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Abstract

In this thesis, we study both classical and quantum cryptography within idealized quantum
models. Previous work has shown that quantum resources can be used to construct
cryptographic tasks that are proven or conjectured to be impossible in the classical setting.
Here, we first prove lower bounds on the efficiency of any quantum algorithm that finds
a subset-cover of a random function, a problem that has been conjectured to be hard for
assessing the security of the post-quantum digital signature scheme SPHINCS+. Next, we
extend existing impossibility results for constructing public-key encryption schemes in the
quantum random oracle model by showing that a more general type of public-key encryption
does not exist in this model. We then study quantum assumptions for cryptography
that appear weaker than one-way functions, namely quantum pseudorandomness, and its
relationship to quantum public key encryption and signature schemes, both clarifying and
improving upon prior constructions and impossibility proofs. Finally, we establish the
importance of the size of pseudorandomness by proving that quantum pseudorandomness
cannot be shrunk, and we make progress toward showing that it cannot be amplified.
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Chapter 1
❈

Introduction

1.1 Introduction

In 1983, Wiesner [Wie83] showed a way to construct money that is provably impossible to
counterfeit, which is not possible without the use of quantum resources. A year later, Bennett
and Brassard [BB84] proposed an information-theoretically secure quantum key distribution
protocol, which cannot exist in the classical setting. These results have shown that previously
established results in classical cryptography do not hold in the quantum setting and that
quantum resources can be used to achieve tasks that were previously impossible. Along these
lines, in 1994, Shor [Sho97] described a quantum algorithm that can efficiently factorize
numbers, a task for which no efficient classical algorithm is known. Unfortunately for
classical cryptography, the security of the RSA cryptographic system [RSA78] relies on the
hardness of this problem, which has resisted classical attacks for over 50 years. Although
quantum computers are not yet powerful enough to execute Shor’s algorithm in practice, this
threat has been taken seriously by cryptographers: the field of post-quantum cryptography
focuses on designing cryptographic systems with classical computers that are resistant to
quantum attacks. This field is crucial for the near future, where powerful institutions such
as Google [AAB+19], Microsoft [AARA+25] or Quandela [MFP+24], may possess quantum
resources that are not available to the general public. With this goal in mind, the National
Institute of Standards and Technology (NIST) has launched several competitions to identify
post-quantum cryptographic schemes to replace the currently used ones that are vulnerable
to quantum computers.

Parallel to these works, the field of quantum cryptography aims to study schemes where
the parties and the communication can be quantum. Ji, Liu, and Song [JLS18] proposed
the first two inherently quantum pseudorandom primitives, pseudorandom state generators
(PRSs) and pseudorandom unitaries (PRUs). These primitives are collections of states
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(respectively, unitaries) that can be efficiently generated, but are indistinguishable from
truly random states (respectively, unitaries). Quantum pseudorandomness has been shown
to be useful for constructing various quantum cryptographic primitives such as quantum
commitments and oblivious transfers [MY22b, AQY22]. In the classical setting, one-way
functions — functions that are easy to compute, but hard to invert — are considered the
minimal assumption for cryptography, meaning that most cryptographic schemes require
one-way functions, and there is nothing relevant that is weaker. In 2021, Kretschmer [Kre21]
showed that PRSs and PRUs are potentially weaker primitives than one-way functions,
which sparked dramatic interest in fundamentally quantum cryptographic primitives.

In this thesis, we study classical and quantum cryptography in idealized quantum models,
where we establish bounds on the efficiency of quantum algorithms for solving certain
tasks that are related to post-quantum and quantum cryptography. We also demonstrate
the impossibility of specific constructions in these models, building on a series of recent
papers in the literature that aim to identify the minimal assumptions for building quantum
cryptography.

1.1.1 Sphincs+

In 2017, the NIST opened a call for proposals of post-quantum signatures and public key
encryption schemes. In 2024, three signature schemes were selected after the final round of
the competition to be standardized: CRYSTALS-Dilithium [LDK+22], Falcon [PFH+22]
and SPHINCS+ [HBD+22]. Of particular interest to this thesis, SPHINCS+ is a hash-based
signature scheme, i.e. a signature whose security relies solely on the existence of an idealized
hash function. Hash functions are a central tool in cryptography. They are functions that
compress their input and have the additional property that finding a collision, that is, two
distinct inputs that map to the same output, should be computationally hard. Quantum
computers have been shown to have a quadratic speedup in finding collisions [Gro97]
compared to classical computers, which makes them more efficient than classical computers,
but they still require exponential time. That is the main reason why such functions are
interesting for constructing post-quantum cryptographic primitives.

There have been constructions of digital signatures from hash functions [Lam79, Rom90]
proposed in the classical setting, and the fact that quantum computers are not significantly
better at breaking the security of hash functions makes the study of such constructions
very compelling. Unlike CRYSTALS-Dilithium and Falcon, the construction of SPHINCS+
does not fundamentally rely on computational assumptions, and thus could be proven to
be secure under the assumption that the hash function is secure. Moreover, there exist
constructions of signatures from hash functions that have been proven to be secure against
quantum adversaries [BDF+11]. However, at the time of writing, there is no formal proof
that SPHINCS+ is secure against quantum computers. In their submission, the authors
provide intuitions about why their scheme should be secure, by using arguments similar
to the ones above. Also, in order to make the schemes more efficient, cryptographers
add additional structure to their constructions. By having more structure, the schemes
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1.1. Introduction

become less secure, and in the case of SPHINCS+, this means that finding a collision in the
hash function is not necessary to break the security of the signature. It is hard to define
informally what is required to break the security of SPHINCS+; in fact, it is even harder to
define this formally, as the complexity of the construction of SPHINCS+ makes it difficult
to analyze it, especially against quantum adversaries.

In this work, we make some progress towards proving the security of SPHINCS+ against
quantum adversaries, by establishing lower and upper bounds for problems on hash functions
that are related to the security of SPHINCS+, called the subset cover problem and some of
its variants.

To show our results, we perform an analysis in an idealized model known as the Quantum
Random Oracle Model (QROM). Before we explain this model, let us first discuss about
oracles and black-box access, which are central notions in complexity theory.

Relativized worlds Oracles are used to answer the following question: let f be a function,
what would happen if we had an efficient implementation of f in the real world? To answer
this question, we must act as if we already had an efficient implementation of f , and then
we can start deducing the consequences of such a statement. So, an efficient implementation
of f exists in the relativized world where everyone is given a black box oracle access to f .

The notion of black box access models the fact that you can only use f as if you were
given a black-box for it, i.e. an oracle whose underlying implementation is not accessible,
but which you can query and it gives you answers. The world in which everybody has
black-box access to f is called a relativized world because it is a world in which an efficient
implementation of f is assumed to exist.

The motivation behind black-box access to f is that no matter what the implementation
of f is, if there is an efficient one, then anything that holds in the relativized world with
oracle access to f will hold in the real world. Hence the interest in black-box access comes
from the study of relativized worlds. We note that the function f can be any function, in
particular, it can be a one-way function — a function that is easy to compute, but hard to
invert. Note that a hash function has to be a one-way function.

Impagliazzo’s five worlds In his seminal work, Impagliazzo [Imp95] introduced five
relativized worlds. Even today, we still do not know in which world we are, in fact, none of
these worlds has been ruled out so far. The five worlds are described in Figure 1.1 where
they are ranked from worst to best for cryptography.

1.1.2 One-Way Functions and Key Exchange

The existence of one-way functions is a central question in classical cryptography, as they
are required to construct more advanced cryptographic primitives. One-way functions
can be seen as a tool used by cryptographers to build cryptographic primitives. They
are considered the minimal assumption for classical cryptography, which means that most
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Algorithmica P = NP.
This is bad for cryptography, because there are no one-way functions in this world,
hence there is no classical cryptography.

Heuristica P ̸= NP but NP problems are easy on average.
This world has a similar flavor to the previous one, because being able to solve NP
problems efficiently on average is enough to show that one-way functions do not exist.

Pessiland P ̸= NP but one-way functions do not exist.
Since we do not know if one-way functions are equivalent to P ̸= NP, this world is
possible. For a cryptographer, this is as bad as the previous worlds, since no one-way
functions means that classical cryptography is impossible.

Minicrypt One-way functions exist, but public key cryptography is impossible.
This is the first world in which some cryptography is possible. Minimalist cryptography,
such as commitments [HR07] and signatures [Rom90] exist. But more sophisticated
schemes do not necessarily exist, such as key exchange [IR89].

Cryptomania Public key cryptography is possible.
This is great for cryptography, because public key schemes are powerful primitives.
Note that in this world, necessarily, one-way functions exist. There are still primitives
that might not exist, such as indistinguishable obfuscation or fully homomorphic
encryption.

Figure 1.1: Impagliazzo’s five worlds.
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schemes imply the existence of one-way functions, or equivalently, the non-existence of
one-way functions implies the non-existence of most schemes. One can prove that the
existence of a one-way function implies that the two complexity classes P and NP are
different, where P is the class of problems solvable in deterministic polynomial time, and
NP is the class of problems solvable in non-deterministic polynomial time. The question of
whether P = NP or P ̸= NP has been open for decades in complexity theory, and is one
of the most important open problems in computer science. But we have just seen that
showing that one-way functions exist would imply P ̸= NP; hence, it is expected that this
aforementioned question is extremely difficult to tackle. This shows how difficult it is to
determine which world we live in among those proposed by Impagliazzo. That is why we
are interested in a different, easier question: what would it mean if we lived in Minicrypt?
What kind of cryptography would be possible? To answer this question, we need an oracle
relative to which one-way functions exist.

Idealized one-way functions: the Random Oracle Model The Random Oracle Model
(ROM) is an oracle model in which the function f is picked uniformly at random among all
possible functions, and everyone is given oracle access to this function. It turns out that
a random function is a perfect one-way function and hash function: since the output is
uniformly random, it is almost impossible to predict the output of the function on any entry,
hence to invert the function. This model is widely used in cryptography, for example for
showing the security of cryptographic schemes: one can replace a candidate hash function
with an idealized one, and thus prove the security assuming that the hash function is secure.

Key exchange An other important cryptographic primitive that we will consider is key
exchange. A secure key exchange protocol is a protocol between two parties, Alice and Bob.
At the beginning of the protocol, Alice and Bob share no common information. During
the protocol, Alice and Bob communicate over a public channel, and at the end of the
protocol, they both compute a key on their side. We say that the protocol is correct if with
high probability, Alice’s key and Bob’s key are the same. The protocol is said secure if
there exists no attacker Eve, who, given access to the messages sent between Alice and Bob
during the protocol, can guess the key with high probability.

In 1989, Impagliazzo and Rudich [IR89] proved that there exists an oracle relative to which
one-way functions exist, but key exchange does not. This is the opposite of showing a
black-box reduction: this is a black-box impossibility result, also known as a black-box
barrier. There is no construction of key exchange from one-way functions in a black-box
way. This does not rule out all possible constructions, only the one that does not use
the way the one-way function is implemented. However, black-box constructions are the
most powerful and the most natural type of construction; hence, ruling out this type of
construction remains interesting.

It was proven in 1984 by Bennett and Brassard [BB84] that quantum communication can
be used to do quantum key distribution (QKD). Surprisingly enough, this is possible even
without one-way functions. This example shows that quantum resources do not necessarily
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give an advantage to the adversary, as it is the case in the post-quantum setting, but
can instead advantage the honest parties. However, unlike the setting of post-quantum
cryptography, the parties need a quantum channel to communicate.

Hence, an interesting question arises: what if we restrict the capabilities of the parties,
and they are now only allowed classical communication? Is quantum key distribution still
possible? It turns out that the answer is no. The follow-up question is then: what if there
exist one-way functions on top of that? Does classical communication-based quantum key
distribution exist in the quantum random oracle model? There exists a partial answer to
that question, as it was shown in [ACC+22] a conditional impossibility result. Their result
is partial because there are two restrictions. First, the protocol needs to be perfect, meaning
that Alice and Bob must agree on the same key with probability one. Secondly, if Alice
and Bob make quantum queries to the oracle, then the result holds only if a conjecture
on the distribution of polynomials holds. While these restrictions make it seems like this
result is weak, we believe that it reveals how difficult the question is in the general setting.

This work In this thesis, we extend their impossibility result to the setting where, after a
first phase of classical communication, the last message sent in the protocol is a quantum
state, but Alice cannot query the one-way function after receiving this last message from
Bob. This is the opposite setting of the construction of quantum key distribution in [BB84],
where the first message is quantum and the subsequent messages are classical. We also
show that if Alice and Bob query the oracle classically, then imperfect protocol are also
ruled out.

Our result implies the impossibility of building public key encryption with classical public
key and quantum ciphertexts, in the quantum random oracle model, where the decryption
algorithm makes no query to the oracle. This stands in spark contrast to a known
construction of quantum public key encryption from one-way functions [BGH+23]. These
results raise two important issues: the first one is the variety of different types of quantum
public key encryption that exist and whether they can be constructed from standard
assumptions, and the second concerns the appropriate definition for Cryptomania in the
quantum setting.

1.1.3 New Worlds in Quantum Cryptography

These concerns suggest that Impagliazzo’s five worlds need to be adapted for the quantum
setting, and new worlds might need to be defined. We start by defining MiniQcrypt,
the world where quantum computers exist, quantum-resistant one-way functions exist, but
quantum-secure public key cryptography does not. We also define Quantum Cryptoma-
nia, the world where quantum-secure public key cryptography exists. Defining these worlds
is quite natural, but even more recently, new worlds have emerged.

Pseudorandom Quantum States In their seminal work, Ji, Liu, and Song introduced
Pseudorandom Quantum States (PRSs) [JLS18]. They are motivated as the quantum
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equivalent of PRNGs: PRSs are quantum states that can be generated by a quantum
polynomial-time algorithm, such that no quantum polynomial-time algorithm can distinguish
them from Haar random states. Haar random states follow the Haar measure, which can be
seen as the quantum equivalent of the uniform distribution1. Thus, similar to Pseudorandom
Generators (PRGs), whose output looks like a random string, PRSs’ output looks like
random quantum states. In their paper, they show that PRSs can be constructed from
one-way functions, and subsequent works have demonstrated that PRSs can be used to
construct quantum cryptographic primitives, such as quantum commitments, quantum
signatures and oblivious transfers [MY22b, AQY22].

Kretschmer’s oracle The key result that sparked the interest of quantum cryptographers
was a black-box impossibility result by Kretschmer in 2021 [Kre21]. He showed that there
is no black-box construction of one-way functions from PRSs. More precisely, he exhibited
an oracle relative to which PRSs exist, but BQP = QMA, which is the quantum equivalent
of P = NP. Thus quantum cryptography is possible even if BQP = QMA, whereas, as
mentioned earlier, in the classical setting, P = NP rules out all cryptographic schemes.

Kretschmer’s oracle separation has significant implications for quantum cryptography
because it means that quantum secure one-way functions are not the weakest assumption
required for quantum cryptography. In fact, PRSs are plausibly a weaker assumption for
quantum cryptography.

Thus, it was natural that Microcrypt2 was introduced in the literature as a world where
Pseudorandom Quantum States exist, but one-way functions do not. In this world, classical
cryptography is impossible, but quantum cryptography is possible.

Kretschmer’s work left many open questions at the time:

1. What is the minimal assumption for quantum cryptography? It is not OWF, and
PRSs are a good candidate, but could there be something weaker?

2. What can we construct from PRSs? What can we not construct from PRSs? Since
OWFs imply PRSs, anything that cannot be constructed from OWF cannot be
constructed from PRSs either. But what about other schemes?

3. How do quantum cryptographic primitives relate to each other? Or equivalently, what
are the different worlds that we can define, and how do they relate to each other?
At this point, many new primitives have been introduced in the literature. Can we
quantify how powerful (or weak) they are, by comparing them to one another?

Many advances have been made since Kretschmer’s work in 2021, but there is still no defini-
tive answer to these questions. The best candidate for the minimal assumption for quantum
cryptography is EFI pairs, a pair of efficiently generable distribution over quantum states
that are statistically far, but for which there is no efficient algorithm that can distinguish

1The notion of measure comes from the fact that we are considering a continuous distribution, whereas
in the classical setting, we are considering a discrete distribution.

2The name is due to Tomoyuki Morimae.
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them. It has been shown that EFI pairs are weaker than PRSs [CCS24, AGL24], and can
be used to construct cryptographic primitives, such as quantum commitments [MY22b]
and thus MPC [BCQ23].

This work In this thesis, we study the relationship between different quantum assumptions.

We study the output length of pseudorandom quantum states and show that relative
to Kretschmer’s oracle where PRSs exist, short-PRSs — i.e. PRSs whose output length
is logarithmic — do not exist. We also show that if an isoperimetric inequality-style
conjecture is true, then there exists a quantum oracle relative to which short-PRSs exist
but “pure”-PRSs do not. Classically, a pseudorandom number generator (PRG) with any
fixed output length enables one to generate arbitrarily long pseudorandom sequences, either
by recursively composing the PRG with itself to extend its output or by simply truncating
its output when fewer bits are needed. Our results suggest that there is no such techniques
for quantum pseudorandomness.

Finally, we study the relationship between PRSs and quantum public key encryption and
signatures, clarifying the known constructions and impossibility results in the literature,
and improving some of them.

1.1.4 Organization of This Thesis

In Chapter 3 we study the security of the subset cover problem and its variant. We show
a lower bound for the k-restricted subset cover problem that matches the upper bound
of [YTA22]. We show a lower bound for the (1, k)-subset cover problem, and present
quantum algorithms for the (r,k)-subset cover problem. This chapter is based on joint work
with Alex Bredariol Grilo and Damien Vergnaud and appears in the following papers.

Quantum security of subset cover problems [BGV23]

In Chapter 4 we study the construction of public key encryption in the quantum random
oracle model. We show that public key encryption with quantum ciphertexts is impossible
in the quantum random oracle model when the decryption algorithm makes no query to
the oracle. This chapter is based on joint work with Alex Bredariol Grilo, Quoc-Huy Vu
and Damien Vergnaud and appears in the following paper.

Towards the Impossibility of Quantum Public Key Encryption with Classical Keys from
One-Way Functions [BGVV24]

In Chapter 5 we study the construction of cryptographic schemes from quantum pseudo-
randomness. We show separations between different quantum cryptographic primitives,
and also study the possibility of constructing different kinds of public-key encryption and
signatures from PRUs. This chapter is based on joint work with Minki Hhan, Garazi
Muguruza and Quoc-Huy Vu and appears in the following papers.

Quantum Pseudorandomness Cannot Be Shrunk In a Black-Box Way [BM24]

On Limits on the Provable Consequences of Quantum Pseudorandomness [BHMV25]
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1.2 Post-quantum Security of Sphincs(+)

1.2.1 The Signature Scheme Sphincs(+)

The SPHINCS+ signature scheme and its predecessor SPHINCS [BHH+15] make use of a
Merkle-hash tree and of HORST, a variant of a hash-based scheme called HORS [RR02].
HORS (for “Hash to Obtain Random Subset”) uses a hash function to select the subset of
secret pre-images to reveal in a signature, and the knowledge of these secrets for several
subsets may not be enough to produce a forgery—a property that makes HORS a few-time
signature scheme. To prove that SPHINCS and SPHINCS+ are resistant to quantum
attacks, we must first prove the quantum security of HORS and HORST.

Subset cover The security of HORS (and HORST) relies on the hardness of finding a
subset cover (SC) for the underlying hash function. More formally, for any r, k ∈ N, to
define the (r, k)–SC problem, we consider the hash function as the concatenation of k hash
functions h1, . . . , hk and the problem is to find r + 1 elements x0, x1, . . . , xr in the hash
function domain such that x0 /∈ {x1, . . . , xr}, and

{hi(x0)|1 ≤ i ≤ k} ⊆
r⋃
j=1

{hi(xj)|1 ≤ i ≤ k} .

The hardness of this problem for concrete popular hash functions has not been studied in
depth, but Aumasson and Endignoux [AE17] proved in 2017 a lower bound on the number
of classical queries to hash functions for the SC problem in the Random Oracle Model
(ROM). However, the exact security of HORS (and more generally HORST, SPHINCS and
SPHINCS+) with respect to quantum attacks is still not clear. With the recent selection
of SPHINCS+ by the NIST standardization process, we believe it is important to analyze
its security not just against classical adversaries, but also against quantum adversary.
Since quantum computing provides speedups for many problems (e.g. Grover’s search
algorithm [Gro96] and Brassard, Høyer, and Tapp [BHT98] collision search algorithm), we
expect this problem to be solvable more efficiently on a quantum computer.

Our results In this work, we explore the difficulty of finding a subset cover for idealized
hash functions using quantum algorithms. We also consider a variant called the k-restricted
subset cover (k–RSC) problem where, given k functions h1, . . . , hk : X → Y such that
N = |Y|, one has to find k + 1 elements x0, x1, . . . , xk such that:

∀1 ≤ i ≤ k, hi(x0) = hi(xi)

and x0 /∈ {x1, . . . , xk}.
This variant was defined recently by Yuan, Tibouchi and Abe [YTA22], who showed a
quantum algorithm to solve it.

The main contributions of this work are:
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1. Lower bound on k–RSC: we prove that Ω

(
(k + 1)

− 2k

2k+1−1 ·N
2k−1

2k+1−1

)
quantum

queries to the idealized hash functions are needed to find a k–RSC with constant
probability.
(Theorem 3.8)

2. Lower bound on (1, k)–SC: we prove that Ω
(
(k!)−1/5 ·Nk/5

)
quantum queries to

the idealized hash functions are needed to find a (1, k)–SC with constant probability.
(Theorem 3.13)

3. Upper bound on (r, k)–SC: we present a quantum algorithm that finds a (r, k)–SC
with constant probability using O

(
Nk/(2+2r)

)
queries to the hash functions when k is

divisible by r + 1, and O
(
Nk/(2+2r)+1/2

)
otherwise.

(Theorem 3.21)

We now explain how we achieve these results, and start by discussing the random oracle
model, an idealized model for hash functions.

1.2.2 The Random Oracle Model

In the Random Oracle Model (ROM) [BR93], every party has access to a random function.
More precisely, a function f is chosen uniformly at random from the set of all possible
functions, and then every party has access to this function f through an oracle Of .In this
model, one can compute the probability that certain events happen with respect to the
distribution of the function. For example, we know that the function f is a one-way function
with overwhelming probability; hence the ROM is a model for idealized one-way functions.
Moreover, a random function is, in fact, the perfect hash function: since the value of the
function on any input is independent of the rest of the function, finding a collision is as
difficult as it can be.

If there is a cryptographic construction that uses hash functions, then replacing the hash
function with one drawn from the ROM is equivalent to assuming that your hash function
is perfect. A proof of security in the ROM can be interpreted as the primitive being secure,
unless one can break the security of the hash function. Here, we want to show a lower
bound on the success probability of an algorithm in terms of the number of queries it makes
to the random oracle. The benefit of proving such lower bounds, is that they relativize: the
time and space complexity of the algorithm is irrelevant here—only the number of queries
matters. Hence, if the algorithm is given access to another independent oracle, the lower
bound will still hold.

Showing lower bounds in the ROM is usually done using combinatorial techniques. As a toy
example, consider giving a lower bound on the success probability of finding a pre-image of
0, that is, an x such that f(x) = 03. The formalism is as follows: the oracle Of implements
the function

f : {0, 1}n → {0, 1}m ,
3Since the function is random, finding a pre-image of 0 is as hard as finding a pre-image of any y.
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where n,m ∈ N are fixed. More precisely, AOf is an algorithm that is given access to f via
Of , and the function f is chosen uniformly at random before the execution of AOf . We are
interested in bounding the probability:

Pr
f

[
f(x) = 0

∣∣ x = AOf (·)
]
.

For any x ∈ {0, 1}n, the probability that f(x) = 0 is equal to:

Pr
f
[f(x) = 0] =

1

2m
.

Thus, every time an adversary queries the function, the probability that he finds a pre-image
of 0 is 1

2m
. Since these events are all independent, the probability that an adversary finds

a pre-image of 0 after q queries is at most q
2m

. Since AOf is a polynomial-time algorithm,
it makes only a polynomial-time number of queries to Of , hence its success probability is
bounded by

Pr
f

[
f(x) = 0

∣∣ x = AOf (·)
]
≤ poly(λ)

2m
,

where λ is the security parameter. It follows, that on average, an adversary needs to make
O(2m) queries to the function to find a pre-image of 0 with constant probability. Note that
we only need the number of query to Of to be polynomially bounded; hence, increasing
the time or space complexity of A will not make him more efficient at inverting f . More
precisely, the proof relativizes: let O′ be any oracle independent of the random oracle.
Then, any polynomially-bounded algorithm AO,O′ who is given access the random oracle O
and the oracle O′ succeeds in finding the pre-image of 0 with probability at most

Pr
O

[
f(x) = 0

∣∣∣ x = AO,O′
(·)
]
≤ poly(λ)

2m
.

