1 Séries stationnaires

Def. L'autocovariance d'un processus stochastique $(X_t)_{t\in T}$ est la fonction

$$t, s \in T \mapsto \gamma_X(t, s) := \operatorname{Cov}(X_t, X_s)$$

Def. Un processus $(X_t)_{t\in T}$ est dit **stationnaire** si :

- 1. Il est du second ordre (i.e. $\forall t, \mathbb{E}[X_t^2] < \infty$).
- 2. $\mathbb{E}[X_t]$ ne dépend pas du temps.
- 3. Pour tout $s, t \in T$, $\gamma_X(t, s) = \gamma(0, t s)$.

Rmq.

- En particulier, si un processus est stationnaire, alors $\operatorname{Var}[X_t]$ ne dépend pas du temps.
- Pour déterminer si un processus est stationnaire, on peut donc commencer par regarder $\mathbb{E}[X_t]$ et $\mathrm{Var}[X_t]$: si au moins l'un dépend du temps, alors le processus n'est pas stationnaire (mais ce n'est pas une équivalence).

Def (bruit blanc fort). Soit X processus du second ordre. On dit que X est un bruit blanc fort, noté $X \sim IID(0, \sigma^2)$, si les X_t sont i.i.d., centrés et de variance commune σ^2 .

Def (bruit blanc faible). Soit X processus du second ordre. On dit que X est un bruit blanc faible, noté $X \sim BB(0, \sigma^2)$, si X est centré et

$$\gamma_X(t,s) = \sigma^2 1_{\{s=t\}}$$