sin(t)(B + \int_0^t \cos(u)g(u)du$, avec $(A, B) \in \mathbb{R}^2$. Ainsi : $\forall t \in \mathbb{R}$,

$$f(t) + f(t + \pi) = \cos(t)(-\int_0^t \sin(u)g(u)du + \int_0^{t+\pi} \sin(u)g(u)du) + \sin(t)(\int_0^t \cos(u)g(u)du - \int_0^{t+\pi} \cos(u)g(u)du)$$

$$= \cos(t)\int_t^{t+\pi} \sin(u)g(u)du - \sin(t)\int_t^{t+\pi} \cos(u)g(u)du = \int_t^{t+\pi} (\cos(t)\sin(u) - \cos(u)\sin(t))g(u)du$$

$$= \int_t^{t+\pi} (\sin(t-u))g(u)du = -\int_0^t (\sin(s))g(t-s)ds.$$

Or la fonction g est à valeurs dans \mathbb{R}_+ d'après l'énoncé, et la fonction sin est négative sur $[-\pi, 0]$. D'où l'on obtient bien : $\forall t \in \mathbb{R}$, $f(t) + f(t + \pi) \ge 0$.

Exercice. On considère $E = \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{C})$ et $\phi : E \to E$ définie par : $\forall f \in E, \forall t \in \mathbb{R}, \phi(f)(t) = f'(t) + tf(t)$.

- 1. Trouver les valeurs propres et les vecteurs propres de ϕ .
- 2. Trouver les valeurs propres et les vecteurs propres de ϕ^2 .
- 3. Résoudre alors sur \mathbb{R} l'équation $y'' + 2xy + (x^2 1)y = 0$.

Exercice. Soit I un intervalle réel non trivial et $n \in \mathbb{N}^*$. Soit $A \in \mathcal{C}(I, A_n(\mathbb{R}))$. On considère l'équation différentielle (E): X' = A(t)X d'inconnue $X \in \mathcal{D}(I, \mathcal{M}_n(\mathbb{R}))$. Soit X une solution de (E) sur I. Soit $t_0 \in I$. On suppose $: X(t_0) \in SO_n(\mathbb{R})$. Montrer $: \forall t \in I, X(t) \in SO_n(\mathbb{R})$.

Correction:

- 1. Montrons que $X(t) \in O_n(\mathbb{R})$. On considère la fonction $\varphi : t \mapsto {}^t X(t)X(t)$. La fonction X est dérivable sur I, et la transposition est linéaire, donc la fonction φ est dérivable sur I, et : $\forall t \in I$, $\varphi'(t) = 0$, car A(t) est antisymétrique. Donc φ est constante, et $\varphi(t_0) = I_n$ (car $X(t_0) \in SO_n(\mathbb{R})$), donc on obtient bien : $X(t) \in O_n(\mathbb{R})$.
- 2. La fonction $\psi: t \mapsto \det(X(t))$ est continue sur I, une partie connexe par arcs de \mathbb{R} , donc son image est une partie connexe par arcs de \mathbb{R} . Or ψ est à valeurs dans $\{-1,1\}$, et $\psi(t_0) = 1$ (car $X(t_0) \in SO_n(\mathbb{R})$), donc ψ est constante égale à 1.

On obtient ainsi : $\forall t \in I, X(t) \in SO_n(\mathbb{R}).$

Exercice. Soit f une fonction continue intégrable de \mathbb{R} dans \mathbb{R} . On considère l'équation différentielle (E): y'-y+f=0.

- 1. Montrer que (E) admet une unique solution g bornée sur \mathbb{R} .
- 2. Montrer que g est intégrable sur \mathbb{R} et comparer $\int_{-\infty}^{+\infty} g$ et $\int_{-\infty}^{+\infty} f$.

Exercice. Soient r et q deux fonctions continues définies sur I = [a, b] telles que : $\forall x \in I$, $r(x) \ge q(x)$. On considère les équations différentielles : (E1) : y'' + q(x)y = 0 et (E2) : y'' + r(x)y = 0. On se propose dans cet exercice de démontrer le théorème de Sturm : soit y une solution non nulle de (E1), et x_0 , x_1 deux zéros consécutifs de y. Alors toute solution de (E2) s'annule sur $[x_0, x_1]$.

- 1. Soit y une solution non nulle de (E1). Montrer que y et y' ne s'annulent pas simultanément sur I. En déduire que les zéros de y sont isolés, i.e si $y(\alpha) = 0$, il existe $\delta > 0$ tel que, pour tout $x \in [\alpha \delta, \alpha + \delta] \setminus \{\alpha\}, y(x) \neq 0$.
- 2. On fixe, jusqu'à la fin de l'exercice, x_0 et x_1 deux zéros consécutifs de y.
 - (a) Justifier. Que peut-on dire des signes de $y'(x_0)$ et $y'(x_1)$?
 - (b) Soit z une solution non nulle de (E2). On considère, pour tout $x \in \mathbb{R}$, $w(x) = \begin{vmatrix} y(x) & z(x) \\ y'(x) & z'(x) \end{vmatrix}$. Montrer que w est dérivable sur I et calculer sa dérivée.
 - (c) Montrer que z s'annule sur $[x_0, x_1]$.