We emphasize that O′ can be any oracle Finally, this shows that if m = ω(λ), any algorithm
succeeds with probability exponentially small at finding a pre-image of 0.

1.2.3 The Quantum Random Oracle Model

The Quantum Random Oracle Model was first defined in [BDF+11], and in this model,
every party has quantum access to a random function. More precisely, a function f : X → Y
is chosen uniformly at random, and every party has access to a unitary oracle Of that acts
on two registers as follows:

|x⟩X |y⟩Y → |x⟩X |y + f(x)⟩Y .

Two registers are needed to ensure that the operation is unitary: indeed, we have that
O2
f = I, where I is the identity matrix. If we instead chose to implement it with one

register, as follows:
|x⟩X → |x+ f(x)⟩X ,
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then this would not necessarily be unitary: for example, if f is such that for all x, f(x) = −x,
then Of would be equal to the null matrix. Not also that since O†f = Of , every party also
has access to the inverse of Of .

Because of how we model quantum computers, and therefore because of quantum mechanics,
it is hard to quantify the knowledge that an algorithm has about the random function after
a query. In the classical setting, it is straightforward: if you query x, you learn f(x); but in
the quantum setting, you do not learn anything until a measurement is performed. For
some time there was no generic way of proving lower bounds in the quantum setting and
every proof was unique. It was not possible to “just” do combinatorics in the QROM as one
can in the ROM, and thus new techniques were needed.

1.2.4 The Compressed Oracle Technique

In 2019, Zhandry [Zha19] introduced the Compressed Oracle Technique, which can be used
to simulate a quantum random oracle on-the-fly. The idea is somewhat simple: instead of
picking a function f at random at the beginning of the computation, we initialize a new
register F that contains the uniform superposition over all possible function, i.e.,

1

|F |
∑
f∈F

|f⟩ .

This is similar to postponing the measurement of the function f until the end of the
computation. The register F contains the truth table of the function f . Zhandry showed
that this perfectly simulates the quantum random oracle model. Note that this is not
efficient and thus cannot be used as is for lazy sampling, which is the efficient simulation
of sampling a distribution without sampling the whole distribution beforehand. For the
random oracle model, this means simulating queries to the random oracle without generating
the whole function in advance. In the classical setting, an adversary keeps a table of all the
queries made before by the algorithm, and returns the output that corresponds to the input
if it exists; otherwise it samples an output uniformly at random, records it, and returns it
to the algorithm. No algorithm can distinguish between such lazy sampling and a random
oracle. Moreover, the sampling is efficient: if the algorithm is polynomially bounded, so is
the adversary. In the quantum setting, however, such lazy sampling does not work, because
with one query over the uniform superposition, the adversary would need to sample and
store the entire oracle, which would not be efficient.

Quantum lazy sampling To perform quantum lazy sampling, Zhandry introduces a new
symbol ⊥. The new register that contains the function f consists of a database, in which
for each entry x ∈ X there is an associated register X where f(x) is stored. Thus the
register F that contains the function can be written as

|f⟩F =
⊗
x∈X

|f(x)⟩X .
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Before the computation begins, the register is initialized with the uniform superposition⊗
x∈X

1

|Y|
∑
y∈Y

|y⟩X .

In the Fourier basis, this becomes ⊗
x∈X

∣∣0̂〉
X
.

Then comes the compression part: every 0̂ is mapped to ⊥. To decompress, we map every
⊥ back to 0̂. The oracle register is always maintained in it compressed form, and a query
decompresses the register, queries the oracle, then compresses it again. This time, the
simulation can be done efficiently: Zhandry showed that the F register is supported on
only q vectors after q queries. Moreover, no polynomial-time algorithm can distinguish
between the compressed oracle and a real oracle (this time the simulation is not perfect:
the compression and decompression operators introduce some losses).

Compressed oracle for lower bounds We can use the compressed oracle model to prove
lower bounds on query complexity. The analysis somewhat resembles the classical analysis
in the ROM. The register F, where the function is stored, contains all the information that
the adversary has learned about the function so far. Hence a recursive analysis is possible:
we bound the probability that the adversary wins the game after q queries by:

i. the probability that he won with q − 1 queries, plus

ii. the probability that he did not won with q − 1 queries, but wins with the qth query.

The main difference compared to the classical setting is that we work with amplitudes
instead of probabilities, which introduces a square-root factor. Moreover, the analysis
is more complicated: the probability that the adversary wins with the qth query is not
independent of the previous queries made to the oracle. This is not really an issue for
“unstructured” problems such as finding a collision or a pre-image, but it becomes one when
the problem has more structure. Unlike in the classical setting, where one query can reveal
only limited information about the oracle, in the quantum setting, one can choose which
information to extract.

Let us take the example of the collision problem: the goal is to find two distinct values
x0, x1 such that f(x0) = f(x1). The best quantum algorithm for finding a collision [BHT98]
achieves a 1.5-exponent speedup over the best classical algorithm by first making t classical
queries to learn a set of “targets” values, and then uses Grover’s algorithm to find a pre-image
among these values. The choice of t can in principle be arbitrary, but when analyzing
in the compressed oracle model, one must account for all possible t. Indeed, the success
probability of finding a pre-image with the qth query depend on the number of target t,
and since an algorithm can use any strategy, all values must be considered. Although most
choices of t yield only negligible success, they nonetheless contribute terms to the analysis.
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When considering recursive problems, such as multi-collision finding (see [LZ19]), the
analysis becomes very involved, because one must bound many terms, most of which turn
out to be negligible. We are still able to show lower bounds in the quantum settings, but
the proofs are much more involved than in the classical setting for the same problems, and
there are negligible terms that do not appear in the classical setting, which we believe are
unavoidable. We now explain a high-level overview of how we obtain our bound for the
problem of RSC.

1.2.5 Technical Overview

In Section 3.1, we prove a lower bound on the query complexity to solve the RSC problem.
We consider an algorithm A after i quantum queries to the random oracle and denote
its state at this moment by |ψi⟩. Our goal is to compute an upper bound for the value
|PRSC
k |ψi⟩ |2, where PRSC

k is the projection onto the databases that contain a k–RSC.
Computing such a bound leads to a lower bound on the number of queries needed to solve
k–RSC with constant probability. To prove our bound, we proceed by induction: assuming
we have proved a bound for the k′–RSC problem for all k′ < k, we then prove a bound for
the k–RSC problem. The analysis is naturally divided into two parts: whenever A finds a
k–RSC after i quantum queries, it means that either:

1. A finds it after i− 1 quantum queries;

2. or A finds it with the ith quantum query.

The first is handled recursively. It remains to bound |PRSC
k |ψi⟩ | in the second case. In this

second case, the database (after i− 1 quantum queries) must contain a certain number of
k′–RSC (for some k′ < k) in order for A to find a k–RSC with the ith query. Using this
strategy, we obtain a recursive formula from which we can deduce the bound on |PRSC

k |ψi⟩ |.

In Section 3.2.1, we prove a lower bound for the (1, k)–SC problem. The idea of the proof
is similar to the proof for the lower bound of the k–RSC problem but we must compute a
bound for another problem that we define: the j–repetition problem.

Finally in Sections 3.2.2 and 3.2.3, we design a family of quantum algorithms for finding a
(r, k)–SC. These algorithms are inspired by the algorithm from [YTA22] for solving the
k–RSC problem and [LZ19]’s algorithm for finding multi-collisions. These algorithms are
recursive and take as input two parameters t, k′ ∈ N, performing the following steps:

1. Find t distinct (r − 1, k′)–SC;

2. Find the (r, k)–SC.

The parameters t and k′ are chosen in order to optimize the complexity of the algorithm.
The first step is carried out by applying the algorithm for the value k′ r − 1 times, and the
second step uses Grover’s algorithm.

14



1.2. Post-quantum Security of Sphincs(+)

1.2.6 Related Works and Discussions

Restricted Subset Cover There is currently only one quantum algorithm for finding
RSC [YTA22]. Our lower bound for finding a RSC matches their upper bound when k, the
number of functions, is constant. However when k is not a constant, their algorithm makes

O

(
k ·N

2k−1

2k+1−1

)
queries to h1, . . . , hk, which roughly leaves a k3/2 gap between the best

known attack and our lower bound. To the best of our knowledge, this is the first lower
bound on the RSC problem for a quantum algorithm, and there are no such results for
classical algorithms. It would be interesting to see if this gap can be further closed.

Tighter bounds for (1, k)–SC When k is constant, the lower bound for (1, k)–SC is
Ω
(
Nk/5

)
, while our algorithm for this problem makes O

(
Nk/4

)
queries to the oracle (when

k is even). It would be interesting to tighten this gap, especially since the results for
(1, k)–SC are likely necessary to prove the lower bounds for (r, k)–SC when r ≥ 2.

For non-constant k, our lower bound for (1, k)–SC is

Ω
(
C
−1/5
k ·Nk/5

)
,

where Ck =
∑k

j=2
k!

(j−1)! ≤ k! · e. Notice that this term cannot be neglected for large values
of k. For example with k = log(N), we have Ck ≥ N . In comparison, our best algorithm
for (1, k)–RSC has a factor in k given by(

k

(k + 1)/2

)−1/2
≤ 2(k+1)/2(

k+1
2
· π
)1/4 ,

which is very far from our bound on Ck. It would also be interesting to see if this gap can
be tightened further.

Bounds for (r, k)–SC Unfortunately, expanding our result for the (r, k)–SC problem
is much more complicated than the case r = 1; in fact, even proving the case r = 2 is
non-trivial. To prove such a result, one would need a bound for the problem of finding j
distinct (1, k)–SC instances. While proving such a bound is challenging, it is also unclear
how to define the problem of finding j distinct (1, k)–SC instances. Indeed, an important
property for our technique in the first lower bound proofs is that, by making one query
to the oracle, the adversary cannot find two or more k–RSC. The same property must
hold for the problem of finding j distinct (1, k)–SC instances, and this definition—and
the subsequent analysis—remains open. However, in a concurrent work, Yuan, Tibouchi
and Abe [YTA23] showed a lower bound for the (r, k)–SC that appears to be tight. They
invoke [YZ21, Theorem 4.12], which gives a generic, fully classical framework for computing
lower bounds using only combinatorial arguments. However, the resulting bounds are
usually not tight. Using this result, they show that the bound is O

(
N

k
2(r+1)

)
which matches

our algorithm when k is constant. Thus, surprisingly, the bound obtained is tight for the
(r, k)–SC problem.
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Security of SPHINCS and SPHINCS+ against quantum adversaries The signature
scheme SPHINCS relies on the HORST scheme (for “HORS with trees"), which adds a
Merkle tree to the HORS scheme to compress the public key. The security of HORST also
relies on the (r, k)–SC problem, but the security of SPHINCS relies on different security
notions for the underlying hash functions. In particular, it depends on a variation of the
SC problem called the target subset cover (TSC) problem [RR02]. The main difference
arises from the fact that the message signed using HORST is an unpredictable function of
the actual message, preventing an attacker from constructing a subset cover beforehand.

Nevertheless, the authors of [BHH+15] stated an existential unforgeability result for
SPHINCS [BHH+15, Theorem 1] under qs-adaptive chosen message attacks. The suc-
cess probability in such attacks is roughly upper-bounded by:

∞∑
r=1

min
(
2r(log qs−h)+h, 1

)
· SuccA((r, k)− SC),

where h is the height of the tree used in SPHINCS, and SuccA((r, k) − SC) denotes
the success probability of an adversary A in finding a (r, k)–SC. The authors made the
assumption that this term is negligible for any probabilistic adversary A, and our quantum
lower bound on the query number to find a (1, k)–SC can be seen as a first step towards
proving this assumption (for idealized hash functions). With the bounds of Yuan, Tibouchi
and Abe [YTA23] previously mentioned, one can now bound this term for specific parameters
of the scheme.

SPHINCS+ is an enhancement of SPHINCS that improves efficiency, and its security relies
on another variant of the SC problem, namely the interleaved target subset cover (ITSC)
problem, which is not studied in this work.

1.3 Impossibility of Key Agreements from One-Way
Functions

1.3.1 Key Agreements

In 1989, Impagliazzo and Rudich [IR89] published a paper that started a series of works
on black-box constructions and separations of classical cryptographic primitives. In the
quantum setting, after decades of focusing on the possibility of information-theoretically
secure quantum protocols—initiated by the land-marking results on money schemes [Wie83]
and key-agreement [BB84]—there has been recent progress in understanding how quantum
resources can be used to implement cryptographic primitives under weaker computational
assumptions.

More concretely, it has been shown in [GLSV21, BCKM21] that using quantum resources
can be used to achieve Oblivious Transfer (OT) and Multi-party computation (MPC), two
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central primitives in cryptography, from one-way functions (OWF), which are the weakest
classical cryptographic assumption.

More recently, it has been asked if quantum protocols are possible for public key encryption
from OWFs (or weaker assumptions). While the conditional impossibility result for key-
agreement of [ACC+22] implies that public key encryption (PKE) from OWFs with classical
communication is impossible—even if the honest parties are quantum4— it has been
recently shown that PKE can be constructed from OWFs if we have a quantum public
key [Col23, BGH+23, KMNY23]. However, having a quantum public key is not ideal, given
the issues that arise with public key distribution, authentication, and reusability. These
results leave open the question of whether quantum PKE from OWFs is possible with a
classical public key and quantum ciphertext.

In this work, we extend the result of [ACC+22] by showing that key agreement is impossible
when Alice and Bob exchange classical messages and in the very last round Bob sends a
quantum message to Alice. Our result holds under the same conjecture as [ACC+22], but
is limited to the setting where Alice does not query the random oracle in the last round of
the protocol. More concretely, we achieve the following result.

Theorem 1.1 (Informal). Let Π be a key agreement protocol between Alice and Bob, where
they first exchange classical messages and, in the last round, Bob sends a quantum message,
and Alice and Bob agree on a key k. Let n be the number of queries that Alice and Bob
make to a random oracle O. Then, assuming Alice does not query the oracle after receiving
the quantum message from Bob, Eve can recover k with O(poly(n)) classical queries to O
with probability at least 1

poly(n)
.

With this result in hand, we show that quantum PKE (qPKE) is impossible with a classical
public key in the Quantum Random Oracle Model (QROM), when the decryption algorithm
does not query the random oracle.

Corollary 1.2 (Informal). Assume (Gen ,Enc,Dec) is a Public Key Encryption scheme
in which the public key is classical and the ciphertext is a quantum state. Assuming the
algorithms Gen and Enc make at most n quantum queries to a random oracle O, then there
exists an algorithm Eve that can decrypt by making O(poly(n)) classical queries to O.

Using known techniques from black-box separation, our results can easily be translated to
yield separations of quantum PKE from black-box OWFs. We also note that our result
(Corollary 1.2) marks an initial step towards proving the conjecture of [MY22a] regarding
the possibility of black-box constructions of qPKE with classical public keys from quantum
symmetric key encryption.

Moreover, we show the impossibility of imperfect key agreements for OWFs in the restricted
setting where Alice and Bob make classical query to the OWF. This extends the result
of [ACC+22], which only held for perfect protocols.

4Such a result is actually conditioned on a conjecture that we state in Conjecture 2.1.
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Before we explain how we achieve our results, we begin by reviewing the proof of [IR89] in
the classical setting.

1.3.2 In the Classical Setting

In the plain model To break the security of any key agreement in the plain model, it
suffices to simulate Alice, postselected on the messages she sends during the protocol. An
attacker Eve can achieve this in PSPACE, which is enough to establish the impossibility
result.

In the Random Oracle Model One might assume that the same strategy applies in the
Random Oracle Model. Simulating Alice is indeed possible: assuming that the oracles’
output is random, Eve can simulate Alice by choosing oracle responses at random, while
postselecting on the message sent to Bob, all within PSPACE. Unfortunately this is not
enough to break the scheme’s security. The key issue is that Alice’s internal state is not
independent of the actual oracle used during the protocol. By querying the oracle, Alice
may learn valuable information essential for computing the key.

However, since Alice and Bob must agree on the same key, any information Alice uses
must also be accessible to Bob. In [IR89], this dependence is captured through intersection
queries— queries to the oracle made by both Alice and Bob. If the attacker can recover
these intersection queries, they can reconstruct the secret key. The method they use to
achieve this consists of incrementally guessing the oracle calls made by Alice and Bob. To do
so, at each round of the protocol, Eve simulates Alice (or Bob) up to this round, and makes
the same oracle queries as the simulated party. By repeating this simulation enough times,
the attacker can, with high probability, determine all the intersection queries—ultimately
breaking the scheme.

Barak and Mahmoody’s method In [BM09], a similar approach is used to simulate
Alice and Bob, but in a more refined way. Instead of repeatedly simulating their behavior,
Eve predict the queries that they will make with the highest probability. More precisely,
at each round, Eve computes the probability for each potential query u to the oracle for
both Alice and Bob. She only considers ε-heavy queries, i.e. those made with probability
at least ε/n, where n is the total number of queries by Alice and Bob. Eve then queries
the oracle on these values, updating her knowledge and adjusting Alice and Bob’s heavy
queries. She repeats this operation until she queried all heavy queries. More precisely the
attack is as follows

Eve’s algorithm At every round of the protocol, Eve does the following:
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1. Consider all values u not already queried by Eve such that:

P (Alice calls the oracle O on u|Eve’s knowledge) ≥ ε

n
or

P (Bob calls the oracle O on u|Eve’s knowledge) ≥ ε

n

2. Query O on the first such u in lexicographical order.

3. Repeat until there is no such u.

The analysis To prove that the success of the attack, two things must be shown: (1)
that Eve learns the intersection queries with high probability and (2) that Eve is efficient.
They prove that Eve makes at most O(n2) queries, which is optimal (see [GRM78]).

1.3.3 In the Quantum Setting

Challenges in the Quantum Setting Adapting this approach to the quantum setting
introduces a problem: how do we define intersection queries? Since Alice and Bob can
query the oracle in superposition, there is no straightforward way to characterize which
queries they “share”. Two natural definitions of intersection queries fail:

1. Queries as quantum states: One could define an intersection query as a quantum
state that is queried to the random oracle. However, it is easy to construct a protocol
where Alice and Bob learn information from the oracle without having any identical
queries. With this definition, we fail at making intersection queries a quantitative
description of the information that Alice and Bob both know about the oracle.

2. Queries with high probability: An alternative is to define intersection queries
as those made with high probability. While similar to the classical case, this raises
another question: how do we formally define such queries in a quantum setting?

We now explain how they resolve these issues in [ACC+22].

The attack of Austrin et al. The quantum attack of [ACC+22], introduces the concept
of quantum heavy queries, which serves as the quantum analogue of the classical heavy
queries from [BM09] These are defined as queries with high amplitude (see Definition 2.23
for a formal definition). However, since the notion of intersection queries does not extend
naturally to the quantum setting, they propose the Polynomial Compatibility Conjecture
(PCC) as a replacement. The PCC states that if two quantum states satisfy certain
conditions, then there exists an oracle that is consistent with both states. This conjecture
is key to their attack strategy. Their attack proceeds as in the classical setting, by learning
all of the heavy queries. Then, Eve simply outputs the key that is the most likely. The
correctness of Eve’s attack follows from the PCC as follows:
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1. If Eve does not output the correct key with high probability, then they construct an
internal state of Alice that outputs key 1, and an internal state of Bob that outputs
key 0.

2. By the PCC, there must exist an oracle h that is consistent with both states

3. Consequently, there must exist an execution of the protocol where Alice outputs key
1 while Bob outputs key 0, contradicting perfect correctness.

Crucially, the proof only works for protocols with perfect correctness—the proof does not
extend to cases where correctness error is negligible. In this work, we extend their result to
the setting where the last message of the protocol is quantum.

1.3.4 Technical Overview

To prove Theorem 1.1, we start with a key-agreement protocol with perfect correctness
where Alice and Bob have quantum access to a random oracle and exchange polynomially
many rounds of classical messages, and Bob sends a final quantum message |ψ⟩ to Alice.

We show an attack where with inverse polynomial probability:

1. Given the classical transcript and |ψ⟩, Eve guesses the key k of Alice and Bob.

2. Eve sends a forged quantum state ψE to Alice, such that Alice agrees on the key k at
the end of the protocol.

While the first item is sufficient to break the security, the second step item allows a
much stronger attack: Eve is an active adversary that not only retrieves the key, but is
undetectable to Alice and Bob, since they both agree on the same shared key.

Finding the key Following [ACC+22, Construction 4.10], we define a quantum-heavy
query learner algorithm (formally defined in Construction 2.1), which queries all ε-heavy
queries.

In this overview, for simplicity assume that Bob’s final message is a pure state |ψ⟩. Using
her knowledge, Eve simulates Alice’s internal state

∣∣ϕEA〉. Then, she runs Alice’s last step of
the protocol Afin (which is public) on the simulated internal state of Alice and the quantum
message from Bob. We then show that Eve retrieves the correct key with high probability,
i.e., for some noticeable parameter ν:

Tr
(
ΠkAfin

(∣∣ϕEA〉〈ϕEA∣∣W′
A
⊗ |h⟩⟨h|H ⊗ |ψ⟩⟨ψ|M

)
(Afin)

†
)
≥ 1− ν. (1.1)

Here,W′
A contains Eve’s simulated state of Alice

∣∣ϕEA〉, H contains the superposition of all
possible oracles that are consistent with Eve’s knowledge, M contains Bob’s message |ψ⟩,
Afin corresponds to Alice’s final operation and Πk is the projector that measures the key.

This inequality means that, given Bob’s real message |ψ⟩, Eve can find the correct key by
applying Alice’s operation on the simulation state of Alice

∣∣ϕEA〉 that she obtained using
the quantum-heavy queries learner.

20



1.3. Impossibility of Key Agreements from One-Way Functions

The proof follows from the fact that since Alice does not query the oracle during Afin, so
the register H is unchanged and thus the resulting state keeps the properties necessary to
apply the PCC. The full proof is in Section 4.2.2.

Forging the final message Next, Eve forged a quantum message ψE that she sends
to Alice. The idea is the following: Eve will pick the post-measurement state from
Inequality 1.1, and apply A†fin to it. Then, Eve traces out the registers W′

A and H, leaving
only ψE as the remaining state in register M.

To show that Alice computes the same key as Bob and Eve with high probability, we show
that ψE is close to the real message |ψ⟩:

⟨ψ|ψE |ψ⟩ ≥ 1− ν. (1.2)

Using Inequality 1.2 and the perfect correctness of the protocol, we show that Alice and
Bob will agree on the same key with high probability. This corresponds to proving the
following inequality:

Tr
(
ΠkAfin(|ϕA⟩⟨ϕA|WA

⊗ |h⟩⟨h|H ⊗ ψ
E) (Afin)

†
)
≥ 1− ν, (1.3)

where |ϕA⟩ is Alice’s real internal state and ψE is the forged message that Eve sends to
Alice. This ensures that given the message of Eve, Alice will find the same key as Eve with
high probability when she does her final computation. The proof appears in section 4.2.2.

Finally, Corollary 1.2 follows from the fact that, if public key encryption with quantum
ciphertexts is possible, then we can construct a key agreement protocol: Alice sends the
public key and Bob answers with the encryption of a random key k. Since our attack breaks
key agreement, it also breaks public key encryption with quantum ciphertexts that follows
the same restrictions.

1.3.5 Related Works and Discussions

The Polynomial Compatibility Conjecture. First introduced in [ACC+22], the Poly-
nomial Compatibility Conjecture (PCC) is already known to imply separation results
for key agreement [ACC+22] and non-interactive commitments [CLM23]. The conjecture
has an alternative expression that uses polynomials and is equivalent to the statement
in Conjecture 2.1. The PCC is known to be true with exponential parameters [ACC+22],
but it is still open with polynomial parameters. Proving it would be interesting as it would
now also establish the separation result for quantum PKE, along with potentially more
results as it is a strong statement.

Quantum Public Key Encryption. Classically, public key encryption (PKE) cannot be
constructed from black-box one-way functions [IR89]. In the quantum context, various
definitions of quantum PKE exist, leading to different feasibility outcomes. With quantum
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public keys and classical ciphertexts, quantum PKE can be constructed from one-way
functions [Col23, BGH+23, KMNY24, MW24]. However, it remains unclear how the
distribution of such public keys could be effectively distributed in practice among different
parties. Our result focuses on quantum PKE with classical public keys and quantum
ciphertexts. In this setting, the distribution of public keys could be implemented using
currently available public key infrastructure. Moreover, compared to having a quantum
public key and a classical ciphertext, having a classical public key and a quantum ciphertext
is less problematic for implementations, as the message is supposed to be received by
only one party and thus the potential destruction of the message after the decryption is
inconsequential. With this definition of quantum PKE, we achieve a step towards proving
a similar result as the classical case.

Classical Communication One Quantum Message Key Agreement Protocols. In
our work, we introduce a scheme that we call Classical Communication One Quantum
Message Key Agreement (CC1QM-KA) protocols. In these types of protocol, Alice and
Bob communicate classically, except for the last message that is quantum. We show that
key agreement is impossible with this type of protocol in the QROM if Alice does not query
the random oracle after receiving the last message.

One natural question is what happens if we allow the first message to be quantum, while
the rest of the communication is classical. Interestingly enough, [BB84] falls into this
category of protocol, thus key agreement is possible unconditionally in this setting. This
asymmetry in terms of feasibility results is quite surprising. A possible explanation is
that we cannot postselect on quantum messages, i.e. prepare a global state conditioned
on measuring a subregister and obtaining a specific outcome. Indeed, the classical Eve
attacks imply a simulation of the internal state of the parties that is consistent with the
message, which corresponds to computing an internal state postselected on the classical
messages that are communicated. With a quantum message, this would be possible with a
classical description of the quantum message since Eve is unbounded, but it is non-trivial
with only the quantum state as Eve must learn what the quantum message is in the first
place somehow. However, in the CC1QM setting, we do not need to do this postselection,
as a simulation of the last part of the protocol is enough to find the right key.

Allowing oracle queries in the decryption algorithm To prove the stronger result that
qPKE is impossible even when the decryption algorithms query the oracle, one needs to
show an attack on CC1QM-KA protocols where Alice queries the oracle in the last part
of the protocol. At first glance, one may think that Inequality 1.1 should be true even if
Alice makes queries to the oracle in Afin, because every new information about the oracle
that she learns at this stage of the protocol will not be transmitted to Bob since there is
no communication afterward. However, some issues that do not appear in [ACC+22] arise
when trying to prove such an inequality.

The first (natural) problem is that since the last message is quantum, Eve cannot compute
the heavy queries (which would be sufficient for the attack). Therefore, we need to find
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another way of simulating Alice’s last oracle calls without learning the heavy queries.

A first attempt is to use the operator AOfin, that corresponds to Alice’s computation in the
last step of the protocol with the real oracle O. Because this corresponds to the operation
that the real Alice would have done and the real outcome is deterministic (since the protocol
has perfect correctness), it could allow Eve to find the real key. However, the problem in this
approach is that Eve has her simulated state that was constructed using a simulated oracle
(with correct values for heavy-queries) and Alice’s algorithm could use some consistency
check that would fail when we decide to change the oracle.

On the other hand, if we want to use the simulated oracle instead of the real oracle, then
there is a trivial protocol for which the attack does not work. In this protocol, Bob just
picks a random value x ∈ X , queries it, and sends |x⟩ to Alice. Alice and Bob agree then
on the key H(x). By using the simulation oracle, Eve would not be able to find the key
with non-negligible probability.

While these two complications are artificial since they do not lead to a secure protocol, they
put a barrier to finding a common attack that would make Eve find the keys from Alice
and Bob.

Comparison with other work and discussion Recently, a series of papers by Li, Li,
Li and Liu [LLLL24, LLLL25b, LLLL25a] showed new impossibility results for building
quantum public key encryption in the quantum random oracle model. Their proof techniques
are very different from the ones of [ACC+22] and this thesis, as they use entropy. They do
not rely on the conjecture to achieve their results, and they show the impossibility of the
existence of perfect quantum public key encryption in the quantum random oracle model
when the secret key is classical. Hence their result is strictly better than Corollary 1.2 if
the secret key is a classical string, but they do not say anything about qPKE with quantum
secret keys. It is unknown if their result can be extended to a more general setting with a
quantum secret key or imperfect correctness.

1.4 Quantum Pseudorandomness

We have seen that quantum cryptographic primitives differ from classical cryptographic
primitives. Quantum primitives can take many forms, for example, key exchange can have
either classical or quantum communication. But a more fine-grained analysis is possible, as
quantum communication can occur at the beginning or the end of the protocol. The same
applies to other quantum cryptographic primitives: in classical definitions, every string can
become a quantum state. This is the case, for example, in public key encryption, where
the secret key, public key or ciphertext can be either classical or quantum. A classical
string is stronger in this context, because as quantum states are more general. Thus if a
cryptographic primitive exists with a classical string, it also exists with a quantum state.

In Section 5.3, we examine the different types of public key encryption and the known con-
struction and separation results in the literature. We conduct a similar study in Section 5.4
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for one-time signatures and digital signatures.

Pseudorandom Quantum States We can also define the quantum equivalent of classical
tools for cryptography, such as OWFs and PRGs. This is what Ji, Liu and Song [JLS18] did
in 2018 when they introduced a quantum analog of PRGs, called Pseudorandom Quantum
States (PRSs). They consist of a family of polynomial size keyed-states {|ϕk⟩}k∈K that
can be efficiently generated, and such that no quantum polynomial-time algorithm can
distinguish between a randomly sampled element from the PRS family or a Haar-random
state (see Definition 2.4 for a formal definition). Haar-random states are states that follow
the Haar measure, which is a measure over quantum states. We will not delve into the
Haar measure in this work, but it can be interpreted as the quantum analog of the uniform
distribution. It is a continuous distribution, unlike the classical uniform distribution over
strings which is discrete. An introduction to the Haar measure can be found in [Mel24]
for interested readers. The difference with PRGs is that instead of generating classical
pseudorandomness, we generate quantum pseudorandomness. Also note that in the security
definition, we allow the adversary to have a polynomial number of copies of the states.5

PRSs are relevant to quantum cryptography, as we already know how to construct several
cryptographic primitives from (variants of) PRSs: public key encryption with quantum
keys [BGH+23], quantum one-time signatures [MY22b], pseudo one-time pad encryption
schemes [AQY22], statistically binding and computationally hiding commitments [AQY22,
MY22a, KT24a] and quantum computational zero knowledge proofs [BCQ23]. Such rapid
interest probably derives from the fact that PRSs can be constructed from OWFs [JLS18]
(and thus PRGs), but there exists oracle separations between OWFs and PRSs [Kre21,
KQST23, KQT24], which makes them a potentially weaker building block for quantum
cryptography, with a purely quantum description.

1.4.1 Minimal Assumptions for Quantum Cryptography

These recent results raise the following question: what is the minimal assumption for
quantum cryptography? In 2021, Kretschmer [Kre21] exhibited an oracle relative to which
one-way functions do not exist, while pseudorandom quantum states exists. This separation
proves that unlike in the classical setting, the minimal assumption for quantum cryptography
is not one-way functions. On the other hand, pseudorandom quantum states are a good
candidate.

In this section, we start by discussing the quantum primitives that were introduced in recent
literature. We note that most of these primitives are inspired by classical primitives that
were introduced before, sometimes more than 20 years ago. In the classical setting however,
most of these primitives have been shown to be equivalent to PRGs. In the following, we

5For readers familiar with t-designs, there are two key differences between t-designs and PRSs: the type
of indistinguishability and the number of copies. While a PRS must be computationally indistinguishable
from a Haar-random state given any polynomial number of copies to the adversary, a t-design must be
statistically close to t copies of a Haar-random state.
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say that primitive A implies primitive B if there is a black-box construction of primitive
B from primitive A. On the other hand, we say that primitive A cannot be constructed
from primitive B, or that primitive A is separated from primitive B, if there is no black-box
construction of primitive A from primitive B, or equivalently, if there is an oracle relative
to which primitive B exists, but primitive A does not.

We discuss the different kinds of black-box separations in Section 1.4.4. In Figure 1.2, we
present a graph that summarizes the relationship between these primitives.

Pseudorandom Function State Generator Pseudorandom Function State Generators
(PRFSs) [AQY22, AGQY22], are the quantum analog of pseudorandom functions and a
natural generalization of PRSs. Whereas a PRS is a single generator G that, given a key
k, outputs a pseudorandom state |ϕk⟩, a PRFS is a family of generators {Gk} that each
take an extra classical input x. On input (k, x), Gk(x) outputs a distinct pseudorandom
state |ϕk,x⟩. Moreover, these generators admit quantum queries in superposition over the
input x. It was shown in [AQY22] that there are non-trivial constructions of PRFSs from
PRSs, but with a limited output length of the PRFSs. The general question of a black-box
construction of PRFSs from PRSs remains open.

Pseudorandom Unitary Defined first in [JLS18], pseudorandom unitaries (PRUs) are
unitaries that are indistinguishable from the Haar measure over unitaries, called Haar-
random unitaries. It is straightforward to show that PRUs imply PRFSs and PRSs, because
if U is a Haar-random unitary, then U |ϕ⟩ is a Haar-random state, for any input state |ϕ⟩.
It was proven very recently that PRUs can be constructed from OWF [MH25]. However,
Kretschmer’s separation [Kre21] shows that there exists a quantum oracle relative to which
PRUs exist, but OWFs do not, making them a weaker assumption than OWFs. The
important property about Haar random unitaries, which is also how they are defined, is
that they are left and right invariant. This means that if U is drawn from the Haar measure,
then for any fixed unitary V , the products UV and V U are also Haar-distributed.

The interest of PRUs for cryptographic applications is somewhat limited, because there
are no constructions based on PRUs that cannot already be achieved using PRFSs. All
constructions of cryptographic schemes from PRUs are, in fact, done using PRSs. An
interesting open question is the following: are there any cryptographic primitives that can
be constructed from PRUs but not from PRFSs?

One-Way State Generators One-way state generators (OWSGs), first defined in [MY22b],
are the quantum equivalent of one-way functions. Given an input k, the generator outputs
a quantum state |ϕk⟩, and given (polynomially many copies of) the quantum state, no
adversary should be able to find the key k. The difference with one-way functions is that
the output is a quantum state instead of a classical string. It was shown that PRSs imply
OWSGs, and even that PRSs are themselves OWSGs [CGG+23]. The question of whether
OWSGs imply PRSs or not is still open. In most constructions from PRSs, the important
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property is their one-wayness, and not the fact that the state appears Haar-random. We
note that the output state of OWSGs is pure, but there is a variant called IV-OWSGs (for
Inefficiently Verifiable One-Way State Generators) introduced in [MY22a], where the state
can be a mixed state. IV-OWSGs are separated from OWSGs [BJ24].

EFI pairs Efficiently samplable, statistically far but computationally indistinguishable
pairs of quantum states (EFI pairs) [Yan22, BCQ23] are states whose distribution is
indistinguishable from a different distribution over quantum states, but are still (statistically)
far to this distribution. In the classical setting, the equivalent of EFI have been show to
be equivalent to PRG [Gol90]. OWSGs imply EFI pairs [KT24a], but not the other way
around [BMM+24, BCN24].

Quantum commitments Quantum schemes, just like public key encryption or signatures,
can have quantum commitments (with quantum messages) and quantum openings. Quantum
commitments with a classical openings are equivalent to EFI pairs [BCQ23]. Quantum
commitments and EFI pairs are considered weak assumptions; they are among the lowest
candidates for minimal assumption for quantum cryptography. They imply Multi-Party
Computation (MPC) with quantum communications [BCQ23, GLSV21]. In fact, they are
even equivalent to MPC. In the classical setting, MPC is unlikely to be constructed from
stronger assumptions such as one-way functions, because they are separated from oblivious
transfer [IR89], which is believed to be necessary to construct MPC.

1-Pseudorandom Quantum States 1-Pseudorandom Quantum States (1PRSs) are PRSs
in which the adversary is given only one copy of the state in the security game. Naturally,
PRSs imply 1PRSs, because if they are secure against an adversary that can access a
polynomial number of copies of the state, then they are also secure against an adversary
that has only one copy of the state. However, it was shown that 1PRSs do not imply
PRSs [CCS24, AGL24]. 1PRSs imply EFIs and quantum commitments, but whether the
reverse implication holds remains an open question.

One-way Puzzles Unlike the other primitives defined so far, one-way puzzles (OWPs)
have a classical input and output. OWPs consists of a generation algorithm, which is a
quantum polynomial-time algorithm that outputs a classical puzzle and a classical secret.
There is an inefficient verifier, that, given a puzzle and a secret, decides if they were
generated by the generation algorithm. The security requirement ensures that no efficient
adversary can find the key given the puzzle. One-way puzzles were first defined in [KT24a].

In the classical setting, a one-way puzzle is equivalent to a one-way function, because we can
use the randomness of the generation algorithm as an input to construct a one-way function.
OWPs are a central primitive in the Quantum Computation Classical Communication
(QCCC) model [ACC+22], in which protocols have classical communication, but parties
can perform quantum computation. This means that most QCCC primitives imply the
existence of OWPs, as shown in [CGG24]. A variant exists, called Efficiently-Verifiable
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One-Way Puzzles (EV-OWPs), where the verification algorithm is efficient (i.e. it is a
quantum polynomial-time algorithm). This primitive is quite powerful and has been proven
to be separated from OWPs [CGG24].

Two recent works [CGGH25, HM24] shows a meta-complexity characterization of OWPs,
by proving that their existence is equivalent to the existence of a quantum distribution
that can be efficiently sampled from, but for which it is hard to estimate the Kolmogorov
complexity.

One-way State Puzzles One-Way State Puzzles (OWSPs) are one-way puzzles in which
the secret is a quantum state [KT24b]. There is no verification algorithm, and the security
requirement ensures that no adversary can generate a state that is close to the secret
quantum state. They have been shown to be equivalent to OWPs [KT24b]. In this work,
we define a natural variant, Efficiently-Verifiable One-Way States Puzzles (EV-OWSPs), in
which an efficient verification algorithm exists. It was indirectly proven in [GMMY24] that
EV-OWSPs are a weaker assumption than EV-OWPs, and we explicitly state this result in
this work.

Short Pseudorandom Quantum States Classically, short-output pseudorandom genera-
tors (“short-PRGs”) and PRGs are equivalent 6, but in the quantum setting, it is unclear
how quantum pseudorandomness behaves with different output sizes. Thus, we consider
the shortest possible cryptographic PRS, called a short-PRS, which, on input k ∈ {0, 1}λ
outputs a quantum state of size n(λ) = O(log λ). Brakerski and Shmueli [BS20] proved
that c · log λ-output PRSs exist for any c ≥ 1, assuming the existence of post-quantum
OWFs, whereas there exists a constant c0 < 1 such that for any c ≤ c0, c · log λ-output
PRSs can be constructed unconditionally 7.

One could think that PRSs with a short size would be weaker than PRSs with a long
size, but the reality is more nuanced. It was shown in [ALY24] that short-PRSs imply
Pseudodeterministic Pseudorandom generators (PD-PRGs), which are almost deterministic
PRGs. The security property of PD-PRGs is the same as for PRGs, but unlike PRGs,
PD-PRGs are not functions but rather algorithms whose output is identical with probability
exponentially close to one, except on a non-negligible fraction of inputs. We can think
of PD-PRGs as “almost PRGs”, and in fact, they are a powerful primitive, as they are
sufficient to construct commitment schemes with classical communication and private-key
cryptography [ALY24], as well as digital signatures [BBO+24]. Furthermore, there exists a
lifting theorem for constructions from PRGs to constructions from PD-PRGs [BBO+24]: if
there is a construction of a scheme from PRGs that makes uniformly random queries to the
PRG, then there is a construction of the scheme from PD-PRGs.

In this thesis, we show that PRSs do not imply short-PRSs. Our result also demonstrates
6As long as the PRG’s output is at least one bit longer than its input, one can compose the PRG with

itself, allowing to stretch the output length.
7Note that the constant c0 is not explicitly computed in [BS20].
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Figure 1.2: Minimal assumptions for classical and quantum cryptography. Here, C-COM
refers to classical commitments, and C-OWP refers to classical one-way puzzles. Quantum
assumptions are mirrored with their classical equivalent assumption, which makes PRG
appear multiple time on the figure. Note that there is no standard definition of one-way
puzzles in the classical setting because it is easy to see that they are equivalent to one-way
functions.

that PRSs whose output is shorter than that of short-PRSs do not imply short-PRSs, by
combining it with a result of [BS20], which showed that such PRSs exist unconditionally.
Thus, short-PRSs cannot be constructed from either shorter or longer PRSs. Even more
surprisingly, we establish a limited separation of PRSs from short-PRSs, suggesting that
they are likely separated and thus incomparable. Hence, in stark contrast to classical
pseudorandomness, the output size of quantum pseudorandomness plays a crucial role.

1.4.2 Other Notable Quantum Primitives

Pseudorandom States with Proof of Destruction Pseudorandom states with proof of
destruction (PRSPDs) were first defined in [BBSS23]. They are pseudorandom quantum
states that possess an additional property: they allow the generation of a string that certifies
its destruction. That is, there exists a verifier that will accept this string (along with the
key) with high probability. It was shown that PRSPDs can be constructed from OWFs,
and can be used to construct various QCCC primitives, including commitment schemes,
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one-time signatures and message authentification.

Pseudorandom isometries Pseudorandom isometries (PRIs) [AGKL24] are a generalized
notion of pseudorandomness. They are defined as isometries that are computationally
indistinguishable from Haar-random isometries. PRIs generalize quantum pseudorandom
states (PRSs), as certain pseudorandom isometries can serve as generators for PRSs. It has
been shown that PRIs can be constructed from quantum-accessible one-way functions, and
can be used to construct all cryptographic primitives that can be built from PRSs, while
also possessing additional properties that PRSs lack. For example, PRIs have a stretching
property, which allows them to expand the dimension of quantum states in a structured
way—something that PRSs do not have.

PRIs have received less attention than weaker assumptions such as PRSs. However, we
believe that PRIs could be more practical than PRSs, as their additional structure may
make them easier to utilize for constructing cryptographic schemes. One of the key open
questions is whether PRIs are separated from OWFs, and for PRIs to be considered a
fundamental cryptographic primitive, it would be crucial to show that they are strictly
weaker than OWFs.

Unpredictable state generators The concept of unpredictable functions was introduced
by Naor and Reingold [NR98]. An unpredictable function ensures that an adversary cannot
guess the value f(x) unless it has previously queried f on x. It was proven in [NR98]
that unpredictable functions are equivalent to pseudorandom functions (PRFs) in the
classical setting. The quantum analogue is Unpredictable State Generators (UPSGs) first
defined in [MYY24]. The security definition follows the classical one: an adversary cannot
approximate |ϕx⟩ unless it has previously queried the generation algorithm on x.

It was shown that PRFSs imply UPSGs meaning that PRFSs are at least as strong unpre-
dictable state generators. Moreover, UPSGs imply One-Way State Generators (OWSGs).
However, it remains an open question whether UPSGs imply PRFSs, or whether there
exists a strict separation between the two. Interestingly, most cryptographic constructions
that rely on PRFSs can also be realized using UPSGs instead.

1.4.3 Quantum Worlds

We now introduce quantum worlds, hypothetical models from the literature that capture
different assumptions about cryptography in a quantum setting. These mirror Impagliazzo’s
five classical worlds, but are tailored to quantum cryptography. Moreover, rather than
giving formal definitions, we give an intuitive overview, as we believe more perspective is
needed before these worlds can be rigorously defined.

Microcrypt Microcrypt is a fundamental world in quantum cryptography. We define
Microcrypt as the world where quantum cryptography is possible, but classical cryptography
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is not. Classical cryptography failing to exist means that one-way functions do not exist,
as they are the minimal assumption for classical cryptography. However, a question
remains: what kind of quantum cryptography is possible in Microcrypt? It could be that
pseudorandom unitaries (PRUs), pseudorandom function states (PRFSs) or pseudorandom
states (PRSs) exist, but it could also be the case that only that EFI pairs exist. Since EFIs
are a weaker assumption than these other quantum primitives, one could imagine a world
where only the weakest form of quantum cryptography is possible. However, this is not the
defining feature of Microcrypt: the crucial property is that quantum cryptography exists,
while classical cryptography does not.

Thus, we do not consider the world where only EFIs exist, but neither PRSs nor OWFs
exist as Microcrypt, since it aims to categorize quantum versus classical cryptographic
feasibility, rather than provide a fine-grained classification of quantum primitives. In essence,
Microcrypt should make it clear that some form of quantum cryptography is possible, while
all classical cryptography is impossible, but without specifying which quantum cryptographic
primitives exist.

To date, three known relativized worlds in the literature can be considered instances of
Microcrypt. We now discuss them in chronological order.

1. Kretschmer’s Oracle World ([Kre21]) The first known instance of Microcrypt
was constructed by Kretschmer (2021), where pseudorandom unitaries (PRUs) exist,
but BQP = QMA. The oracle O consists of two component:

(a) A quantum oracle O1, which is a quantum analog of a random function, since it
consists of random unitaries. This component ensures that PRUs exist.

(b) A classical oracle O2 that ensures that BQP = QMA.

Originally, the second oracle was designed to solve a PSPACE-complete problem, but
in a revised version, it was replaced with a recursive oracle, similar to those used
in diagonalization proofs. The key property, however, remains: this oracle collapses
QMA to BQP, ensuring that OWFs do not exist. However, this type of quantum
oracle separation is not unanimously accepted in complexity, and a separation with
respect to a classical oracle would be a strictly stronger result. Moreover, oracle O1

can only be queried in a forward direction, meaning that its inverse O†1 is inaccessible,
which is another restriction. We note that this oracle is the one that is used in proving
the impossibility of shrinking PRSs output lengths [BM24, CGG24].

2. A Classical Oracle World ([KQST23]) The second known Microcrypt world
was proposed by Kretschmer, Qian, Sinha and Tal (2023) [KQST23], improving on
Kretschmer’s oracle. In this world, 1-PRSs exist, but P = NP, hence one-way functions
do not exist. Similar to the previous case, this oracle consists of two components, and
their result is based on the hardness of the OR ◦ FORRELATION problem [AIK22].
We omit a discussion of this problem, as it is beyond the scope of this thesis. The
key advantage of this result is that the separation is relative to a classical oracle,
making it a stronger separation than Kretschmer’s quantum oracle world. However,
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the cryptographic primitives that exist in this world are weaker, since only 1-PRSs
are known to exist, whereas it is unknown if PRSs exist relative to this oracle.

3. Quantum vs Classical OWF Separation ([KQT24]) A more recent result
by Kretschmer, Qian and Tal (2024) [KQT24] separates classical and quantum-
computable one-way functions. However, it is unclear if this world belongs to Mi-
crocrypt or Minicrypt. Indeed, the definition of Minicrypt state one-way functions
exist in some form. In this world, quantum-computable OWFs exist, which can be
interpreted as an indication that “morally”, OWFs exist. Furthermore, their oracle
is powerful enough to allow for public key encryption. For these reasons, this result
is surprising, but its implications are somewhat different from those of previous
Microcrypt constructions.

In Microcrypt, many quantum cryptographic primitives can exist that are impossible in
Minicrypt, including public key encryption (PKE) with quantum public key and multiparty
computation (MPC) with quantum communication.

On the other hand, certain quantum primitives are unlikely to exist in Microcrypt, such
as quantum digital (multi-time) signatures, which have been shown to be separated from
PRUs [CM24], but also some types of public key encryptions, as demonstrated in [KT24a]
and in this thesis. An interesting limitation is the case of short-PRSs, which are linked
to the computational assumption that BQP ̸= QMA. Since this assumption is of a similar
complexity-theoretic nature than to the existence of OWFs, the feasibility of short-PRSs in
Microcrypt is unclear.

Finally, proving that we live in Microcrypt would require proving that OWFs do not exist,
which is expected to be difficult to establish.

Nanocrypt The term Nanocrypt was first introduced in [GMMY24], though we present a
different definition here. We define Nanocrypt as a world where weak quantum cryptography
is possible, but strong quantum cryptography is impossible. Unlike Microcrypt, which fo-
cuses on the separation between quantum and classical cryptography, Nanocrypt exclusively
concerns separations between purely quantum primitives. In Nanocrypt, classical cryptog-
raphy does not exist. We deliberately do not provide an explicit definition of Nanocrypt, as
its exact boundaries remain an open question. However, we propose that strong quantum
primitives include pseudorandom unitaries (PRUs) and pseudorandom states (PRSs). On
the other hand,weak quantum primitives include one-copy pseudorandom states (1PRSs)
and EFI pairs. It is unclear how to classify one-way state generators (OWSGs) as they
could be in either of the two categories.

We believe that Nanocrypt will become more precisely defined over time, as our under-
standing of quantum primitives improves.

Several relativized worlds have been proposed in the literature that exhibit Nanocrypt-like
separations. Below, we list some key examples:
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• In [BCN24], they exhibit an oracle relative to which 1PRSs exist (and thus EFIs) and
OWPs exist, but OWSGs do not (and thus PRSs do not either).

• In [CCS24], they exhibit an oracle relative to which 1PRSs exist, but PRSs do not.

• In [BMM+24], they exhibit an oracle relative to EFI pairs exist8, but OWSGs do not.
They also show a black-box separation between quantum money and EFI pairs.