Correction:

- 1. On suppose par l'absurde qu'il existe $x \in I$ tel que y(x) = y'(x) = 0. Alors y est solution du problème de cauchy associé à (E1) avec les conditions initiales y(x) = y'(x) = 0. Or la fonction nulle l'est aussi, donc par unicité d'une solution au problème de Cauchy, y = 0, d'où la contradiction. Soit α un zéro de y. y est dérivable en α , donc : $y(\alpha + h) = y(\alpha) + hy'(\alpha) + o(h)$. Or $y(\alpha) = 0$, et $y'(\alpha) \neq 0$, donc : $y(\alpha + h) \sim hy'(\alpha) \neq 0$, d'où le résultat souhaité.
- 2. (a) On suppose par l'absurde qu'ils sont de même signe : quitte à considérer -f, on suppose qu'ils sont tous les deux strictement positifs. y est continue sur $[x_0, x_1]$, donc il existe $x_0' > x_0$ et $x_1' < x_1$ tels que $y(x_0') > 0$ et $y(x_1') < 0$. Or y est continue sur $[x_0', x_1']$, donc d'après le théorème des valeurs intermédiaires, y s'annule sur $]x_0', x_1'[\subset]x_0, x_1[$, d'où la contradiction car x_0, x_1 sont des zéros consécutifs de y. D'où $y'(x_0)$ et $y'(x_1)$ sont de signes opposés.
 - (b) On a : $\forall x \in \mathbb{R}$, w(x) = y(x)z'(x) y'(x)z(x), donc w est dérivable sur \mathbb{R} par produit et somme de telles fonctions, et : $\forall x' in \mathbb{R}$, w'(x) = y(x)z(x)(r(x) q(x)).
 - (c) On suppose par l'absurde que z ne s'annule pas sur $[x_0, x_1]$. Quitte à considérer -z, on peut supposer que z > 0 sur $[x_0, x_1]$.

Exercice. (Autour de l'équation y'' + p(t)y = 0)

On admet le lemme de Gronwall : soit I un intervalle de \mathbb{R} . Soient $t_0 \in I$, u, f, et $g: I \mapsto \mathbb{R}_+$ continues, tels que : $\forall t \in I$, $u(t) \leq f(t) + \int_{t_0}^t u(s)g(s) \, ds$. Alors : $\forall t \in I$, $u(t) \leq f(t) + \int_{t_0}^t f(s)g(s) \exp(\int_s^t g(u)du) \, ds$.

Soit p une fonction continue intégrable de \mathbb{R} dans \mathbb{R} .

- 1. Existence de solutions bornées. Montrer que toute solution de y''(t) + (1+p(t))y(t) = 0 est bornée sur \mathbb{R} .
- 2. Existence de solutions non bornées.
 - (a) Soit f une solution bornée de l'équation différentielle y''(t) + p(t)y(t) = 0. Montrer que f' tend en $+\infty$ vers 0.
 - (b) Montrer que l'équation y''(t) + p(t)y(t) = 0 admet des solutions non bornées.

Correction : Pour la question 1, considérer l'équation différentielle (E): y''(t) + y(t) = g(t) où g = -py. Pour la question 2b, considérer (x_1, x_2) une base de solutions de l'équation considérée, puis le wronskien associé.

Exercice. Soient $n \in \mathbb{N}^*$ et I un intervalle de \mathbb{R}_+ . Soit $A \in \mathcal{C}(I, \mathcal{M}_n(\mathbb{R}))$ telle que : $\forall t \in I, \forall (i, j) \in [|1, n|]^2, a_{ij}(t) \geq 0$. Soit $X_0 \in \mathbb{R}^n$ dont toutes les composantes sont positives, et X la solution du problème de Cauchy associé au système différentiel X'(t) = A(t)X(t) avec la condition initiale $X(0) = X_0$. On se propose de montrer que, pour tout $t \in I$, les composantes de X(t) sont positives.

- 1. Montrer le résultat dans le cas strictement positif. Indication : on pourra raisonner par l'absurde, et considérer le plus petit $t \in I$ tel qu'il existe $i \in [|1, n|]$ tel que $x_i(t) \leq 0$.
- 2. On se replace dans le cas positif. On considère la suite $(X_k)_{k\in\mathbb{N}}\in\mathcal{C}(\mathbb{R}_+,\mathbb{R}^n)^{\mathbb{N}}$ définie par $X_0(t)=X_0$ et : $\forall k\geqslant 1,\ X_k(t)=X_0+\int_0^t A(u)X_{k-1}(u)\ \mathrm{d}u$. On note $(Y_k)_{k\in\mathbb{N}}$ la suite téléscopique associée. Montrer que la série de fonctions $\sum Y_k$ converge normalement sur tout segment de I vers X. Conclure.

Correction : Pour la question 1, raisonner par l'absurde, et considérer le plus petit $t \in I$ tel qu'il existe $i \in [|1,n|]$ tel que $x_i(t) \leq 0$. Pour la question 2, on note ||.|| la norme usuelle sur \mathbb{R}^n . Pour $M \in \mathcal{M}_n(\mathbb{R})$, on note $||M|| = \sup\{||AX||, X \in \overline{B}(0,1)\}$, et pour $A \in \mathcal{C}(I, \mathcal{M}_n(\mathbb{R}))$, $||A||_{\infty} = \max\{||A(t)||, t \in I\}$. On peut ainsi montrer par récurrence sur $k \geq 1$, la propriété $\mathcal{P}(k) := \forall t \in \mathbb{R}_+$, $||X_k(t) - X_{k-1}(t)|| \leq (||A||_{\infty})^k \frac{t^k}{k!} ||X_0||$.