• In this work, we exhibit an oracle relative to which pseudorandom function states
(PRFSs) exist, but PRUs do not.

Proving that we live in Nanocrypt seems at least as hard as proving that BQP = PP9.
However, an alternative approach could be proving statements about the existence of
quantum primitives under computational assumptions. For example in [KT24b], it was
shown that any assumption that imply quantum advantage (such as sampling-base ad-
vantage) also imply the existence of quantum cryptography, under the assumption that
P#P /∈ (io)BQP/qpoly. This suggests that Nanocrypt might be provable via different
complexity-theoretic assumption than BQP = PP.

Other worlds The definition of Nanocrypt in [GMMY24] is different, where it is the class
of primitives that can exist if BQP = PP. Additionally, [GMMY24] introduces Countcrypt,
the class of primitives that are broken if BQP = PP, but can exist if BQP = QCMA. They
also introduce Quantumania, the class of primitives that are broken if BQP = QCMA.
Another proposal, from [BCN24] is the world Entanglementia, which is the world where the
minimum of quantum cryptography is possible, that is quantum commitments.

1.4.4 Idealized Quantum Models

Let us go back a little and discuss why we want a unitary oracle in the quantum random
oracle model. We have seen that an oracle implements a function, but we can also define
an oracle that implements algorithms. In the classical setting, the difference is that
the algorithm can be randomized. However, since randomized (classical) algorithms are
equivalent to deterministic algorithms with a random input, this model is equivalent to
the deterministic model. Instead of just requiring an input x, the oracle also requires some
randomness r.

This is not true in the quantum setting: a quantum algorithm is inherently probabilistic by
construction, and there is no way of defining a quantum algorithm as a function. Instead, a
quantum algorithm is defined as a quantum channel or completely positive trace-preserving
(CPTP) map. This is the most general definition for an algorithm, although an algorithm
can also be unitary.

8In fact, they show that QEFID pairs, a stronger variant, exist.
9It was shown in [Kre21] that PRSs do not exist if BQP = PP
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On oracle separations A discussion on quantum oracle separations and black-box con-
structions can be found in [CCS24, Section 5.3]. In their discussion, they do not define
quantum oracle separations with respect to a CPTP map, but these have been considered
in recent literature [GMMY24]. The different kinds of black-box separations can be with
respect to a:

1. classical oracle,

2. quantum unitary oracle with access to its inverse,

3. quantum unitary oracle,

4. isometry oracle,

5. CPTP map oracle.

They are ordered from strongest to weakest: for example, a black-box separation with
respect to a quantum unitary oracle for primitive A from primitive B rules out any black-box
construction of primitive A from any quantum unitary implementation of B, as well as from
any isometry or CPTP map implementation of B.

Common Haar function-like state model. All of our separations are based on variants
of the Common Haar Function-Like State (CHFS) oracles, where for each input x ∈ {0, 1}∗
the oracle outputs a Haar random state |ϕx⟩ of length ℓ(|x|), where |x| is the bit-length of x.
This is the quantum analog of the Common String Reference (CRS) model, in which every
party has access to the same random string. In the quantum setting, the string becomes a
quantum state, and it follows the Haar measure instead of the uniform distribution. The
CHFS oracle is an isometry, but we can also consider the unitary variants that instantiate
this oracle. In a recent work, Goldin and Zhandry [GZ25] prove that some separations can
be lifted from the isometry model to the unitary model.

Other separations The isometry version of the CHFS oracle provides a world in which
pseudorandom function states (PRFSs) exist but Quantum Computation Classical Com-
munication (QCCC) primitives do not [AGL24]. On the other hand, an oracle world with
QCCC key exchange but in which BQP = QCMA holds was introduced in [GMMY24],
along with additional separations.

1.4.5 Our Results

The landscape of quantum cryptographic pseudorandomness seems quite different from its
classical counterparts. We are left with an unsatisfactory state of affairs; unlike in classical
pseudorandomness, there is no single assumption that unifies quantum pseudorandomness.
In this work, we take steps toward understanding how quantum primitives relate to each
other by showing multiple oracle separations.
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Impossibility of Shrinking PRSs We show that Kretschmer’s oracle [Kre21] not only
implies that OWFs do not exist, but also none of the pseudodeterministic variants do either.
Since PD-PRGs and PD-OWFs can be constructed from short-PRSs [ALY24, BBO+24], our
work provides a separation between PRSs and short-PRSs10 and can be stated as follows.

Theorem 1.3 (Theorem 5.1, informal). There exists a quantum oracle O relative to which
PRSs exist but short-PRSs do not.

This result might sound counterintuitive, as it shows that we cannot shrink a pseudorandom
quantum state to a smaller one. An explanation of this result could be that requiring a
polynomial number of copies of a logarithmic quantum state to be indistinguishable from
a polynomial number of copies of a random state is a strong assumption, akin to that of
OWFs, as demonstrated by previous works.

Pseudorandom Quantum States and Quantum Public Key Encryption We show
that Kretschmer’s oracle can also be used to separate PRUs and qPKE. More formally, we
have the following result:

Theorem 1.4. There exists a quantum oracle O relative to which PRUs exist but

1. quantum public key encryption with classical public key, quantum secret key and
classical ciphertext does not exist,

2. quantum public key encryption with quantum public key, classical secret key and
classical ciphertext does not exist.

This result complements the other separations and constructions of quantum public key
encryption from PRUs in the literature, which we summarize in Section 5.3. We provide a
similar analysis on the feasibility of one-time signature and digital signature from PRUs
in Section 5.4.

On constructing QPRGs from short PRFSs. We tackle the second question of comparing
classical and quantum pseudorandomness. We suggest a candidate oracle, the CHFS oracle
with log-length outputs, relative to which short PRFSs exist but QPRGs do not, that is
pseudorandom number generators with a quantum algorithm and a negligible correctness
error. We prove the separation under a measure-theoretical conjecture with a flavor of
isoperimetric inequality; we refer the technical overview section and section 5.6 for an
informal and formal descriptions, respectively.

Theorem 1.5. Assuming conjecture 5.1 is true, there is no black-box way to construct
QPRGs with negligible correctness error using short quantum-accessible PRFSs, unless
BQP ̸= QMA.

This result suggests that the black-box construction of QPRGs from short PRFSs is at
least as hard as proving BQP ̸= QMA, and rephrases an open problem posed in [ALY24] for

10Note that relative to Kretschmer’s oracle, not only do we have PRSs, but we also have pseudorandom
unitaries (PRUs).
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reducing the correctness error, in terms of a measure-theoretical conjecture. Recall that the
typical way to construct classical (quantum-computable) primitives from short PRSs uses
tomography that incurs inverse polynomial correctness error. For some applications, this
error can be dealt with by repetition to construct commitments and encryption [ALY24], or
using a recognizable abort to construct signatures [BBO+24]. However, our result indicates
that such an inverse polynomial error (e.g. from tomography) is unavoidable.

Length extension of PRSs. We finally turn to the problem of extending the output
length of PRSs.11 We consider a natural restriction on the generation algorithms; that they
do not make any partial trace, which we refer to as pure algorithms. We prove the following
result for the CHFS oracle with ℓ(|x|) = log |x| under the aforementioned conjecture.

Theorem 1.6. Assuming conjecture 5.1 is true, there exists an isometry oracle relative to
which short PRFSs exist but long PRSs with pure generation algorithms do not.

This result complements our impossibility of shrinking the output length of PRSs, and
suggests that both primitives are in fact incomparable. Moreover, given the construction of
one-way state generators (OWSGs) from short PRSs [CGG+23], it provides evidence for
the hardness of constructing PRSs from OWSGs.

The proof requires new observations on the purity test, i.e., the swap test on two copies, for
the state generated by pure quantum algorithms.

1.4.6 Technical Overview

Impossibility of shrinking PRSs Kretschmer’s oracle consists of two oracles: the first
one is a quantum oracle, which can be interpreted as a quantum version of a random
function, since it consists of random unitaries. It is this part of the oracle that ensures
the existence of poly-size PRSs. The second one is a classical oracle that ensures that
PromiseBQP = PromiseQMA. In this work, we show that not only does the existence
of OWFs imply PromiseBQP ̸= PromiseQMA, but also the existence of polynomial-error
pseudodeterministic OWFs (a possibly weaker assumption, but implied by short-PRSs)
implies PromiseBQP ̸= PromiseQMA. For the proof to work, we rely on the promise version
of the complexity classes. Promise problems are such that there are yes instances and no
instances, but also other instances where the output of an algorithm does not matter. In
our proof, we define a language with the yes instances as the values for which there exists a
high probability pre-image, and the no instances being the values for which there is no low
probability pre-image. Thus, there is a gap between the possible success probabilities, and
this gap is needed to distinguish between the yes and no instances in polynomial time.

Separating PRSs and Quantum PKE To show that qPKE with classical public key,
quantum secret key and classical ciphertext does not exist relative to Kretschmer’s oracle,

11We remark that a recent work [LV24] discusses the possibility of the length extension of the PRSs, but
only for very specific forms.
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we show that their existence implies PromiseBQP ̸= PromiseQMA. We note that their
existence already implies the existence of OWPs [KT24a], but that is not sufficient to show
the separation, as OWPs exist relative to Kretschmer’s oracle. We perform a similar analysis
for qPKE with quantum public key, classical secret key and classical ciphertext, inspired
by the work of [CM24]. In this paper, they show the impossibility of digital signatures
with quantum public key from PRUs, and require multiple signatures for the proof to go
through; similarly, for our proof to work, we require multiple ciphertexts.

(Unitarized) Common Haar function-like state oracles and PRFSs. All of our other
results are in relativized world with the common Haar function-like state (CHFS) oracles.
The CHFS oracles with length ℓ is defined as follows: it is a family of unitaries {Sx}x∈{0,1}∗
defined the following way:

Sx :


|0⟩ → |ϕx⟩
|ϕx⟩ → |0⟩
|ψ⟩ → |ψ⟩ if |ψ⟩ /∈ span(|0⟩ , |ϕx⟩),

where |ϕx⟩ is a predetermined Haar random state of length ℓ(|x|), with |x| denoting the
bit-length of x. This oracle is inspired by the reflection/swap oracles in [CCS24, BCN24,
BMM+24].

In this overview, we assume that the algorithm accesses the unitaries Sx one by one, and
also assume that ⟨0|ϕx⟩ = 0 for simplicity, so that Sx can be understood as a reflection

Sx = I − 2 |ϕx−⟩⟨ϕx−| ,

where |ϕ−⟩ = |0⟩−|ϕx⟩√
2

.12

The construction of PRFSs with the CHFS oracles is rather straightforward: the generation
algorithm on input (k, x) for key k and input x outputs

∣∣ϕk||x〉 by querying Sk||x, where k||x
is the concatenation of k and x. The security can be shown by a standard hybrid argument.
Note that the output length of the PRFSs is ℓ(k||x).

Candidate separation of QPRGs from short PRFSs We conjecture that relative to
the CHFS oracles with length ℓ(n) = log n, short PRFSs exist but QPRGs with negligible
correctness error do not; we will simply denote QPRGs with negligible correctness by
QPRGs from now on. Once again, given the CHFS oracle the existence of short PRFSs is
immediate, thus we need to argue about the non-existence of QPRGs.

Concentration inequality fails. The concentration inequality of Haar measures (see
theorem 2.11) is the most standard tool currently used for separation arguments. However,
this concentration inequality is not strong enough to deal with small dimensional qubits,
thereby it is hard to use to rule out QPRGs.

12We have a slightly different definition in the main body.
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We instead observe an extreme concentration case that must happen in QPRGs: consider the
single-bit-output QPRG GO, relative to CHFS oracles O, with negligibly small correctness
error. For a fixed input x, GO(x) must be either 0 or 1 for almost all oracles O; these are
the two extreme points in the concentration inequality. A natural question is thus whether
these two extreme points can be simultaneously concentrated.

Impossibility of QPRGs from new conjecture. We start from this point: if a function
f(O) = PrG[G

O(x)→ 1] from quantum states to [0, 1] has two highly concentrated points
near 0 and 1, how do the regions f−1([0, ε]) and f−1([1− ε, 1]) of the state space look like?
If GO(x) for a fixed x can output both 0 and 1 with non-zero probability, both pre-image
regions are large. We also expect the distance between the two pre-image regions to be
large, as close oracles would likely induce close outputs. Our conjecture asserts that under
such conditions, the intermediate region f−1((ε, 1− ε)) is large:

Conjecture (Informal version of conjecture 5.1). Let X be the product space of pure
quantum states with the corresponding product Haar measure σ. If S0, S1 are two measurable
subsets of X such that σ(S0), σ(S1) ≥ A, and if d(S0, S1) ≥ B for some distance d on X,
then σ(X \ (S0 ∪ S1)) ≥ poly(A,B).

We can cast this conjecture in a purely geometric way, with the flavor of an isoperimetric
inequality. For example, in the extreme case of one of the regions being small and the
other one large (as in the isoperimetric inequality), the conjecture states that the ∆-gap
region between the surfaces is still large. We inspected some cases, which indeed follow this
intuition. We refer to appendix C for some more details.

Now we turn back to the QPRGsGO with negligible correctness error. Again, for convenience,
we assume that GO outputs a single bit and let f(O) = PrG[G

O(x)→ 1]. It rules out the
case where f−1([0, ε]) and f−1([1− ε, 1]) are both large. That is, GO(x) must be either 0
or 1, regardless of O! This means that from GO we can derive QPRGs without querying
O, without any assumption. This is impossible to construct unless BQP ̸= QMA, and
theorem 1.5 follows.

Length extension of PRSs, without partial trace We again consider the CHFS oracle
with ℓ(|x|) = ⌊log |x|⌋ together with the QPSPACE oracle. Here, we consider the classical-
accessible isometry version: a family of unitaries {Oλ}λ where Oλ takes a λ-bit classical
string |x⟩ as input and outputs |x⟩ |ϕx⟩, where |ϕx⟩ is a Haar random state stored in a new
register. Alternatively, we write

Oλ =
∑

x∈{0,1}λ
|x⟩⟨x|X ⊗ |ϕx⟩⟨0|Y ,

and assume that the register Y is initialized to |0⟩ and never touched before the query. The
existence of short PRS(F)Gs is shown using the same argument as the long case setting for
ℓ(n) = n.
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We remark that the separation in the CHS model [CCS24] assumes non-adaptive queries to
the oracle without loss of generality. This can be done because there is only a linear number
of oracles. As we have exponentially many oracles, we cannot make queries to all of them.
We must consider the adaptive queries, which introduce numerous technical difficulties.

Pure generation algorithm. We consider the following form of PRSs generation algorithm
G, without any partial trace:

ρ = Ut ◦Oλt ◦Mt ◦ · · · ◦ U1 ◦Oλ1 ◦M1 ◦ U0(|0⟩⟨0|X1Y1...XtYtZ
),

where we omit the key k for simplicity. Here, the Ui are unitary operators for i = 0, . . . , t, Oλi

are the oracle queries acting on the registers XiYi for i = 1, . . . , t, andMi are intermediate
measurements on Xi used to decide which state is generated by the oracle. We use ◦ to
denote the composition of operators.13 We assume that this algorithm acts on n-qubit for
n(λ) = ω(log λ). This form of generation algorithm reflects adaptive queries, making it
hard to analyze.

Step 1: To non-adaptive form using purity test. The output of the PRSs generation
algorithm must be indistinguishable from Haar random state, hence it must be close to
pure. This intuition can be formalized by the swap test on two copies that estimating the
purity Tr(ρ2).

Our main technical tool here is that if a state ρ generated by a pure algorithm passes
this test with high probability, then all the intermediate measurements must be almost
deterministic, i.e., there exist x1, . . . , xt such that

ρ ≈ Ut ◦Oλt ◦ |xt⟩⟨xt|Xt
◦ · · · ◦ U1 ◦Oλ1 ◦ |x1⟩⟨x1|X1

◦ U0(|0⟩⟨0|X1Y1...XtYtZ
).

Then, using the fact that the registers Y’s are not touched before queries, we can argue
that

ρ ≈ Ũ
(
|0⟩X1...XtZ

|ϕx1⟩Y1
. . . |ϕxt⟩Yt

)
,

for some unitary Ũ . The actual argument is more complicated to derive unitary Ũ , which
we omit in this overview.

We remark that both parts become problematic when we consider the algorithms with partial
traces. We are only able to show that the last few measurements are almost deterministic,
and we do not have any clue to use a similar argument for turning algorithms to unitaries.

Step 2: Product test with quantum OR lemma. We previously omitted the key k,
but we consider them here again. We can assume that the generation algorithm on key k
outputs

ρk ≈ Ũk

(
|0⟩X1...XtZ

∣∣∣ϕ
x
(k)
1

〉
Y1

. . .
∣∣∣ϕ
x
(k)
t

〉
Yt

)
,

13Because of the measurements, we need to consider mixed states so that the operator U on ρ is acted by
UρU†.
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where we assume that t and the lengths of x(k)i ’s are all the same for different keys for
exposition. Alternatively, we have

Ũ †kρk ≈ |0⟩X1...XtZ

∣∣∣ϕ
x
(k)
1

〉
Y1

. . .
∣∣∣ϕ
x
(k)
t

〉
Yt

,

is a product of many pure states. On the other hand, for a Haar random state |ψ⟩,
Ũ †k |ψ⟩ definitely does not have such a product structure. Given the efficient product test
algorithm [HM10], we can run the quantum OR tester with the QPSPACE oracle as in the
separation between PRUs and PRFSs.

Missing step: Learning λ1, . . . , λt based on the conjecture. In the above algorithm,
we assume that λ1, . . . , λt are decided a priori. However, these may be also determined by
the intermediate measurements.

At this point, we recall the implication of the conjecture: if a quantum algorithm with
access to the short CHFS oracle O outputs a fixed bit with high probability, then this bit is
likely independent from O. Therefore, we can apply the same strategy to learn the results of
the intermediate measurements. This allows the algorithm to fix λ1, . . . , λt a priori, filling
the missing step.

1.4.7 Related Works and Dicussions

Output size of quantum primitives There is much evidence that the output length of
quantum pseudodeterministic primitives is fundamental and must be chosen carefully. For
example, in [HMY24] they show that O(log λ) EFIs and OWSGs do not exist, while they
show how to construct ω(log λ) EFIs from a classical oracle. In [CGG+23] they show that
ω(log λ) OWSGs exist unconditionally. This is in spark contrast with classical primitives
such as OWFs and PRGs, whose output length can be extended or shrunk.

Concurrent work. Our result on the impossibility of shrinking PRSs was proven inde-
pendently in [CGG24]. In their paper, they study One Way Puzzles (OWPs), and show a
black-box separation between general OWPs and efficiently verifiable OWPs. Their result
also builds on Kretschmer’s oracle, and implies a separation between short-PRSs and PRSs,
because PRSs imply OWPs and short-PRSs imply efficiently verifiable OWPs. A concurrent
work by Coladangelo and Mutreja [CM24] separating quantum digital signatures from PRSs
also provides a separation between short-PRSs and PRSs, since short-PRSs imply quantum
digital signatures as proven by Barhoush et al. [BBO+24].

A concurrent and independent work [MY25] shows the oracle separation between PRFSs
and PRUs using similar oracles and techniques. They use the maximally entangled state∑

x |x, x⟩ to simplify the analysis. The results concerning the log-length CHFS oracles are
unique to this work.
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Chapter 2
❈

Preliminaries

2.1 Notations

The following notations will be used throughout the manuscript,

• By λ we denote the security parameter.

• For any m ∈ N, we use the notation [m] to refer to the set {1, . . . ,m}.

• For a bit string x ∈ {0, 1}∗, we denote its bit-length by |x|.

• We use poly(·) to denote a polynomially-bounded function. We use negl(·) to denote a
negligible function. A negligible function is a function who is asymptotically smaller
than any inverse of polynomial, i.e. for every polynomial poly(·), there exists an N ∈ N
such that for any n > N , negl(n) ≤ 1

poly(n)
.

• We use calligraphic letters (e.g., X ) to denote sets. We use YX to denote the set of
all functions from X to Y .

• We use bold letters (e.g., m) to denote random variables and distributions. We write
m←$ m to denote that m is sampled from the distribution m. We write m←$M to
denote that m is sampled uniformly from the setM.

• We use the Dirac notation for pure states, e.g., |ψ⟩, while mixed states will be denoted
by lowercase Greek letters, e.g., ρ.

• We use ε to denote the empty string.

• We use || to denote the concatenation operator.

• We use x ≺ y to denote the fact that x is a prefix of y, i.e. there exists x′ such that
y = x||x′. We use x ⊀ y to denote the fact that x is not a prefix of y.
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• For n ∈ N and N = 2n, we write S(N) and U(N) to denote the set of N -dimensional
pure quantum states and the group of N ×N unitary matrices. We denote by σn and
µn the Haar distribution over n-qubit states and n-qubit unitaries, i.e., over S(2n)
and U(2n), respectively. When the dimension is clear from the context, we drop the
parameter and use σ or µ.

For the basics of quantum computation, we refer readers to [NC10], and for completeness,
we recall Grover’s algorithm and Quantum Fourier Transform (QFT) in Appendix A.

We assume that all functions used to represent the lengths of the cryptographic primitives
are computable in Quantum Polynomial Time (QPT). We will also use standard notations
from quantum information and cryptography.

2.2 Cryptography

We include here the relevant cryptographic notions.

Definition 2.1 (One-way functions). Let {0, 1}n(λ) be the output length, a function f :

{0, 1}λ → {0, 1}n(λ) is a one-way function (OWF) if the following holds.

1. Efficient generation. There exists an polynomial time algorithm that given x ∈
{0, 1}λ, computes y = f(x).

2. One-wayness. For any polynomial time algorithm A, we have that:

Pr
x∈{0,1}λ

[A(f(x)) = x] ≤ negl(λ).

We also include pseudo deterministic quantum one-way function (PD-QOWF), whose
definition is adapted from [BBO+24, Definition 9] and are algorithms whose output is
one-way, and is always the same with probability negligible close to one for a fraction of
the inputs.

Definition 2.2 (Pseudo Deterministic Quantum One-Way Functions). Let n(λ) be the
output length, a QPT algorithm F : {0, 1}λ → {0, 1}n(λ) is a pseudo deterministic quantum
one-way function (PD-QOWF) if the following conditions hold:

• Pseudodeterminism. There exists a constant c > 0 and a function µ(λ) = O(λ−c)
such that for all λ ∈ N, there exists a set Kλ ⊂ {0, 1}λ such that:

1. Pr
[
x ∈ Kλ

∣∣∣ x← {0, 1}λ] ≥ 1− µ(λ).

2. For any x ∈ Kλ, it holds that

max
y∈{0,1}n(λ)

Pr [y = F (x)] ≥ 1− negl(λ), (2.1)

where the probability is over the randomness of F .
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2.2. Cryptography

• Security. For every QPT inverter A:

Pr
x←{0,1}λ

[F (A(F (x))) = F (x)] ≤ negl(λ), (2.2)

where the probability is over the randomness of F and A.

Note that the pseudodeterminism factor in the above definition comes from the size of
the good key space Kλ, which is the whole space minus an inverse-polynomial fraction of
the space. This means that for a non-negligible number of elements in the key space (the
elements in {0, 1}λ \Kλ), the OWF could behave arbitrarily. Also note that the lower bound
in the success probability in Equation (2.3) could be replace by 2

3
, as it can be amplified

with repetition (a standard completeness amplification technique).

We define quantum one-way functions (QOWF) where the size of the good key space Kλ is
the whole space minus a negligible fraction of the space, i.e. µ(λ) = negl(λ).

We also define pseudo deterministic quantum pseudorandom generators (PD-QPRGs), who
are algorithms whose output is indistinguishable from random, and is always the same with
probability negligibly close to one for a fraction of the inputs.

Definition 2.3 (Pseudo Deterministic Quantum Pseudorandom Generators). Let n(λ) be
the output length, a QPT algorithm F is a pseudo deterministic quantum pseudorandom
generator (PD-QPRG) if the following conditions hold:

• Pseudodeterminism. There exists a constant c > 0 and a function µ(λ) = O(λ−c)
such that for all λ ∈ N, there exists a set Kλ ⊂ {0, 1}λ such that:

1. Pr
[
x ∈ Kλ

∣∣∣ x← {0, 1}λ] ≥ 1− µ(λ).

2. For any x ∈ Kλ, it holds that

max
y∈{0,1}n(λ)

Pr [y = F (x)] ≥ 1− negl(λ), (2.3)

where the probability is over the randomness of F .

• Security. For any oracle QPT algorithm A = {Aλ}λ∈N, there exists a negligible
function ε such that∣∣∣∣∣ Pr

y←{0,1}n(λ)
[1← Aλ(y)]− Pr

x←{0,1}λ
[1← Aλ(F (x))]

∣∣∣∣∣ ≤ ε(λ),

where the probability is over the randomness of F and Aλ.

• Length extension. n(λ) > λ holds for all λ ∈ N.

Similarly, we define pseudorandom generators (QPRG) where the size of the good key
space Kλ is the whole space minus a negligible fraction of the space, i.e. µ(λ) = negl(λ).
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Definition 2.4 (Pseudorandom quantum states [JLS18]). Let n(λ) be the number of
qubits in the quantum system. A keyed family of n-qubit quantum states {|φk⟩}k∈{0,1}λ is
pseudorandom if the following two conditions hold:

1. Efficient generation. There is a quantum polynomial time algorithm G that on
input k ∈ {0, 1}λ generates

Gλ(k) = |φk⟩⟨φk| .

2. Pseudorandomness. For any quantum polynomial time adversary A and all poly-
nomials t(·), we have∣∣∣∣ Pr

k←{0,1}λ

[
A
(
1λ, |φk⟩⊗t(λ)

)
= 1
]
− Pr
|ν⟩←σn

[
A
(
1λ, |ν⟩⊗t(λ)

)
= 1
]∣∣∣∣ ≤ negl(λ).

We say that Gen is a n(λ)-PRS to indicate that its output length is n(λ). We further say
that a PRS is a short PRS when its output length is Θ(log λ), and a (long) PRS when its
output length is ω(log λ).

We by default consider the adaptively-secure PRFSs defined as follows.

Definition 2.5 (Pseudorandom Function-like State Generators). We say that a QPT
algorithm Gen is a secure pseudorandom function-like state generator (PRFS) if the following
holds for some functions κ,m, n : N→ N such that κ,m = ω(log λ):

• State Generation: For any λ ∈ N and k ∈ {0, 1}κ(λ), the algorithm Genk takes as
input x ∈ {0, 1}m(λ) and outputs n(λ)-qubit (possibly mixed) state Genk(x) stored in a
new register.

• Pseudorandomness: For any QPT adversary A = {Aλ}λ∈N, there exists a negligible
function ε(·) such that for all λ ∈ N:∣∣∣∣ Pr

k←{0,1}λ

[
1← AGen(k,·)

λ

]
− Pr

GHaar

[
1← AGHaar(·)

λ

]∣∣∣∣ ≤ ε(λ),

where GHaar(·) on input x ∈ {0, 1}m(λ), output |ψx⟩ stored in a new register, where,
for every y ∈ {0, 1}m(λ), |ψy⟩ ← Hn(λ).

We say that Gen is a (κ(λ),m(λ), n(λ))-PRFS to indicate that its key length is κ(λ), it
input length is m(λ), and its output length is n(λ). We say that a PRFS is a short PRFS
when n = Θ(log λ), and a (long) PRFS when n = ω(log λ).

Definition 2.6 (Pseudorandom unitaries [JLS18]). Let n(λ) be the dimension of the
quantum system. A keyed family of n-qubit unitary operator {Uk}k∈{0,1}λ is pseudorandom
if the following two conditions hold:

1. Efficient generation. There is a quantum polynomial time algorithm G that on
input k ∈ {0, 1}λ and |ϕ⟩, generates

Gλ(k, |ϕ⟩) = Uk |ϕ⟩ .
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2. Pseudorandomness. For any quantum polynomial time adversary A and all poly-
nomials t(·), we have∣∣∣∣ Pr

k←{0,1}λ

[
AUk

(
1λ
)
= 1
]
− Pr

U←µn

[
AU
(
1λ
)
= 1
]∣∣∣∣ ≤ negl(λ).

We now define public key encryption.

Definition 2.7 (Public key encryption (PKE)). A quantum public key encryption scheme
(PKE) consists of three algorithms:

• (pk, sk)← KGen(1λ) : a quantum algorithm, which takes as input the security parame-
ter and output a couple of keys (pk, sk).

• c← Enc(pk,m): a quantum algorithm, which takes as input a public key pk, a classical
message m, and outputs a ciphertext c.

• m/⊥ ← Dec(sk, c): a quantum algorithm, which takes as input a secret key sk, a
ciphertext c, and outputs a classical plaintext m or a distinguished symbol ⊥ indicating
decryption failure.

We say that a PKE scheme is correct if for every message m ∈ {0, 1}λ and any security
parameter λ ∈ N, the following holds:

Pr

[
Dec(sk, c) = m

∣∣∣∣ (pk, sk)← Gen(1λ)
c← Enc(pk,m)

]
≥ 1− negl(λ),

where the probability is taken over the randomness of KGen, Enc and Dec.

We emphasize that the public key pk, the secret key sk and the ciphertext c can be
either a classical string or a quantum state. Thus there is in total eight different types of
quantum public key encryption, the strongest being with classical public key, secret key
and ciphertext, and the weakest being with quantum public key, secret key and ciphertext.
Looking ahead, we use c to denote a classical string, and q to denote a quantum state. We
let (pk, sk, c) ∈ {c, q}3 and define (pk, sk, c)-PKE where pk = c, sk = c and c = c indicate
that the public key, secret key and ciphertext are classical strings, respectively. Similarly,
pk = q, sk = q and c = q indicate that the public key, secret key and ciphertext are quantum
states, respectively. For example, a (c, c, q)-PKE scheme is a public key encryption where
the public key and secret key are classical strings, while the ciphertext is a quantum state.

In the case where the public key is a quantum state, we assume that there also exists an
algorithm QPKGen(·) that given the (classical or quantum) secret key, output a public key
that satisfies correctness, i.e.

Pr

Dec(sk, c) = m

∣∣∣∣∣∣
(pk, sk)← Gen(1λ)
pk′ ← QPKGen(sk)
c← Enc(pk′,m)

 ≥ 1− negl(λ).
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We now give a very weak security notion for public-key encryption. Because our goal is to
prove impossibility result for constructing PKE under this notion from PRUs, we will also
establish separation for stronger security notions. In the security definition, the adversary
receives polynomially many distinct message-ciphertext pairs and succeeds if, given the
encryption of a new, distinct message, it can recover that message.

Definition 2.8. A public-key encryption scheme is secure if for all adversary A, there exist
a negligible function negl(·) such that for all polynomials µ(·),

Pr

m∗ = m0

∣∣∣∣∣∣∣∣
(pk, sk)← Gen(1λ)

∀0 ≤ i ≤ µ(λ),mi ←$ {0, 1}λ \ {mj|0 ≤ j ≤ i− 1}
∀0 ≤ i ≤ µ(λ), ci ← Enc(pk,mi)

m∗ ← A(c0,m1, c1, . . . ,mµ(λ), cµ(λ))

 ≤ negl(λ),

We now define signature schemes.

Definition 2.9 (Signature scheme). A signature scheme consists of three algorithms:

• (vk, sk)← KGen(1λ) : a quantum algorithm, which takes as input the security parame-
ter and output a couple of keys (vk, sk).

• s ← Sign(sk,m): a quantum algorithm, which takes as input a signing key sk, a
message m, and outputs a signature s.

• ⊤/⊥ ← Ver(vk, s,m): a quantum algorithm, which takes as input a verification key
vk, a signature s, a message m and outputs a distinguished symbol ⊥ indicating failure
or a distinguished symbol ⊤ indicating success.

We say that a signature scheme is correct if for every message m ∈ {0, 1}λ and any security
parameter λ ∈ N, the following holds:

Pr

[
Ver(vk, s,m) = ⊥

∣∣∣∣ (vk, sk)← Gen(1λ)
s← Sign(sk,m)

]
≥ 1− negl(λ),

where the probability is taken over the randomness of KGen, Sign and Ver.

As for quantum public key encryption, we emphasize that the verification key vk, the secret
key sk and the signature s can be either a classical string or a quantum state. Thus there is
in total eight different types of signatures, the strongest being with classical verification
key, secret key and signature, and the weakest being with quantum verification key, secret
key and signature. We let (vk, sk, s) ∈ {c, q}3 and define (vk, sk, s) signatures where vk = c,
sk = c and s = c indicate that the verification key, the secret key and the signature is a
classical string respectively. Similarly, vk = q, sk = q and s = q indicate that the verification
key, the secret key and the signature is a quantum state, respectively. For example, a c, c, q
signature scheme is a signature where the verification key and the secret key are classical
strings, while the signature is a quantum state.

We now define the security definition of one-time signature, unforgeability.
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Definition 2.10. A signature scheme is one-time secure if for every quantum polynomial
time adversary A, there is a negligible function negl(·) such that the following holds:

Pr

 Ver(vk, s∗,m∗) = ⊥
∧ m ̸= m∗

∣∣∣∣∣∣∣∣
(vk, sk)← Gen(1λ)
m←$ {0, 1}∗

s← Sign(sk,m)
(s∗,m∗)← A(vk, s,m)

 ≤ negl(λ),

where the probability is taken over the randomness of KGen, Sign, Ver, A and the choice of
m←$ {0, 1}∗.

Similarly, we define the security notion for digital signature, in which the adversary receives
polynomially many message-signatures pairs and must forge a valid signature on a new,
distinct message.

We give two definitions of efficiently verifiable one-way puzzles, the first one is the usual one
where the puzzle and the secret are classical, and the second have been recently introduced
in [KT24b], where the secret is a quantum state. The latter are called state puzzles, and
here we define efficiently verifiable one, where there is an efficient algorithm that tell you if
the secret is valid for the puzzle or not.

Definition 2.11 (Efficiently Verifiable One-way Puzzles [KT24a]). An efficiently verifiable
one-way puzzle (EV-OWP) is a pair of sampling and verification algorithms (Gen,Ver) with
the following syntax.

• Gen(1λ) → (k, s), is a QPT algorithm that outputs a pair of classical strings (k, s).
We refer to k as the puzzle and s as its key.

• Ver(k, s)→ ⊤/⊥, is a Boolean function that maps every pair of classical strings (k, s)
to either ⊤ or ⊥.

These satisfy the following properties.

• Correctness. Outputs of the sampler pass verification with overwhelming probability,
i.e.,

Pr
(k,s)←Gen(1λ)

[Ver(k, s) = ⊤] = 1− negl(λ).

• Security. Given k, it is (quantum) computationally infeasible to find s satisfying
Ver(k, s) = ⊤, i.e., for every quantum polynomial-sized adversary A,

Pr
(k,s)←Gen(1λ)

[Ver(k,A(k)) = ⊤] = negl(λ).

The following is adapted from the definition of one-way state puzzle in [KT24b].

Definition 2.12 (Efficiently Verifiable One-way State Puzzles). An efficiently verifiable
one-way state puzzle (EV-OWSP) is a pair of sampling and verification algorithms (Gen,Ver)
with the following syntax.

47



Chapter 2. Preliminaries

• Gen(1λ)→ (k, |s⟩), is a QPT algorithm that outputs a classical string k and a quantum
state |s⟩. We refer to k as the puzzle and s as its key.

• Ver(k, |s⟩) → ⊤/⊥, is an algorithm that takes as input a classical string k and a
quantum state |s⟩, and output either ⊤ or ⊥.

These satisfy the following properties.

• Correctness. Outputs of the sampler pass verification with overwhelming probability,
i.e.,

Pr
(k,|s⟩)←Gen(1λ)

[Ver(k, |s⟩) = ⊤] = 1− negl(λ).

• Security. Given k, it is (quantum) computationally infeasible to find |s⟩ satisfying
Ver(k, |s⟩) = ⊤, i.e., for every quantum polynomial-sized adversary A,

Pr
(k,|s⟩)←Gen(1λ)

[Ver(k,A(k)) = ⊤] = negl(λ).

Remark 2.1. All of these primitives can be defined relative to an oracle O, and when
that is the case, all the algorithm in the definition of the primitive can query the oracle,
including the adversary of the security definition. In the security definition of quantum
pseudorandomness primitives, when the adversary makes non-adaptive queries to G or U ,
we say that G is non-adaptively secure. When the adversary always measure the input
register before making queries to G or U , we say that G is classical-accessible. Otherwise,
we say that its quantum-accessible.

2.3 Compressed Oracle Technique

We now present the key ingredients of Zhandry’s compressed oracle technique, first defined
in [Zha19] and refined in [CFHL21]. As mentioned in the introduction, the technique uses
a register to keep a record of a so-called database of the random oracle and this register is
updated whenever an adversary A makes a query to the random oracle. This new register
that contains the database is at the gist of our lower bounds.

We consider the Quantum Random Oracle Model, first defined in [BDF+11]. In this model,
we are given black-box access to a random function H : X → Y. For our model, the
adversary will work on three different registers |x, y, z⟩. The first register is the query
register, the second register is the answer register and the third register is the work register.
The first two registers are used for queries and answers to the oracle, while the last register
is for the adversary’s other computations. We first define the unitary StO that represents
the Standard Oracle and that computes as follows:

StO
∑
x,y,z

αx,y,z |x, y, z⟩ →
∑
x,y,z

αx,y,z |x, y +H(x), z⟩

This unitary corresponds to a query to H.
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Now, we define Zhandry’s compressed oracle. In this model, instead of starting with a
random function H, we start with the uniform superposition of all random functions |H⟩,
where |H⟩ encodes the truth table of the function H. In this model, there is a register
for each x ∈ X , and the value of this register in the state |H⟩ corresponds to H(x). That
is, we have that |H⟩ =

⊗
x∈X |H(x)⟩x Let H = {H : X → Y} be the set of all possible

functions H. We define a new register, the database register |H⟩, that starts in the uniform
superposition 1

|H|
∑

H∈H |H⟩. This register starts in product state with the other registers,
and Zhandry’s idea is that instead of modifying the adversary’s register when querying
the oracle, we will modify the database register instead. To do so, we simply consider the
Fourier basis for the y and the H register before querying the Standard Oracle.

We write this unitary O and it works as follows:

O
∑
x,ŷ,z

αx,ŷ,z |x, ŷ, z⟩ ⊗
∑
Ĥ∈H

αĤ

∣∣∣Ĥ〉→∑
x,ŷ,z

αx,ŷ,z |x, ŷ, z⟩ ⊗
∑
Ĥ∈H

αĤ

∣∣∣Ĥ ⊖ (x, ŷ)
〉
,

where, for any fixed x ∈ X and z ∈ Y , H ⊖ (x, z) : X → Y is defined as:

H ⊖ (x, z)(x′) =

{
H(x′) if x′ ̸= x

H(x)− z if x′ = x.

In other words, H ⊖ (x, z) is obtained by replacing the value of H(x) by H(x)− z in H.

This unitary can be implemented by applying the QFT to the registers |y⟩ and |H⟩, applying
the Standard Oracle, then applying the QFT † again on the |y⟩ and |H⟩ registers.

Finally, we define the compression part. The idea behind the compression is that for every
x in the database mapped to

∣∣0̂〉, we remap it to |⊥⟩, where ⊥ is a new value outside of Y .
More formally, the compression part is done by applying:

Comp =
⊗
x

|⊥⟩ 〈0̂∣∣+ ∑
ŷ:ŷ ̸=0̂

|ŷ⟩ ⟨ŷ|


in the Fourier basis.

Since at the start of the computation, the database will be initiated with the uniform
superposition over all H possible, then after q queries the state of the database can be
described with q vectors. In order to apply the compression as a unitary, we declare that
Comp |⊥⟩ = |0⟩.
Now, we can define the Compressed Oracle:

cO = Comp ◦ O ◦ Comp†.

Of course the compression part inevitably creates some losses, compared to only using the
Standard Oracle. The precise characterization of these losses is given in one of Zhandry’s
lemma, and can be stated as follows:
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Lemma 2.1 (Lemma 5 from [Zha19]). Let A be an algorithm that makes queries to a
random oracle H : X → Y, and output (x1, . . . , xk, y1, . . . , yk) ∈ X k × Yk. Let p be the
probability that ∀1 ≤ i ≤ k, H(xi) = yi. Similarly, consider the algorithm A running with
the Compressed Oracle cO, and output (x′1, . . . , x

′
k, y
′
1, . . . , y

′
k) ∈ X k × Yk. Let p′ be the

probability that ∀1 ≤ i ≤ k, H ′(x′i) = y′i, where H ′ is obtained by measuring the H register
at the end of the execution of the algorithm A. Then:

√
p ≤

√
p′ +

√
k

|Y|

In Chapter 3, we will have that
√

k
|Y| is negligible, and thus we will neglect this term.

We also have the following lemma from [CFHL21] that describes the operator cO(x,ŷ) : H →
H, which is defined as the operator applied on |H⟩ when applying cO to |x⟩ |ŷ⟩⊗ |H⟩. More
formally, we have that:

cO |x⟩ |ŷ⟩ ⊗ |H⟩ = |x⟩ |ŷ⟩ ⊗ cO(x,ŷ) |H⟩

Lemma 2.2 (Lemma 4.3 from [CFHL21]). For any ŷ ̸= 0̂, the operator cO(x,ŷ) is represented
by the following matrix:

⊥ r

⊥ 0
ω−ry
N√
|Y|

y′
ωyy′
N√
|Y|


(
1− 2

|Y|

)
ωyy

′

N + 1
|Y| if y′ = r

1−ωyy′
N −ωry

N

|Y| if y′ ̸= r

For ŷ = 0̂, we have that cO(x,0̂) is the identity.

We also define, for any compressed H : X → Y ∪ {⊥}, for any fixed x ∈ X and z ∈ Y,
H ∪ (x, z) : X → Y as:

H ∪ (x, z)(x′) =

{
H(x′) if x′ ̸= x

z if x′ = x.

In other words, H ∪ (x, z) is obtained by replacing the value of H(x) by z in H.

In the following, we will model the adversary (A) as a series of computation alternating
between unitaries and oracle calls. The adversary’s quantum state will first be initialized
to |0⟩⊗N . Then, his computation will be decomposed as:

A = UkcOUk−1cO . . . cOU2cOU1 (2.4)
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2.3. Compressed Oracle Technique

So that, if |ψi⟩ =
∑

x,y,z,D αx,y,z,D |x, y, z,D⟩ is the state of the adversary after i quantum
queries to cO, then Ui+1 operates on the registers x, y and z only. We also define database
properties :

Definition 2.13 (Database property). A database property is a subset of H. Any database
property D can be seen as a projector on H, as follows:∑

d∈D

|d⟩ ⟨d|

We write D = {I|I ⊆ H} the set of all subspaces of H, that also corresponds to the set of
all database properties.

We now state and prove two lemmas adapted from [LZ19] that we will use thoroughly
in Chapter 3. The first lemma will allow us to ignore the unitaries that the adversary A
applies on the first registers of the state.

Lemma 2.3 (adapted from Lemma 8 from [LZ19]). For any unitary U , any projector P ,
and any state |ϕ⟩,

|(I ⊗ P ) · (U ⊗ I) |ϕ⟩| = |(I ⊗ P ) |ϕ⟩|

The second lemma bounds the amplitude of measuring a database that satisfies a property
P at the ith step of the algorithm, i.e. just after the ith query to the oracle. In this bound,
the first term captures the case where we succeed to find a database that satisfies P before
the ith query. The second term captures the case where we did not have it before the ith
query, but found it with the ith one.

Lemma 2.4 (adapted from Lemma 9 from [LZ19]). Let |ϕi⟩ be the state of an algorithm A
just before the ith quantum query to cO, and |ψi⟩ the state of the same algorithm right after
the ith quantum query to cO. Let P be any projector on D. We have that:

|P |ψi⟩ | ≤ |P |ϕi⟩|+ |P cO(I − P ) |ϕi⟩|

Proof.

|P |ψi⟩| = |P cO |ϕi⟩| = |P cO(P |ϕi⟩+ (I − P ) |ϕi⟩)|
≤ |P |ϕi⟩|+ |P cO(I − P ) |ϕi⟩)| ,

where the inequality comes from the triangle inequality and the fact that P cOP ≤ P .

Remark 2.2. In the next section and in Chapter 3, we will consider multiple functions
h1, . . . , hk : X → Y for some fixed k. Note that this is equivalent to considering one function
H : X → Yk, such that we interpret, for any x ∈ X , the output H(x) as the concatenation
of values of the functions applied to x, i.e. H(x) = h1(x)||h2(x)|| · · · ||hk(x). Hence, in this
setting, the compressed oracle is used on the function H, and a query to any of the hi is a
query to all of the hi’s. Thus, in our results, we count the number of queries to the function
H and thus the number of queries to all of the hi’s. It may seem that we lose some accuracy
in this setting, however this is with the same method that multiple random functions are
implemented in the literature.
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2.4 The Problem of Subset Cover and Its Variants

We define the problem of subset cover.

Definition 2.14 ((r, k)–SC). Let k, r ∈ N∗. Let h1, · · · , hk : X → Y. A (r, k)–SC for
(h1, · · · , hk) is a set of r + 1 elements x0, x1, x2, · · · , xr in X such that:

{hi(x0)|1 ≤ i ≤ k} ⊆
r⋃
j=1

{hi(xj)|1 ≤ i ≤ k}

In other words, for each 1 ≤ i ≤ k, there exists a 1 ≤ j ≤ r and a 1 ≤ ℓ ≤ k such that
hi(x0) = hℓ(xj).

We notice two facts regarding the parameters of (r, k)–SC. First, we have that the problem
becomes easier when r increases. Secondly, we have that when r > k, a (r, k)–SC contains
a (k, k)–SC. Thus finding a (r, k)–SC when r > k is the same as when r = k. For simplicity,
we use k–SC as a shorthand of (k, k)–SC.

We also define the database properties P SC
(r,k) of containing a (r, k)–SC, that is the set of

databases that contains a (r, k)–SC. More formally, we have that:

P SC
(r,k) =

{
D ∈ D

∣∣∣∣∣∃x0, x1, . . . , xr,∀i ̸= 0, x0 ̸= xi, H(x0) ⊆
r⋃
i=1

H(xi)

}
,

where for x ∈ X , H(x) = {h1(x), . . . , hk(x)}.
We follow now with the definition of a harder variation of the k–subset cover called the
k–restricted subset cover (k–RSC).

Definition 2.15 (k–RSC). Let k ∈ N∗. Let h1, . . . , hk : X → Y. A k–restricted subset
cover (k–RSC) for (h1, . . . , hk) is a set of k + 1 elements x0, x1, x2, . . . , xk in X such that:

∀i ∈ {1, . . . , k}, hi(x0) = hi(xi) and x0 ̸= xi.

We also define the database properties PRSC
k,ℓ of k distinct ℓ–RSC, that is the set of databases

that contains k distinct ℓ–RSC. More formally, we have that:

PRSC
k,ℓ =


D ∈ D

∣∣∣∣∣∣∣∣∣∣∣

∃x0,1, . . . , xℓ,1,∀i ̸= 0, x0,1 ̸= xi,1,∀i, hi(x0,1) = hi(xi,1)
∃x0,2, . . . , xℓ,2,∀i ̸= 0, x0,2 ̸= xi,2,∀i, hi(x0,2) = hi(xi,2)
...
∃x0,ℓ, . . . , xℓ,k,∀i ̸= 0, x0,k ̸= xi,k, ∀i, hi(x0,k) = hi(xi,k)
∀i ̸= j, (h1(x0,i), . . . , hℓ(x0,i)) ̸= (h1(x0,j), . . . , hℓ(x0,j))


(2.5)

The problem of finding a k–RSC was introduced in [YTA22], in which the authors describe

an algorithm that finds a k–RSC in O

(
kN

1
2

(
1− 1

2k+1−1

))
quantum queries to h1, . . . , hk

when the hi’s are such that |X | ≥ (k + 1)|Y|.
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2.5. Quantum Computation

We discuss now the last condition in Equation (2.5). We remark that while such condition
was not explicitly imposed in [LZ19] for their lower bound for finding multi-collisions, this
property is implicitly and extensively used in their proof. Such a property is needed because
when they count k–collisions (that is, k distinct x1, . . . , xk such that H(x1) = · · · = H(xk)),
they are actually interested in the number of possible images that would be helpful to reach
a (k + 1)–collision. In particular, this is helpful since one query can only transform one
k–collision (with such a property) into a (k + 1)–collision.

In our case, the last line of (2.5) ensures that the “supporting set” of the k–RSC (i.e. the
set of images of the x0,i by the different random functions h1, . . . , hk) is unique. As in the
multi-collision case, this condition will be crucial to extend a k–RSC to a (k + 1)–RSC,
and for this reason we define it explicitly in PRSC

k,ℓ .

Finally, we state a result from [LZ19], regarding the amplitude of finding j distinct 2–
collisions:

Lemma 2.5 (adapted from [LZ19], Corollary 11). Given a random function h : X → Y
where |N | = Y, let f coli,j be the amplitude of the D containing at least j distinct 2–collisions
after i quantum queries. Then:

f coli,j ≤
(
4e · i3/2

j
√
N

)j
.

For completeness, the proof of Lemma 2.5 is given in Appendix B.1. The proof closely
follows the proof of Corollary 11 in [LZ19] but we need to consider some negligible factors
that incur an extra constant factor in the statement.

2.5 Quantum Computation

Definition 2.16 (Oracle-aided quantum algorithms). A quantum algorithm A is a family
of quantum circuits A := {Aλ}λ∈N that act on three sets of registers: input registers X,
output registers Y, and work registers Z. For convenience, we let W := (X,Y,Z) denote
the internal registers of A. For each input x ∈ {0, 1}λ, the output is computed by running
the algorithm Aλ on |x⟩X |0⟩Y |0⟩W and at the end the output registers are measured in the
computational basis to obtain the output.

A d-query quantum oracle algorithm Ah that has access to an oracle h, defined by the
unitary Oh can be specified by a sequence of unitary matrices (Ud, Ud−1, . . . , U0). The final
state of the algorithm is defined as UdOhUd−1Oh . . .OhU0 |x⟩X |0⟩Y |0⟩Z. When the oracle
h implements some classical function h : X → Y, the corresponding query operator Oh is
defined as |x⟩X |y⟩Y 7→ |x⟩X |y ⊕ h(x)⟩Y.

When Ah is clear from the context, we omit the superscript h and write A.

The following preliminary is borrowed from the formalization of [ACC+22].
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Definition 2.17 (The computational and the Fourier basis). Let Y be a finite Abelian
group with cardinality |Y|. Let {|y⟩}y∈Y be an orthonormal basis of C|Y|. We refer to this
basis as the computational basis. Let Ŷ be the dual group which is known to be isomorphic
to Y. Recall that a member ŷ ∈ Ŷ is a character function (i.e., a function from Y to the
multiplicative group of non-zero complex numbers). The Fourier basis {|ŷ⟩}ŷ∈Ŷ of C|Y| is
defined as

|ŷ⟩ = 1√
|Y|

∑
y∈Y

ŷ(y)† |y⟩ and |y⟩ = 1√
|Y|

∑
ŷ∈Ŷ

ŷ(y) |ŷ⟩ .

Definition 2.18 (Functions and their (quantum) representations). For any function h ∈ YX ,
we define its quantum representation to be |h⟩H :=

⊗
x∈X |h(x)⟩Hx

in the computational
basis, where the register Hx is associated with CY for all x ∈ X , and the register H is
compounded of all Hx. Similarly, for any ĥ ∈ ŶX we define

∣∣∣ĥ〉
H
:=
⊗

x∈X

∣∣∣ĥ(x)〉
Hx

in the
Fourier basis.

Zhandry [Zha19] shows that the purified random oracle is perfectly indistinguishable from
the (standard) quantum random oracle, and thus instead of considering the query operator
Oh, we can consider another equivalent query oracle O acting on three registers X,Y,H as
follows.

|x⟩X |y⟩Y |h⟩H 7→ |x⟩X |y ⊕ h(x)⟩Y |h⟩H ,
where the oracle register H is initialized as |Φ0⟩H =

∑
h∈H

1√
|H|
|h⟩H .

Note that in the Fourier basis, the unitary O acts as follows:

|x⟩X |ŷ⟩Y
∣∣∣ĥ〉

H
7→ |x⟩X |ŷ⟩Y

⊗
x′∈X

∣∣∣ĥ(x′)− δx,x′ · ŷ〉
H
,

where δx,x′ is equal to 1 if x = x′, and 0 otherwise, and the oracle register H is initialized
as |Φ0⟩H =

⊗
x∈X

∣∣0̂〉
Hx

.

Definition 2.19 (Purified view of two-party protocols in the QROM). A two-party protocol
in the Quantum-Computation Classical-Computation (QCCC) model is a protocol in which
two quantum algorithms, Alice and Bob, can query the oracle, apply quantum operation on
their internal registers, and send classical strings over the public (authenticated) channel to
the other party. The sequence of the strings sent during the protocol is called the transcript
of the protocol. Let WA and WB be Alice’s and Bob’s internal registers, respectively. Let
H := YX . For any two-party protocol, we define its purified version as follows.

• If the protocol is inputless, start with |0⟩WA
|0⟩WB

∑
h∈H

1√
|H|
|h⟩H. Otherwise, if

Alice takes as input a classical string a ∈ X and Bob takes as input a classical string
b ∈ X , start with |a⟩WA

|b⟩WB

∑
h∈H

1√
|H|
|h⟩H.

• Alice and Bob run the protocol in superposition, that is, all the measurements (including
those used for generating the transcript) are delayed and the query operator Oh is
replaced by O.
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• Let |Ψ⟩WAWBH denote the state at the end of the protocol, and let |Ψt⟩WAWBH denote
the post-measurement state of |Ψ⟩WAWBH which is consistent with the transcript t.

We now define some properties related to this new register for the database |h⟩H .

Definition 2.20 (Non-zero queries in Fourier basis). Let Y be a finite Abelian group and
Ŷ be the dual group. For any ŷ ∈ ŶX , we define the size of ĥ to be∣∣∣ĥ∣∣∣ := ∣∣∣{x : x ∈ X , ĥ(x) ̸= 0̂}

∣∣∣ .
Definition 2.21 (Oracle support). Let Ĥ := ŶX . For any vector |ϕ⟩WH =

∑
w,ĥ∈Ĥ αw,ĥ |w⟩W

∣∣∣ĥ〉
H
,

we define the oracle support in the Fourier basis of |ϕ⟩ as

ŝupp
H
(|ϕ⟩) :=

{
ĥ : ∃w s.t. αw,ĥ ̸= 0

}
.

We denote ĥHmax (|ϕ⟩) the function ĥ ∈ ŝupp
H
(|ϕ⟩) that has the largest size

∣∣∣ĥ∣∣∣ (if such
function is not unique, by default we pick the lexicographically first one). The definition
extends naturally when the register W does not exist.

Similarly, if we write the oracle part in the computational basis |ϕ⟩WH =
∑

w,h∈H βw,h |w⟩W |h⟩H,
then we define the oracle support in the computational basis of |ϕ⟩ as

suppH(|ϕ⟩) := {h : ∃w s.t. βw,h ̸= 0} .

Definition 2.22. A partial oracle L is a partial function from X to Y. The domain of L is
denoted by QL := dom(L). Equivalently, we view L as a finite set of pairs (x, yx) ∈ X × Y
such that for all (x, yx), (x′, y′x) ∈ L, x ̸= x′. We say a partial oracle L is consistent with
h : X → Y if and only if h(x) = yx holds for all x ∈ QL.

For any partial oracle L, we define the associated projector ΠL by

ΠL :=
⊗
x∈QL

|yx⟩⟨yx|Hx

⊗
x/∈QL

IHx ,

where IHx is the identity operator acting on Hx. It holds that ΠL |h⟩H = |h⟩H if h is
consistent with L, and ΠL |h⟩H = 0 otherwise.

Lemma 2.6. If A asks at most d queries to the superposition oracle, then for all possible
outcomes of A’s intermediate measurements, the joint state |ψ⟩WH conditioned on the
outcome satisfies

∣∣∣ĥHmax (|ψ⟩)∣∣∣ ≤ d.

Lemma 2.7. Given a state |ψ⟩WH and a partial oracle L, the state ΠL |ψ⟩WH can be written
as

ΠL |ψ⟩WH :=
∑

w∈W,ĥ∈Ĥ′

α′
w,ĥ
|w⟩W

⊗
x/∈QL

∣∣∣ĥ(x)〉
Hx

⊗
x∈QL

|yx⟩Hx
,

where Ĥ′ is the set of functions from X \QL to Ŷ. Furthermore, if
∣∣∣ĥHmax (|ψ⟩)∣∣∣ ≤ d, then∣∣∣ĥH′

max (ΠL |ψ⟩)
∣∣∣ ≤ d, where H ′ is the set of registers corresponding to X \QL.
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2.6 Quantum-Heavy Queries Learner

We now define the quantum-heavy queries learner algorithm. It was first defined in
[ACC+22, Construction 4.10], which can be seen as the quantum counterpart of the classical
independence learner of [BM09], where Eve learns all the ε-heavy queries of both Alice and
Bob.

Definition 2.23 (Quantum ε-heavy queries [ACC+22, Definition 4.9]). For x ∈ X , define
the projector

Πx :=
∑

ŷ∈Ŷ\{0̂}

|ŷ⟩⟨ŷ|Hx
.

Given a quantum state |ψ⟩WAWBH, the weight of any x ∈ X is defined as

w(x) := ∥Πx |ψ⟩∥2,

that is, the quantum heaviness of x is the probability of obtaining a non-0̂ outcome while
measuring Hx in the Fourier basis. We call x ∈ X a quantum ε-heavy query if w(x) ≥ ε.

Construction 2.1 (Quantum-heavy queries learner [ACC+22]). Let (A,B) be an inputless
two-party QCCC protocol relative to a random oracle h, in which Alice and Bob make at
most d quantum queries to the oracle. Given the transcript t, (computationally-unbounded)
attacking algorithm Eve is parameterized by ε and works as follows.

1. Let L denote the set of oracle query-answer pairs obtained by Eve from the oracle,
and QL is defined similarly while only containing the queries. Initially prepare L = ∅
and the classical description of the state

|ψ⟩W ′
AW

′
BH

′ = |0⟩W ′
A
|0⟩W ′

B
|Φ0⟩H′ ,

where |Φ0⟩ is a uniform superposition over all h ∈ H, W ′
A , W ′

B and H ′ are the
simulated registers for Alice, Bob, and the oracle prepared by Eve.

2. Simulate the state evolution during the protocol. Concretely, Eve calculates the state
in W ′

AW
′
BH
′ after each round in the protocol. Whenever Eve encounters the moments

in which Alice (Bob) sends their message, Eve calculates the post-measurement state
that is consistent with t.

3. While there is any query x /∈ QL that is quantum ε-heavy conditioned on (t, L), do
the following:

(a) Ask the lexicographically first quantum ε-heavy query x from the real oracle h.

(b) Update the state in W ′
AW

′
BH
′ to the post-measurement state that is consistent

with (x, h(x)).

(c) Update L by adding (x, h(x)) to L.

4. When there is no quantum ε-heavy query left to ask, Eve outputs the simulated quantum
state |ψt⟩W ′

AW
′
BH

′ and her list L, conditioned on the transcript t.
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Remark 2.3. We note that construction 2.1 described above is almost identical to [ACC+22,
Construction 4.10]. The only difference is that Eve outputs the simulated state, which can
be constructed from the classical description that Eve has computed, along with the list of
queries she made to the oracle.

The technical properties of the quantum-heavy queries learner in construction 2.1 are stated
in the following lemma.

Lemma 2.8 ([ACC+22]). For any 0 < ε < 1, the quantum-heavy queries learner described
in construction 2.1 satisfies the following properties:

• Efficiency: E [|L|] ≤ d
ε
, where the expectation is over the randomness of the oracle

and the algorithm Eve.

• Security: When the learner stops and learns a list L, there is no x ∈ QL that
is ε-quantum heavy in the purified view of Eve conditioned on knowing L and the
transcript t.

2.7 Polynomial Compatibility Conjecture

In this section, we recall the Polynomial Compatibility Conjecture (PCC) of [ACC+22].
The formulation we use here is based on quantum states.

Definition 2.24 ((Y , δ, d,N)-state [ACC+22, Definition 4.1]). Let H be a register over the
Hilbert space YN . A quantum state |ψ⟩ over registers W and H is a (Y , δ, d,N)-state if it
satisfies the following two conditions:

• d-sparsity:
∣∣∣ĥHmax (|ψ⟩)∣∣∣ ≤ d. This means that for any measurement of registers H

in the Fourier basis, and W in any basis, the oracle support in the Fourier basis is at
most d.

• δ-lightness: For every x ∈ X , if we measure the Hx register of |ψ⟩ in the Fourier
basis, the probability of getting 0̂ is at least 1− δ. This mean that |ψ⟩ has no δ-heavy
queries.

Definition 2.25 (Compatible states [ACC+22, Definition 4.2]). Two quantum states |ϕ⟩ and
|ψ⟩ over registers W and H are compatible if their oracle supports in the computational basis
(as defined in definition 2.21) have non-empty intersection, i.e., if suppH(|ϕ⟩)∩suppH(|ψ⟩) ̸=
∅.

We now state the conjecture.

Conjecture 2.1 (Polynomial compatibility conjecture [ACC+22, Conjecture 4.3]). There
exists a finite Abelian group Y and δ = 1/poly(d) such that for any d,N ∈ N, it holds that
any two (Y , δ(d), d,N)-states |ϕ⟩ and |ψ⟩ are compatible.
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2.8 Quantum States, Channels, and Trace

A d-dimensional quantum state is a positive semi-definite Hermitian density matrix
ρ =

∑
x∈[d] px |ϕx⟩⟨ϕx|, where the pure states |ϕx⟩⟨ϕx| have trace one, and p1, . . . , pd is

a probability distribution, i.e., p1, . . . , pd ≥ 0 and p1 + · · · + pd = 1. Pure states are the
rank-1 quantum state that can be written as |ϕ⟩⟨ϕ|. We sometimes write |ϕ⟩ or just ϕ
to denote the pure state |ϕ⟩⟨ϕ| for simplicity. We can consider any positive semi-definite
Hermitian matrix (with any unit trace) as an unnormalized quantum state, e.g., ΠρΠ for
some projection Π and quantum state ρ, and call them unnormalized states.

A quantum channel Φ is a completely positive and trace-preserving operator, that can be
represented by matrices B1, . . . , Bk satisfying

I −
k∑
i=1

B†iBi ≥ 0.

The matrices B1, . . . , Bk are the Kraus operators of the channel, and with this notation, Φ
maps a quantum state ρ to Φ(ρ) =

∑k
i=1BiρB

†
i . Quantum channels can represent unitary

operations, projective measurements, or applying a projection Π. We write the composition
of two quantum channels Φ,Ψ by Φ ◦Ψ.
The trace norm of a Hermitian matrix A is defined by ∥A∥1 :=

∑d
i=1 |λi|, where λ1, . . . , λd

are the eigenvalues of A. If A is positive semi-definite, we can write ∥A∥1 = Tr(A). This
induces the trace distance ∥ρ − σ∥tr = 1

2
∥ρ − σ∥1 between two (possibly unnormalized)

mixed states, which forms a distance over (unnormalized) mixed states. A quantum channel
Φ does not increase the trace norm. That is, for any Hermitian matrix A, it holds that
∥Φ(A)∥1 ≤ ∥A∥1. In particular, we have Tr(Φ(A)) ≤ Tr(A) for any positive semi-definite
matrix A. For any two (possibly unnormalized) states ρ, σ,

∥Φ(ρ)− Φ(σ)∥tr =
1

2
∥Φ(ρ− σ)∥1 ≤

1

2
∥ρ− σ∥1 = ∥ρ− σ∥tr. (2.6)

For a positive semi-definite matrix A, it holds that

Tr
(
A2
)
≤ Tr(A)2. (2.7)

Lemma 2.9 (Almost as good as new lemma [Aar04, Aar16]). Let M = (Π0,Π1) be a
binary measurement that acts as M(ρ) = Π0ρΠ0 + Π1ρΠ1. If Tr[Π0ρ] ≥ 1 − ε for ε > 0,
then it holds that ∥ρ−M(ρ)∥tr ≤

√
ε.

Corollary 2.10. In the same setting, ∥ρ− Π0ρΠ0∥tr ≤ ε+
√
ε ≤ 2

√
ε.

Proof. We have ∥M(ρ)− Π0ρΠ0∥tr = ∥Π1ρΠ1∥tr ≤ ε, which gives the result.

We stress that most of the facts on the trace norm and distance also holds for unnormalized
states, i.e., positive semi-definite Hermitian matrices.
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2.9 The QPSPACE Oracle

We recall the definition of the QPSPACE oracle that implements the arbitrary unitary
operation described by polynomial size input [CCS24, BMM+24].

Definition 2.26 (QPSPACE Oracle). The unitary QPSPACE machine oracle, denoted by
QPSPACE, is defined as follows: it takes a pair (ρ,M, t) of an ℓ-qubit quantum state ρ, a
classical Turing machine M , and an integer t ∈ N. The oracle runs M for t steps to obtain
the description of a unitary quantum circuit C that operates on ℓ qubits; if M does not
terminate after t steps or the output is not described as above, the oracle halts and returns
⊥. Otherwise, the oracle applies C on ρ and returns the output quantum state without
measurement.

The quantum access to the QPSPACE oracle is done by allowing coherent (M, t). For any
unitary quantum circuit C that is output by a machine M after t step, there is a QPT
algorithm with QPSPACE oracle that implements C−1(ρ) on input ρ [BMM+24, Proposition
3.5].

2.10 Haar Random States and Unitaries

The Frobenius norm ∥A∥F of a matrix A is defined by
√

Tr(A†A).

Theorem 2.11 ([Mec19, Theorem 5.17]). Let n1, . . . , nk ∈ N and µ = µn1 × · · · × µnk

be the product of Haar unitary measures over X = U(2n1) × · · · × U(2nk). Suppose that
f : X → R is L-Lipschitz in the Frobenius norm. Let N = min(2n1 , . . . , 2nk). For every
t > 0, it holds that

Pr
U←µ

[f(U) ≥ EV←µ[f(V )] + t] ≤ exp

(
−(N − 2)t2

24L2

)
.

Corollary 2.12. Let CU be an m-query quantum oracle algorithm for the product of Haar
random unitaries U chosen from X according to µ defined above. Let g(U) := Pr

[
1← CU

]
.

Then it holds that

Pr
U←µ

[g(U) ≥ EV←µ[g(V )] + t] ≤ exp

(
−t

2(N − 2)

24m2

)
.

Proof. In [Kre21], it is shown the following statement.

Lemma 2.13 ([Kre21]). Let AU be a quantum algorithm that makes T queries to the
unitary oracle U . Define f(U) := Pr

[
1← AU

]
. Then f is T -Lipschitz in the Frobenius

norm, i.e., |f(U)− f(V )| ≤ T · ∥U − V ∥F .

This lemma ensure that C is m-Lipschitz, thus applying theorem 2.11, we obtain the desired
result.
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Lemma 2.14. For any rank-D projection Π on m qubits for m ≥ n,

E|ϕ⟩←σn
〈
ϕ, 0m−n

∣∣Π ∣∣ϕ, 0m−n〉 ≤ D

2n
.

If m = n, the equality holds. In particular, for any n-qubit mixed state ρ, E|ϕ⟩←σn ⟨ϕ| ρ |ϕ⟩ =
1
2n

.

Proof. We simply write 0 to denote 0m−n. We can write E|ϕ⟩←σn ⟨ϕ, 0|Π |ϕ, 0⟩ by

E|ϕ⟩←σn Tr(Π · |ϕ, 0⟩⟨ϕ, 0|) = Tr

(
Π · I ⊗ |0⟩⟨0|

2n

)
≤ 1

2n
Tr(Π) =

D

2n
,

where the last equality follows from the fact that Tr(Π) = rank(Π). If m = n, the
inequality is saturated. The last statement can be shown by writing ρ =

∑
i pi |ψi⟩⟨ψi| for∑

i pi = 1.

2.11 State Property Tests

2.11.1 Swap Test

We review the basic results of the swap test, which can be used to test the purity of a state.
We provide some lemmas about the swap test on a state that is close to pure states, which
are essential to obtain our results.

For two quantum states σ, ρ stored in two different registers A,B, the swap test is executed
on the registers A,B and a control register C initialized to |1⟩⟨1|. It applies Hadamard on
C, swaps A and B conditioned on C, and measures C on the Hadamard basis.

Lemma 2.15 (Swap test). The swap test on input (σ, ρ) outputs 1 with probability

1 + Tr(ρσ)

2
,

in which case we say that it passes the swap test. For pure states |σ⟩ , |ρ⟩, it equals to
1+|⟨ρ|σ⟩|2

2
.

When σ = ρ, we sometimes call it a purity test on ρ, which outputs 1 with certainty if and
only if ρ is a pure state.

Lemma 2.16. Suppose that Tr(ρ2) ≤ 1− 1/T for some state ρ and T ∈ N. Let λ ∈ N. If
we run the purity test 16Tλ times on ρ, then the probability that at least 8λ tests fail among
16Tλ is at least 1− 2−λ.

Proof. Note that each test succeeds with probability (1 + Tr(ρ2))/2 ≤ 1 − 1/2T , and is
independent to each other. Applying Chernoff’s inequality (lemma 2.21) for δ = 1/2, we
obtain the desired result.
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2.11.2 Product Test

We first recall the product test to determine whether an n-partite state |ϕ⟩ is a product
state or far from any product state from [HM10], then give a bound on the success of the
product test on Haar-random states.

Lemma 2.17 ([HM10, Lemma 3], Product test for mixed states). Let m ∈ N and d1, . . . , dm
be the local dimensions of a n-qubit system, i.e.

∏
i∈[m] di = 2n. Let ρ be a mixed state

of n-qubits and for every S ⊆ [m], denote by ρS the state after tracing out the subsystem
S := [m] \ S. Let APTEST denote the algorithm that given two copies of ρ performs the swap
test on each of the m pairs of corresponding subsystems of the two copies of ρ, and that
outputs 1 if all the tests succeeds, and 0 otherwise. Then, the probability that the algorithm
APTEST outputs 1 when applied to two copies of ρ is equal to

Pr
(
1← APTEST(|ϕ⟩⊗2)

)
=

1

2m

∑
S⊆[m]

Tr
[
ρ2S
]
.

For Haar-random states, the above formula is explicitly calculated for any partition S ∪ S
of [m] by [Lub78]:

E
|ψ⟩←σ

Tr
[
ρ2S
]
=

dS + dS
dS · dS + 1

.

As a consequence, we have the following bound for the success of the product test on
Haar-random states.

Lemma 2.18 (Product test for Haar-random states). Let m ∈ N and {di}i∈[m] be the local
dimensions of a n-qubit system, i.e.

∏
i∈[m] di = 2n. Then, the probability that the algorithm

APTEST outputs 1 when applied to two copies of a n-qubit Haar-random state |ψ⟩ satisfies:

E
|ψ⟩←σ

Pr
(
1← APTEST(|ψ⟩⊗2)

)
≤ 2

(
3

4

)m
.

Proof. For every partition S ∪ S of [m], the local dimension of each partition is given by
dS =

∏
i∈S di.

E
|ψ⟩←σ

Pr
(
1← APTEST(|ψ⟩⊗2)

)
= E
|ψ⟩←σ

 1

2m

∑
S⊆[m]

Tr
[
ρ2S
]

=
1

2m

∑
S⊆[m]

dS + dS
dS · dS + 1

≤ 1

2m

∑
S⊆[m]

dS + dS
dS · dS

=
1

2m

∑
S⊆[m]

1

dS
+

1

dS

 =
2

2m

∑
S⊆[m]

1

dS


=

2

2m

∏
i∈[m]

(
1 +

1

di

)
≤ 2

2m

m∏
i=1

(
3

2

)
= 2

(
3

4

)m
,
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where we use the fact that each di ≥ 2 to obtain the last inequality.

2.12 The Quantum OR lemma

Lemma 2.19 ([HLM17, Corollary 3.1], Quantum OR lemma). Let {Πi}i∈[N ] be binary-
valued POVMs. Let 0 < ε < 1/2 and δ > 0. Let Ψ be a quantum state such that either

1. there exists i ∈ [N ] such that Tr[ΠiΨ] ≥ 1− ε, or

2. for all i ∈ [N ], Tr[ΠiΨ] ≤ δ.

Then, there is a quantum circuit C, called “OR tester”, such that measuring the first qubit
in case i) yields

Pr(1← C(Ψ)) ≥ (1− ε)2

7
,

and in case ii),
Pr(1← C(Ψ)) ≤ 4Nδ.

Moreover, the circuit C can be implemented by a unitary quantum poly-space machine as
long as each POVM Πi can be implemented by a quantum poly-space machine and the set
of measurements has a concise polynomial description. In other words, the quantum OR
tester can be executed by a QPSPACE-aided BQP algorithm, where the oracle QPSPACE is
defined in definition 2.26.

Remark 2.4. “Moreover” part of the above theorem for the projective measurements is
shown in [CCS24, Appendix A], and the extension to the POVMs is observed in [BMM+24,
Lemma 5.2].

2.13 Complexity Classes

We include the definitions of PromiseBQP and PromiseQMA and we refer the reader to [Kre21]
for a lengthier explanation.

Definition 2.27. A promise problem L = Lyes∪Lno∪L⊥ with L ⊆ {0, 1}∗ is in PromiseQMA
(Quantum Merlin–Arthur) if there exists a polynomial-time quantum algorithm V(x, |ψ⟩)
called a verifier and a polynomial p such that:

1. (Completeness) If x ∈ Lyes, then there exists a quantum state |ψ⟩ on p(|x|) qubits
(called a witness or proof) such that Pr [V(x, |ψ⟩) = 1] ≥ 2

3
.

2. (Soundness) If x ∈ Lno, then for every quantum state |ψ⟩ on p(|x|) qubits, Pr [V(x, |ψ⟩) = 1] ≤
1
3
.

Definition 2.28. A promise problem L = Lyes∪Lno∪L⊥ with L ⊆ {0, 1}∗ is in PromiseBQP
(Bounded-error Quantum Polynomial time) if there exists a randomized polynomial-time
quantum algorithm A(x) such that:
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1. If x ∈ Lyes, then Pr [A(x) = 1] ≥ 2
3
.

2. If x ∈ Lno, then Pr [A(x) = 1] ≤ 1
3
.

2.14 Process Tomography

The diamond norm of an operator A, denoted by ∥A∥⋄, is defined by:

∥A∥⋄ := sup
Tr(ρ)=1,ρ≥0

∥(A⊗ I)(ρ)∥1,

where I denotes the identity acting with the same dimension as A. We only use the following
fact about the diamond norm: for quantum channels A,B and a density matrix ρ, it holds
that

∥A⊗ I(ρ)−B ⊗ I(ρ)∥tr ≤
1

2
∥A−B∥⋄.

Theorem 2.20 ([HKOT23]). There exists a quantum algorithm Tom that, given black-box
access to a unitary Z acting on the d-dimensional space, satisfies the following for any input
ε, δ ∈ (0, 1):

Accuracy: It outputs a classical description of a unitary Z such that

Pr
Z′←Tom

[
∥Z(·)Z† − Z ′(·)Z ′†∥⋄ ≤ ε

]
≥ 1− δ.

Efficiency: It makes O
(
d2

ε
log 1

δ

)
queries to Z, and takes poly(d, 1

ε
, log 1

δ
) time.

2.15 Chernoff Bounds

We use the following concentration inequalities.

Lemma 2.21 (Multiplicative Chernoff bound). Let X1, . . . , Xn be some independent random
variables over {0, 1}. Let X =

∑n
i=1Xi and µ = E[X]. It holds that

• Pr[X ≥ (1 + δ)µ] ≤ exp
(
− µδ2

2+δ

)
for δ ≥ 0, and

• Pr[X ≤ (1− δ)µ] ≤ exp
(
−µδ2

2

)
for 0 < δ < 1.

2.16 Lemmas on Quantum Primitives

We can build PD-OWFs from short-PRSs.
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Theorem 2.22 (Adapted from [BBO+24, Theorem 6]1). Assuming the existence of (c log λ)-
PRSs with c > 12, there exists a O(λ−c/12+1)-PD-OWF F : {0, 1}ℓ(λ) → {0, 1}ℓ(λ) with
input/output length ℓ(λ) = λc/6.

We will need Kretschmer’s (quantum) oracle O relative to which OWFs do not exist, but
PRSs do. Note that the former is because PromiseBQP and PromiseQMA are equal relative
to this oracle.

Theorem 2.23 ([Kre21]). There exists a quantum oracle O, such that:

1. PromiseBQPO = PromiseQMAO.

2. λ-PRUs exist relative to O. Moreover this implies that λ-PRSs exist [JLS18].

We will also need a result from [CGG24].

Lemma 2.24. The existence of EV-OWPs imply that BQP ̸= QCMA. Moreover, the proof
relativizes.

We will use the following lemma in Section 4.2.

Lemma 2.25 (Independence [ACC+22, Lemma 3.2]). Suppose two quantum algorithms A
and B interact classically in the quantum random oracle model. Let WA and WB denote
their internal registers respectively. Then, at any time during the protocol, conditioned on
the (classical) transcript t and the fixed oracle h ∈ H, the joint state of the registers WA

and WB conditioned on t and h is a product state.

1Here we also use the PD-OWF variant of their theorem originally for PD-OWHF. This choice affects
the parameters of the domain and range in the theorem statement because constructing a PD-OWHF
requires more steps than constructing a PD-OWF (we only need the first step of their proof). However,
note that changing the domain/range of the function to some different polynomials in λ would still make
the proofs in Section 5.1 go through by changing some parameters in the proof.
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❈

Quantum Security of Subset Cover
Problems

In this chapter, we show upper and lower bounds on quantum algorithms for
finding a subset cover.

3.1 The k–Restricted Subset Cover Problem

In this section, we prove a lower bound for the k–RSC problem defined in Definition 2.15.
This section follows closely [LZ19]’s proof of their lower bound on finding multi-collisions.
We will first prove a lower bound for the problem when k = 2. Then, we will prove a lower
bound for finding k distinct 2–RSC, which will be necessary in our induction step. Finally,
we will prove the induction step in the last subsection and obtain a lower bound on finding
s distinct k–RSC.

3.1.1 Lower Bound on Finding a 2–Restricted Subset Cover

In this section, we will prove that the number of queries necessary to find a 2–RSC is
Ω(N3/7), matching the query complexity of the quantum algorithm proposed in [YTA22],
up to a constant factor.

As presented in Definition 2.15, in the 2–RSC problem, we are given 2 random functions
h1, h2 such that for i ∈ {1, 2}, hi : X → Y. The main theorem of this subsection can be
stated as follows:

Theorem 3.1. Given two random functions h1, h2 : X → Y where |N | = Y, a quantum
algorithm needs to make Ω(N3/7) queries to h1 and h2 to find a 2–RSC with a constant
probability.
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In order to prove this theorem, we first introduce some database properties:

• P ′ℓ−col−h1 corresponds to the set of databases that contain at least ℓ distinct collisions
on h1.1 As explained in the previous section, here we will use the fact that we cannot
reach a database containing ℓ + 2 or more collisions from a database containing ℓ
collisions by making a single query:

P ′ℓ−col−h1 =

D ∈ D
∣∣∣∣∣∣∣
∃x1, . . . , xℓ, y1, . . . , yℓ, ∀i, h1(xi) = h1(yi) ̸= ⊥
∀i, xi ̸= yi

∀i ̸= j, h1(xi) ̸= h1(xj)


• Pℓ−col−h1 corresponds to the set of databases that contain exactly ℓ distinct collisions

on h1:
Pℓ−col−h1 = P ′ℓ−col−h1 ∩ ¬P

′
(ℓ+1)−col−h1

• Ppreimage−h1 corresponds to the set of databases that contain a preimage of 0:2

Ppreimage−h1 = {D ∈ D|∃x, h1(x) = 0} .

Finally, for i, ℓ ∈ N, we write:

f̃ coli,ℓ = |Pℓ−col−h1 |ψi⟩| , f coli,ℓ =
∣∣P ′ℓ−col−h1 |ψi⟩∣∣ , gi = ∣∣PRSC

1,2 |ψi⟩
∣∣ , (3.1)

where |ψi⟩ is the state just after the ith query to H = (h1, h2) and PRSC
1,2 was defined in

Equation (2.5). For convenience, we write P2 = PRSC
1,2 in this section.

The goal here is to bound the term gi, and to achieve this we first prove a recursive formula
that involves f̃ coli,ℓ as well:

Lemma 3.2. For every i ∈ N, we have that:

gi ≤ gi−1 +

√√√√2
∑
ℓ≥0

ℓ

N
f̃ coli−1,ℓ

2

+ 4
i− 1

N
. (3.2)

Proof. Let i ∈ N. Let |ϕi⟩ be the state just before the ith query to H = (h1, h2), namely

|ϕi⟩ =
∑
x,ŷ,z,D

αx,ŷ,z,D |x, ŷ, z⟩ ⊗ |D⟩ ,

1We do not define the equivalent property for h2. Since both h1 and h2 are random functions, we
can swap them when considering database property by symmetry, thus we do not need to define more
unnecessary properties.

2Note that the amplitude of finding any preimage is the same as the amplitude of finding the preimage
of 0.
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where x is the query register, y is the answer register, z is the work register and D is the
database register. Let |ψi⟩ be the state right after the ith query to H, namely

|ψi⟩ =
∑
x,ŷ,z,D
D(x)=⊥

1√
N2

∑
y′

ωyy
′

N αx,ŷ,z,D |x, ŷ, z⟩ ⊗ |D ∪ (x, y′)⟩+ cO
∑
x,ŷ,z,D
D(x) ̸=⊥

αx,ŷ,z,D |x, ŷ, z⟩ ⊗ |D⟩ .

From Lemma 2.4, we have that:

|P2 |ψi⟩| ≤ |P2 |ϕi⟩|+ |P2cO(I − P2) |ϕi⟩| . (3.3)

We focus now on bounding the second term:

|P2cO(I − P2) |ϕi⟩| =

∣∣∣∣∣∣∣P2cO
∑
x,ŷ,z

D: no 2–RSC

αx,ŷ,z,D |x, ŷ, z,D⟩

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣∣∣
P2

∑
x,ŷ,z

D: no 2–RSC
D(x)=⊥

1√
N2

∑
y′

ωyy
′

N αx,ŷ,z,D |x, ŷ, z,D ∪ (x, y′)⟩

∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣
P2cO

∑
x,ŷ,z

D: no 2–RSC
D(x)̸=⊥

αx,ŷ,z,D |x, ŷ, z⟩ ⊗ |D⟩

∣∣∣∣∣∣∣∣∣∣

The second term can be bounded by
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∣∣∣∣∣∣∣∣∣∣
P2cO

∑
x,ŷ,z

D: no 2–RSC
D(x)̸=⊥

αx,ŷ,z,D |x, ŷ, z⟩ ⊗ |D⟩

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
P2

∑
x,ŷ,z

D: no 2–RSC
D(x)̸=⊥

1

N2

∑
y′

(
1− ωyy

′

N − ω
D(x)y
N

)
αx,ŷ,z,D |x, ŷ, z⟩ ⊗ |D ∪ (x, y′)⟩

∣∣∣∣∣∣∣∣∣∣
≤ 3

∣∣∣∣∣∣∣∣∣∣
1

N2

∑
y′

P2

∑
x,ŷ,z

D: no 2–RSC
D(x)̸=⊥

αx,ŷ,z,D |x, ŷ, z⟩ ⊗ |D ∪ (x, y′)⟩

∣∣∣∣∣∣∣∣∣∣
≤ 3(i− 1)

N
, (3.4)

where the first inequality comes from Lemma 2.2 and the fact that if the new value in the x
register is |⊥⟩ or stays the same, then there is still no 2-RSC in D. The second inequality
comes from the triangular inequality and the last inequality comes from using the triangular
inequality and the fact that there is at most (i− 1) values in D such that D(x) ̸= ⊥.

For bounding the first term, we analyze now the possibilities for achieving a 2–RSC,
considering the different cases of the inner sum. We have four possible ways to get from D
that does not have a 2–RSC to Dy′ := D ∪ (x, y′) that has a 2–RSC.

• (x = x2) Here, we consider the case where there exists an x0 and x1 such that
h1(x0) = h1(x1) and we query x such that h2(x0) = h2(x). If we have found ℓ
collisions of h1 in D, then ℓ values of y′ can make Dy′ contain a 2–RSC, out of the N
possible values for the outcome of h2 (notice that the value of h1(x) is not relevant
for this case).

• (x = x1) Similar to the previous case, but swapping the roles of h1 and h2.

• (x = x0) Otherwise, we consider the case where we query x such that we have x1 and
x2 (which might be equal), such that h1(x) = h1(x1) and h2(x) = h2(x2). Only i− 1
values of y′ will make Dy′ contain a collision on h1. Similarly, only i− 1 values of y′
will make Dy′ contain a collision on h2.

Thus, we have

|P2cO(I − P2) |ϕi⟩| ≤

(
2 ·
∑
ℓ≥0

ℓ

N
|Pℓ−col−h1 |ϕi⟩|

2

)1/2

+ 4
(i− 1)

N
, (3.5)
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and we give the details on Equation (3.5) in Appendix B.2.

Let |ψi−1⟩ be the state just after the (i− 1)th query, and let Ui be the unitary such that
|ϕi⟩ = (Ui⊗ I) |ψi−1⟩ (see Equation (2.4)). Note that we also have |ψi⟩ = cO · (Ui⊗ I) |ψi−1⟩.
Using Lemma 2.3, we get that:

|P2cO(I − P2) |ϕi⟩| ≤
√

2
∑
ℓ≥0

ℓ

N
|Pℓ−col−h1(Ui ⊗ I) |ψi−1⟩|

2 + 4
i− 1

N

≤
√

2
∑
ℓ≥0

ℓ

N
|Pℓ−col−h1 |ψi−1⟩|

2 + 4
i− 1

N
. (3.6)

Similarly, using Lemma 2.3:

|P2 |ϕi⟩| = |P2 (Ui ⊗ I) |ψi−1⟩| = |P2 |ψi−1⟩| . (3.7)

Then, using Equation (3.3), Equation (3.6) and Equation (3.7), and the notation from
Equation (3.1), we have:

gi ≤ gi−1 +

√√√√2
∑
ℓ≥0

ℓ

N
f̃ coli−1,ℓ

2

+ 4
i− 1

N
.

We will now expand this recursive formula to obtain a bound on gi.

Lemma 3.3. For every i ∈ N, we have that:

gi ≤
√
2
i−1∑
j=1

√
µ3(j)

N
+
√
2 · 2−9.5N1/8

+ 4
i2

N
,

where

µ3(j) = max

{
8e
j3/2√
N
, 10N1/8

}
.

Proof. From Lemma 3.2, we expand recursively Equation (3.2), and obtain (using that
g0 = 0):

gi ≤
i−1∑
j=1

√√√√2
∑
ℓ≥0

ℓ

N
f̃ colj,ℓ

2

+ 4
i−1∑
j=1

j

N
. (3.8)
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The second term of Equation (3.8) can be bounded by

4
i−1∑
j=1

j

N
≤ 4

i−1∑
j=1

i

N
≤ 4

i2

N
. (3.9)

As for the first term of Equation (3.8), we have:

i−1∑
j=1

√√√√2
∑
ℓ≥0

ℓ

N
f̃ colj,ℓ

2

=
√
2
i−1∑
j=1

√√√√µ3(j)∑
ℓ=0

ℓ

N
f̃ colj,ℓ

2

+
∑

ℓ>µ3(j)

ℓ

N
f̃ colj,ℓ

2

≤
√
2
i−1∑
j=1


√√√√µ3(j)∑

ℓ=0

ℓ

N
f̃ colj,ℓ

2

+

√√√√ ∑
ℓ>µ3(j)

1 · f̃ colj,ℓ

2


≤
√
2
i−1∑
j=1

(√
µ3(j)

N
· f colj,1 + f colj,µ3(j)

)

≤
√
2

(
i−1∑
j=1

√
µ3(j)

N
+

i−1∑
j=1

f colj,µ3(j)

)
(3.10)

where in the second inequality, we used the fact that the term
∑

ℓ>µ3(j)
f̃ colj,ℓ

2

is equal to
the amplitude of finding at least µ3(j) distinct ℓ–collisions on h1, thus is exactly equal to
f colj,µ3(j)

2 (defined in Equation (3.1)), and similarly for f colj,1 .

It follows that
i−1∑
j=1

f colj,µ3(j)
≤

i−1∑
j=1

(
4e · j3/2

µ3(j) ·
√
N

)µ3(j)
≤

i−1∑
j=1

(
1

2

)10N1/8

≤ 2−9.5N
1/8

, (3.11)

where the first inequality comes from Lemma 2.5, the second inequality comes from the
definition of µ3(j) and in the last inequality we assume that i ≤ N1/2. Indeed, otherwise A
can execute [YTA22]’s algorithm whose query complexity for finding a k–RSC is upper-
bounded by O

(
N1/2

)
.

Putting together Equation (3.8), Equation (3.9), Equation (3.10) and Equation (3.11) gives
the result.

We can now use Lemma 3.3 to prove Theorem 3.1

Proof of Theorem 3.1. Using Lemma 3.3, we have for i ∈ N:

gi ≤
√
2
i−1∑
j=1

√
µ3(j)

N
+
√
2 · 2−9.5N1/8

+ 4
i2

N
.
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We can bound the first term by:

√
2
i−1∑
j=1

√
µ3(j)

N
=
√
2

 ∑
j:µ3(j)=8e· j

3/2
√
N

√
8ej3/2

N3/4
+

∑
j:µ3(j)=10N1/8

√
10N1/8

N1/2


≤
√
2

 i−1∑
j=1

√
8ej3/2

N3/4
+

∑
j:µ3(j)=10N1/8

√
10N1/8

N1/2


≤ 4
√
e
i7/4

N3/4
+

(
10

8e

)2/3

·N5/12 ·
√
10N1/8

N1/2

≤ 4
√
e
i7/4

N3/4
+O(N−1/48),

where the second inequality comes from counting the number of j such that µ3(j) = 10N1/8,
which is equal to the number of j such that 8e j

3/2
√
N
≤ 10N1/8.

Thus, we have the following bound on gi:

gi ≤ 4
√
e
i7/4

N3/4
+ 4

i2

N
+O(N−1/48).

This bound is in the compressed oracle model, and using Lemma 2.1 we obtain the same
bound in the random oracle model by putting the negligible term in the O

(
N−1/48

)
.

So when i = o(N3/7), we have gi = o(1). Hence if we want gi to be constant, i.e. not o(1),
we must have i = Ω

(
N3/7

)
.

3.1.2 Lower Bound on Finding k Distinct 2–Restricted Subset Cover

We are now interested in bounding the number of queries needed to find k distinct triplets
that satisfy a 2–RSC. We have the following result:

Theorem 3.4. Given two random functions h1, h2 : X → Y where N = |Y|, a quantum
algorithm needs to make Ω(k4/7 ·N3/7) queries to h1 and h2 to find k distinct 2–RSC with
constant probability, for any k ≤ N1/8.

To prove this theorem, we first introduce some notation. We denote P2,k,ℓ the set of databases
that satisfies k distinct 2–RSC, and that contain exactly ℓ collisions on h1. Using the
notation from the Section 3.1.1 and Equation (2.5), we have that P2,k,ℓ = PRSC

k,2 ∩ Pℓ−col−h1 .
We denote gi,k =

∣∣PRSC
k,2 |ψi⟩

∣∣ and ĝi,k,ℓ = |P2,k,ℓ |ψi⟩|, where |ψi⟩ is the state just after the
ith query to H = (h1, h2).

Our goal is to bound gi,k, and as in the previous subsection, we will first prove a recursive
formula stated in the next lemma.
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Lemma 3.5. For every i ∈ N, and every k ∈ N, we have that:

gi,k ≤ gi−1,k +

√
2
∑
ℓ≥0

ℓ

N
ĝ2i−1,k−1,ℓ +

(i− 1)

N
gi−1,k−1.

Proof. From Lemma 2.4, we have the following inequality:

∣∣PRSC
k,2 |ψi⟩

∣∣ ≤ ∣∣PRSC
k,2 |ϕi⟩

∣∣+ ∣∣PRSC
k,2 cO(I − PRSC

k,2 ) |ϕi⟩
∣∣ .

And we have that:∣∣PRSC
k,2 cO(I − PRSC

k,2 ) |ϕi⟩
∣∣

≤

∣∣∣∣∣∣∣∣∣∣
PRSC
k,2

∑
x,ŷ,z

D:k-1 2-RSC
D(x)=⊥

1√
N2

∑
y′

ωyy
′

N αx,ŷ,z,D |x, ŷ, z,D ∪ (x, y′)⟩

∣∣∣∣∣∣∣∣∣∣
+ 3

i− 1

N

∣∣PRSC
k−1,2 |ϕi⟩

∣∣2

≤

2
∑
ℓ≥0

ℓ

N

∑
x,ŷ,z

D:k-1 2-RSC
ℓ collisions

on h1

|αx,ŷ,z,D|2


1/2

+

(i− 1)2

N2

∑
x,ŷ,z

D:k-1 2-RSC

|αx,ŷ,z,D|2


1/2

+ 3
i− 1

N

∣∣PRSC
k−1,2 |ϕi⟩

∣∣2

≤

(
2
∑
ℓ≥0

ℓ

N
|P2,k−1,ℓ |ϕi⟩|2

)1/2

+ 4
i− 1

N

∣∣PRSC
k−1,2 |ϕi⟩

∣∣2 ,
where the first inequality comes from the same calculations done to obtain Equation (3.4),
and the second equality uses the same cases as for the case k = 1 in Lemma 3.2.

Using Lemma 2.3 and previous notation (as in Lemma 3.2), we obtain that:

gi,k ≤ gi−1,k +

(
2
∑
ℓ≥0

ℓ

N
ĝ2i−1,k−1,ℓ

)1/2

+ 4
(i− 1)

N
gi−1,k−1.

Following the proof from the case k = 1, we will split the sum in two using µ3(j) as a
threshold. We also define a new notation that will simplify expressions:

Definition 3.1.

Ai =
i−1∑
ℓ=0

√
2

(√
µ3(ℓ− 1)

N
+
√
8
ℓ− 1

N

)
,
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where

µ3(ℓ) = max

{
8e
ℓ3/2√
N
, 10N1/8

}
.

Before bounding gi,k, we first prove a bound on Ai.

Lemma 3.6. For every i ∈ N, we have that:

Ai ≤ 8
√
e
i7/4

N3/4
+ 4

i2

N
+O

(
N−1/48

)
.

It follows that Ai < 2eN1/8 for i ≤ N1/2.

We leave the proof of Lemma 3.6 to Appendix B.3. We can now state the lemma that
bounds gi,k.

Lemma 3.7. For every i ∈ N and k ∈ N, we have that:

gi,k <
Aki
k!

+
√
2 · 2−N1/8

.

Proof. We write f coli,j =
∣∣P ′j−col−h1 |ϕi⟩∣∣. From Lemma 3.5, we have that:

gi,k ≤ gi−1,k +

√
2
∑
ℓ≥0

ℓ

N
· ĝ2i−1,k−1,ℓ + 4

i− 1

N
· gi−1,k−1

≤ gi−1,k +
√
2

(√
µ3(i− 1)

N
· gi−1,k−1 + f coli−1,µ3(i−1)

)
+ 4

i− 1

N
· gi−1,k−1

= gi−1,k +
√
2

(√
µ3(i− 1)

N
+
√
8
i− 1

N

)
gi−1,k−1 +

√
2 · f coli−1,µ3(i−1), (3.12)

where the second inequality comes from separating the sum in two, similar to the proof
of Lemma 3.3.

Following [LZ19]’s proof for Lemma 14, by expanding the recursion we get:

gi,k ≤
Aki
k!

+
√
2 · eAi29.5N

1/8

. (3.13)

For completeness, the proof of Equation (3.13) is given in Appendix B.4. Using Lemma 3.6,
we can bound the second term, and:

gi,k <
Aki
k!

+
√
2 · 2−N1/8

.

We can now prove the main theorem of this subsection.
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Proof of Theorem 3.4. Following from Lemma 3.7, we have that:

gi,k ≤
Aki
k!

+
√
2 · 2−N1/8 ≤

(
Ai · e
k

)k
+
√
2 · 2−N1/8

.

We now use the bound on Ai of Lemma 3.6:

gi,k ≤
(
8e3/2

k
· i

7/4

N3/4
+

4e

k
· i

2

N
+
e

k
·O
(
N−1/48

))k
+
√
2 · 2−N1/8

.

So if i = o(k4/7 · N3/7), then gi,k = o(1). Hence if we want gi,k to be a constant, i.e. not
o(1), we must have i = Ω

(
k4/7 ·N3/7

)
.

3.1.3 Lower Bound on Finding k Distinct s–Restricted Subset Cover

In this section, we generalize the result to the problem of finding k distinct s–RSC, for
any s ≥ 3 and any k ≥ 1. We are given s random functions h1, . . . , hs such that for any
i ∈ [1, s], hi : X → Y . We will prove the following theorem.

Theorem 3.8. Given s random functions h1, . . . , hs : X → Y where N = |Y|, a quantum
algorithm needs to make Ω

(
(s+ 1)

− 2s

2s+1−1 · k
2s

2s+1−1 ·N
2s−1

2s+1−1

)
queries to h1, . . . , hs to find

k distinct s–RSC with constant probability, for any s ≤ log(log(N)) and any k ≥ N1/2s+1.

And naturally we have the following corollary for k = 1:

Corollary 3.9. Given s random functions h1, . . . , hs : X → Y where N = |Y|, a quantum
algorithm needs to make Ω

(
(s+ 1)

− 2s

2s+1−1 ·N
2s−1

2s+1−1

)
queries to h1, . . . , hs to find one s-

–RSC with constant probability, for any s ≤ log(log(N)).

In order to prove Theorem 3.8, we first define some notations, starting with the notations
for the amplitudes. We define:

1. fi,j as the amplitude of the databases D containing at least j distinct (s− 1)–RSC
after i quantum queries.

2. ĝi,j,k as the amplitude of the databases D containing at least j distinct (s− 1)–RSC
and exactly k distinct s–RSC after i quantum queries.

3. gi,k as the amplitude of the databases D containing exactly k distinct s–RSC after i
quantum queries.

More formally, let |ϕi⟩ (resp. |ψi⟩) be the state of the algorithm just before (resp. after)
the ith query to the oracle. We have:

fi,j =
∣∣PRSC

j,(s−1) |ψi⟩
∣∣ ,

ĝi,j,k =
∣∣PRSC

j,(s−1)P
RSC
k,s ¬PRSC

k+1,s |ψi⟩
∣∣ ,

gi,k =
∣∣PRSC

k,s ¬PRSC
k+1,s |ψi⟩

∣∣ .
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We want to bound gi,k, and to do so, we define some convenient notation. We start by
defining Πs, a term that appears in the bound of gi,k.

Definition 3.2. Let Πs be defined as follows:


Π1 = 1

Π2 = 1

∀s ≥ 2, Πs+1 = 2 ·
√
s ·
√
Πs

We define Ai,s and µs(ℓ) as follows:

Definition 3.3.

Ai,s =
i−1∑
ℓ=0

Bℓ,s−1,

where

Bℓ,s =

√
s · µs+1(ℓ)

N
+ 4

(
ℓ

N

)s/2
+

(
s∑
r=2

ℓ

N r

)1/2

,

and

µs(ℓ) = max

{
Πs−1 · (8e)

2s−2−1

2s−3
ℓ(2

s−1−1)/2s−2

N (2s−2−1)/2s−2 , 40 · s2 · Πs−1 ·N1/2s

}
.

We can now state the bound on gi,k that we will need to prove Theorem 3.8:

Lemma 3.10. For every i ∈ N and every k ∈ N, we have that:

gi,k ≤
Aki,s+1

k!
+O

(
2−(s+1)2·Πs·N1/2s+1

)
.

In order to prove Lemma 3.10, we first prove a bound on Ai,s.

Lemma 3.11. Ai,s ≤ (8e)
2s−2−1

2s−2 i(2
s−1)/2s−1

N(2s−1−1)/2s−1 · Πs +O
(
s4 · Πs ·N−1/(2

s(2s−2)))
In the interest of space, we leave the proof of Lemma 3.11 to Appendix B.5, and we now
prove Lemma 3.10.

Proof of Lemma 3.10. We prove this theorem by induction. The case s = 3 corresponds
to Section 3.1.2. Fix s ≥ 3. We assume that fi,j ≤

Aj
i,s

j!
+O

(
2−s

2·Πs−1·N1/2s
)

for every i ∈ N

and j ∈ N. We will show that gi,k ≤
Ak

i,s+1

k!
+O

(
2−(s+1)2·Πs·N1/2s+1

)
.

Similarly to the previous subsection, we will bound gi,k recursively. Using Lemma 2.4, we
have that: ∣∣PRSC

k,s |ψi⟩
∣∣ ≤ ∣∣PRSC

k,s |ϕi⟩
∣∣+ ∣∣PRSC

k,s cO
(
I − PRSC

k,s

)
|ϕi⟩
∣∣ ,
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where the second term can be written as:∣∣∣∣∣∣∣∣∣∣
PRSC
k,s

∑
x,ŷ,z

D:(k−1) distinct s−RSC
D(x)=⊥

1√
N s

∑
y′

ωyy
′

n αx,ŷ,z,D |x, ŷ, z,D ∪ (x, y′)⟩

∣∣∣∣∣∣∣∣∣∣
(3.14)

+

∣∣∣∣∣∣∣∣∣∣
PRSC
k,s cO

∑
x,ŷ,z

D:(k−1) distinct s−RSC
D(x) ̸=⊥

αx,ŷ,z,D |x, ŷ, z,D⟩

∣∣∣∣∣∣∣∣∣∣
. (3.15)

To bound the term of Equation (3.14), we analyze now the possibilities for achieving a
s–RSC, considering the different cases of the inner sum. We have different possible ways to
get from D that does not have a s-RSC to Dy′ := D ∪ (x, y′) that has a s-RSC.

• (x = x0) As for the case s = 2, we consider the cases where we query x such that we
have x1, . . . , xs, such that ∀1 ≤ j ≤ s, hs(x) = hs(xs). For every 1 ≤ j ≤ s, only i− 1

values of y′ will make Dy′ contain a collision on hs. Thus there are at most (i−1)s
Ns

values of y′ such that Dy′ contain a new s–RSC in this case.

• (x = xs) Similarly to the case s = 2, we consider the case where there exists x0, . . . , xs−1
such that x0, . . . , xs−1 is a (s − 1)–RSC, and we query x such that hj(x) = hj(x0)
for some 1 ≤ j ≤ s. If we have found ℓ distinct (s− 1)–RSC in D previously, then
ℓ values of y′ can make Dy′ contain a s–RSC, out of the N possible values for the
outcome of hj (notice that the values of hi(x) for i ̸= j are not relevant for this case),
and there are s different values for j.

• However, some new terms do not appear in the case of 2–RSC. That would be the
case where the query x is equal to xi1 = xi2 = · · · = xir for some r ∈ {2, . . . , s} in
the new s–RSC. We bound these terms as follows: for each r, there is at most (i− 1)
distinct (s− r)–RSC. For each of these (s− r)–RSC, there are r collisions missing on
some hi1 , . . . , hir . And exactly one value of y′ will make Dy′ contain a collision for hij .
The values of the other hash functions are irrelevant here. Hence using Lemma 2.3
we can bound the probability of this event by:

s∑
r=2

i− 1

N r
gi−1,k−1

2, (3.16)

where we bound the amplitude of the database containing at least one (s− r)–RSC
and k − 1 distinct s–RSC after i− 1 quantum queries by gi−1,k−1, the amplitude of
the databases containing only k − 1 distinct s–RSC after i− 1 quantum queries.
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Using Lemma 2.3, and as for the previous cases, by bounding the term of Equation (3.15)

by 3
(

(i−1)
N

)s/2
gi−1,k−1, we can upper bound gi,k by

gi−1,k +

√
s
∑
ℓ≥0

ℓ

N
ĝ2i−1,ℓ,k−1 + 4

√
(i− 1)s

N s
gi−1,k−12 +

√√√√ s∑
r=2

i− 1

N r
gi−1,k−12

≤ gi−1,k +

√
s
∑
ℓ≥0

ℓ

N
ĝ2i−1,ℓ,k−1 +

4

(
i− 1

N

)s/2
+

(
s∑
r=2

i− 1

N r

)1/2
 gi−1,k−1, (3.17)

where the second term can be split in two, similar to the proof of Lemma 3.3:

√
s
∑
ℓ≥0

ℓ

N
ĝ2i−1,ℓ,k−1 ≤

√
s · µs+1(i− 1)

N
gi−1,k−1 +

√
s · fi−1,µs+1(i−1)v

The term fi−1,µs+1(i−1) can be bounded by induction hypothesis by:

fi−1,µs+1(i−1) ≤
A
µs+1(i−1)
i−1,s

µs+1(i− 1)!
+O

(
2−s

2·Πs−1·N1/2s
)
,

and the first term can be bounded by using Lemma 3.11 and the definition of µs+1(i− 1)
by:

 e(4e)
2s−2−1

2s−2 i(2
s−1)/2s−1

N(2s−1−1)/2s−1Πs +O
(
s4ΠsN

−1/(2s(2s−2)))
max

{
(8e)

2s−1−1

2s−2 i(2
s−1)/2s−1

N(2s−1−1)/2s−1Πs, 40(s+ 1)2Πs ·N1/2s
}
40(s+1)2ΠsN1/2s+1

,

which is smaller than (
1

2
+ o(1)

)40(s+1)2·Πs·N1/2s+1

,

which leads to:
fi−1,µs+1(i−1) < 2−9.8·4·(s+1)2·Πs·N1/2s+1

.

Using Definition 3.3, we rewrite Equation (3.17) as:

gi,k ≤ gi−1,k +Bℓ,s · gi−1,k−1 +
√
s · 2−9.8·4·(s+1)2·Πs·N1/2s+1

.
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Then, by expanding the inequality and using the fact that g0,k−1 = 0, we get:

gi,k ≤gi−1,k +Bℓ,s · gi−1,k−1 +
√
s · 2−9.8·4·(s+1)2·Πs·N1/2s+1

...

≤
i−1∑
ℓ=0

(
Bℓ,s · gℓ,k−1 +

√
s · 2−9.8·4·(s+1)2·Πs·N1/2s+1

)
≤

(
i−1∑
ℓ=0

Bℓ,s · gℓ,k−1

)
+ s ·N1/2 ·

√
s · 2−9.8·4·(s+1)2·Πs·N1/2s+1

≤

(
i−1∑
ℓ=0

Bℓ,s · gℓ,k−1

)
+ s3/2 · 2−9.5·4·(s+1)2·Πs·N1/2s+1

,

where we use the fact that i ≤ s ·
√
N for the third inequality.

Expanding this inequality, we obtain

gi,k ≤
Aki,s+1

k!
+ s3/2 · eAi,s+1 · 2−9.5·4·(s+1)2·Πs·N1/2s+1

. (3.18)

For details on Equation (3.18), see Appendix B.6.

And because i ≤ s ·
√
N , we have Ai,s+1 ≤ 8e · (s+ 1)2 · Πs ·N1/2s+1 . Using this and the

fact that s3/2 ≤ 2Πs·(s+1)2·N1/2s+1

, we conclude:

gi,k ≤
Aki,s+1

k!
+ 2−(s+1)2·Πs·N1/2s+1

.

At last we bound Πs to conclude the analysis.

Proposition 3.12. We have for any s ∈ N that:

Πs ≤ 4s

Proof. The statement is true for s = 1, 2. Assume it is true for s ≥ 2. Then,

Πs+1 = 2
√
s ·
√
Πs ≤ 2

√
s ·
√
4s ≤ 4(s+ 1).

Finally, we can prove Theorem 3.8:

78



3.2. The (r,k)–Subset Cover Problem

Proof of Theorem 3.8. From Lemma 3.11, we have:

Ai,s ≤ (8e)
2s−2−1

2s−2
i(2

s−1)/2s−1

N (2s−1−1)/2s−1 · Πs +O
(
s4 · Πs ·N−1/(2

s(2s−2))) .
Hence we can bound gi,k for any i, k, by:

gi,k ≤
Aki,s+1

k!
+O

(
2−(s+1)2·Πs·N1/2s+1

)
≤
(
e · Ai,s+1

k

)k
+O

(
2−(s+1)2·Πs·N1/2s+1

)
≤

(
e

k
(8e)

2s−1−1

2s−1
i(2

s+1−1)/2s

N (2s−1)/2s · Πs+1 +
e

k
·O
(
(s+ 1)4Πs+1 ·N−1/(2

s+1(2s+1−2))
))k

+O
(
2−(s+1)2·Πs·N1/2s+1

)
≤

(
e

k
· (8e)

2s−1−1

2s−1
i(2

s+1−1)/2s

N (2s−1)/2s · 4(s+ 1) +
e

k
·O
(
4(s+ 1)5 ·N−1/(2s+1(2s+1−2))

))k

+O
(
2−4s(s+1)2·N1/2s+1

)
,

where the first inequality comes from Lemma 3.10, the third inequality comes from Lemma 3.11
and the last inequality comes from Proposition 3.12.

If i = o
(
(s+ 1)

− 2s

2s+1−1 · k
2s

2s+1−1 ·N
2s−1

2s+1−1

)
, then gi,k = o(1). Hence if we want gi,k to be

constant, i.e. not o(1), we must have i = Ω
(
s
− 2s

2s+1−1 · k
2s

2s+1−1 ·N
2s−1

2s+1−1

)
.

3.2 The (r, k)–Subset Cover Problem

In this section, we prove some upper and lower bounds on the (r, k)–SC problem. As far as
we know, there is no quantum algorithm to find a (r, k)–SC problem, except for [YTA22]’s
algorithm when k = r, and for the harder problem of finding a k–RSC. We first prove a
lower bound on the (1, k)–SC problem, then design new algorithms for finding a (r, k)–SC.

3.2.1 Lower Bound on Finding a (1, k)–Subset Cover

In this subsection, we will prove a lower bound on the (1, k)–SC problem. We are given k
random functions h1, . . . , hk such that for i ∈ [1, k], hi : X → Y. We write N = |Y| and
for x ∈ X , we write H(x) = {hi(x)|i ∈ [1, k]}. The goal of this subsection is to prove the
following theorem.

Theorem 3.13. Given k random functions h1, . . . , hk : X → Y where N = |Y|, a quantum
algorithm needs to make Ω

(
C
−1/5
k ·Nk/5

)
queries to h1, . . . , hk to find one (1,k)–SC with

constant probability, where Ck =
∑k

j=2
k!

(j−1)! .
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To prove Theorem 3.13, we introduce the problem of finding a j–repetition on hi1 , . . . , hij ,
that consists in finding an x ∈ X such that hi1(x) = · · · = hij(x). More formally, we define
the following database property:

Definition 3.4.

∀ℓ, j, P rep
ℓ,j =

{
D ∈ D

∣∣∣∣ ∃x1, x2, . . . , xℓ,∀i, ∀1 ≤ ℓ ≤ j, h1(xi) = hℓ(xi)
∀i ̸= p, xi ̸= xp

}
.

Note that we define the property only for ℓ distinct j–repetition on h1, . . . , hj, because by
symmetry, the probability of finding a j–repetition on h1, . . . , hj is the same as finding a
j–repetition on hi1 , . . . , hiℓ .

We also define:

1. f̃ repi,ℓ,j as the amplitude of the databases D containing at least ℓ distinct j–repetitions
on h1, . . . , hj after i quantum queries.

2. f repi,ℓ,j as the amplitude of the databases D containing exactly ℓ distinct j–repetitions
on h1, . . . , hj after i quantum queries.

3. gi,k as the amplitude of the databases D containing at least one (1, k)–SC after i
quantum queries.

More formally, let |ψi⟩ be the state just after the ith query to the oracle, then f̃ repi,ℓ,j =∣∣P rep
ℓ,j |ψi⟩

∣∣, f repi,ℓ,j =
∣∣P rep

ℓ,j ¬P
rep
ℓ+1,j |ψi⟩

∣∣, and gi,k =
∣∣∣P SC

(1,k) |ψi⟩
∣∣∣.

Our goal is to bound gi,k and for that we will bound f̃ repi,ℓ,j.

Lemma 3.14. For all i, ℓ, j ∈ N, we have that:

f̃ repi,ℓ,j ≤
(

4e · i
ℓ ·N j−1

2

)ℓ
.
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Proof. Following the proof of Lemma 3.5, we have that:

f̃ repi,ℓ,j ≤ f̃ repi−1,ℓ,j +

√
1

N j−1 f̃
rep
i−1,ℓ−1,k

2

+
3(i− 1)

N j
f̃ repi−1,ℓ−1,k

≤ f̃ repi−1,ℓ,j + 4

√
1

N j−1 f̃
rep
i−1,ℓ−1,k

2

≤
i−1∑
m=0

4

√
1

N j−1 f̃
rep
m,ℓ−1,k

≤
i−1∑
m1=0

m1∑
m2=0

4

√
1

N j−14

√
1

N j−1 f̃
rep
m2,ℓ−2,k

...

≤
∑

0≤mℓ<mℓ−1<···<m1<i

(
16

N j−1

)ℓ/2
≤ iℓ

ℓ!

(
16

N j−1

)ℓ/2
≤
(

4e · i
ℓ ·N (j−1)/2

)ℓ
,

where the second inequality comes from the fact that we can assume i ≤ N j/2.

We now bound the amplitude gi,k with an inductive formula, as for the RSC problem.

Lemma 3.15. For all i ∈ N and k ∈ N, we have that:

gi,k ≤ gi−1,k + 4

(
kk
i− 1

Nk

)1/2

+

(
k∑
j=2

∑
ℓ≥0

ℓ

Nk+1−j ·
k!

(j − 1)!
f repi−1,ℓ,j

2

)1/2

.

Proof. For convenience, we denote Pk = P SC
(1,k) the projector on the databases D that contain

at least a (1, k)–SC. We write |ϕi⟩ the state just before the ith quantum query, and |ψi⟩ the
state just after the ith quantum query.

Using Lemma 2.4, and writing Dy′ := D ∪ (x, y′) we have that:

|Pk |ψi⟩| ≤ |Pk |ϕi⟩|+

∣∣∣∣∣∣∣∣Pk
∑
x,ŷ,z

D:no (1,k)–SC

1√
Nk

∑
y′

ωyy
′

N αx,ŷ,z,D |x, ŷ, z,Dy′⟩

∣∣∣∣∣∣∣∣+ 3
i− 1

Nk
(3.19)

We analyze now the possibilities for achieving a (1, k)–SC, considering the different cases
of the inner sum. We have multiple possible ways to get from D that does not have a
(1, k)–SC to Dy′ that has a (1, k)–SC.
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• (x = x0) Here, we consider the case where we query x such that {hi(x)} ⊆ {hi(x1)},
where x1 was queried before. Notice that there are (i− 1) possible values of x1, and
for each fixed value of x1, we have kk possible values of H(x) that would lead to this
value. This leads to kk(i− 1) possible values of y′ that would lead to an (1, k)-SC.

• (x = x1) Here, we consider the case where we query x such that {hi(x0)} ⊆ {hi(x)},
where x0 was queried before.

Let us suppose that x0 has a j-repetition on hi1 , . . . , hij , for some distinct i1, . . . , ij.
Notice that in this case, S := {hi(x0)} has k − j + 1 elements and we will count the
number of possible H(x) that contains all of these elements. Out of the k functions
h1, . . . , hk, we have

(
k

k−j+1

)
possible ways of choosing the functions that will be filled

with the values in S. When we fix such functions, there are |S|! = (k− j+1)! ways of
filling them with the elements of S, and N j−1 ways of filling the other functions. There-
fore, there are

(
k

k−j+1

)
(k − j + 1)!N j−1 values of H(x) such that {hi(x0)} ⊆ {hi(x)}.

This gives, bounding the last term of Equation (3.19) by 3
(
kk i−1

Nk

)1/2:
|Pk |ψi⟩| ≤ |Pk |ϕi⟩|+ 4

kk i− 1

Nk

∑
x,ŷ,z

D:no k–SC

|αx,ŷ,z,D|2


1/2

+


k∑
j=2

∑
ℓ≥0

ℓ

Nk+1−j ·
k!

(j − 1)!

∑
x,ŷ,z

D:no k–SC
ℓ distinct j−repetitions

|αx,ŷ,z,D|2


1/2

.

Using Lemma 2.3 and our notations, we conclude:

gi,k ≤ gi−1,k + 4

(
kk
i− 1

Nk

)1/2

+

(
k∑
j=2

∑
ℓ≥0

ℓ

Nk+1−j ·
k!

(j − 1)!
f repi−1,ℓ,j

2

)1/2

.

We now bound gi,k in the following lemma.

Lemma 3.16. For every i ∈ N and k ∈ N, we have that:

gi,k ≤ 4kk/2 · i
3/2

Nk/2
+

√√√√ k∑
j=2

k!

(j − 1)!
· 4e · i

5/2

Nk/2
.
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Proof. From Lemma 3.15, we have that:

gi,k ≤ gi−1,k + 4

(
kk
i− 1

Nk

)1/2

+

(
k∑
j=2

∑
ℓ≥0

ℓ

Nk+1−j ·
k!

(j − 1)!
f repi−1,ℓ,j

2

)1/2

.

We want to bound each term in the sum indexed by j. Fix j ∈ {2, . . . , k}. We have that:∑
ℓ≥0

ℓ

Nk+1−j ·
k!

(j − 1)!
f repi−1,ℓ,j

2 =
k!

(j − 1)!
·
∑
ℓ≥0

ℓ

Nk+1−j f
rep
i−1,ℓ,j

2.

Next, we have that: ∑
ℓ≥0

ℓ

Nk+1−j f
rep
i−1,ℓ,j

2 ≤ i− 1

Nk+1−j ·
∑
ℓ≥1

f repi−1,ℓ,j
2

=
i− 1

Nk+1−j · f̃
rep
i−1,1,j

2

≤ i− 1

Nk+1−j ·
(
4e · (i− 1)

N
j−1
2

)2

=
(4e)2(i− 1)3

Nk
,

where f̃ repi−1,1,j is the amplitude of the databases D containing at least one j–repetition on
h1, . . . , hj after i− 1 quantum queries. The first inequality follows since there cannot be
more than i− 1 distinct j–repetitions on h1, . . . , hj after i− 1 quantum queries. The second

inequality comes from the bound on f̃ repi−1,1,j in Lemma 3.14.

This gives:(
k∑
j=2

k!

(j − 1)!

∑
ℓ≥0

ℓ

Nk+1−j f
rep
i−1,ℓ,j

2

)1/2

≤

√√√√ k∑
j=2

k!

(j − 1)!
· 4e · (i− 1)3/2

Nk/2
.

Finally, by developing the recursive terms (and using that g0,k = 0), we get that:

gi,k ≤ gi−1,k + 4

√
kk
i− 1

Nk
+

√√√√ k∑
j=2

k!

(j − 1)!
· 4e · (i− 1)3/2

Nk/2

...

≤
i−1∑
ℓ=0

4

√
kk

ℓ

Nk
+

√√√√ k∑
j=2

k!

(j − 1)!
· 4e · ℓ

3/2

Nk/2


≤ 4kk/2

i3/2

Nk/2
+

√√√√ k∑
j=2

k!

(j − 1)!
· 4e · i

5/2

Nk/2
.
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We can now prove Theorem 3.13.

Proof of Theorem 3.13. From Lemma 3.16, we have that:

gi,k ≤ 4kk/2 · i
3/2

Nk/2
+

√√√√ k∑
j=2

k!

(j − 1)!
· 4e · i

5/2

Nk/2
.

Writing Ck =
∑k

j=2
k!

(j−1)! , this rewrites as:

gi,k ≤ 4kk/2 · i
3/2

Nk/2
+
√
Ck ·

4e · i5/2

Nk/2
.

If i = o
(
C
−1/5
k ·Nk/5

)
, then gi,k = o(1). Hence if we want gi,k to be constant, i.e. not o(1),

we must have i = Ω
(
C
−1/5
k ·Nk/5

)
.

3.2.2 Algorithm for Finding a (1, k)–Subset Cover

We now describe an algorithm that finds a (1, k)–SC, assuming |X | = |Y|k = Nk. We first
notice that an algorithm that finds a collision on H also finds a (1, k)–SC in an expected
O(Nk/3) number of queries. We show now that there is a more efficient algorithm, as stated
in the following theorem:

Theorem 3.17. There exists a quantum algorithm that finds a (1, k)–SC in expected
O
(
Nk/4

)
quantum queries if k is even, and O(Nk/4+1/12) if k is odd.

To prove this theorem, we describe the following algorithm (which takes as parameters j
and t, whose values will be chosen later):

Algorithm 3.1. Input: j ∈ {2, . . . , k} and t ∈ N.

1. Define F1 : X → {0, 1} as follows:

F1(x) =

{
1, if h1(x) = h2(x) = · · · = hj(x)

0, otherwise.

(Note that an element x ∈ X such that F1(x) = 1 is a j–repetition.)

2. Execute Grover’s algorithm t times on F1 to find t distinct j–repetitions in H. Let T
= {x1, . . . , xt} be the set of these j–repetitions.

3. Define F2 : X → {0, 1} as follows:

F2(x) =


1, if there exists x0 ∈ T such that h1(x) = h1(x0)

and for 1 ≤ m ≤ k − j, hm+1(x) = hj+m(x0)

0, otherwise.
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4. Execute Grover’s algorithm to find an x such that F2(x) = 1

5. Find x0 in T corresponding to x, and output (x, x0).

Lemma 3.18. Algorithm 3.1 makes an expected number of O
(
N (2k−j+1)/6

)
queries to the

oracle when j ≤ k+2
2

for t = N (k−2j+2)/3.

Proof. Notice that if we consider a uniformly random function, we have that Pr[h1(x) =
· · · = hj(x)] = N−j+1. Therefore, the expected number of elements in X such that F1(x) = 1
is Nk ·N−j+1 = Nk−j+1. We write X1, . . . , XNk the random variables corresponding to F1’s
output on each x ∈ X , X the sum of these variables, µ = Nk−j+1 their mean. Chernoff
bound tells us that for any 0 ≤ δ ≤ 1,

Pr (|X − µ| ≥ µδ) ≤ e−δ
2µ/3.

With δ = 1/2, we have:
Pr
(
|X − µ| ≥ µ

2

)
≤ e−µ/12.

Thus, unless with probability e−(N
k−j+1)/12, the number of elements x ∈ X such that

F1(x) = 1 is greater than Nk−j+1/2.

Hence using Theorem A.1, the second step of the algorithm is expected to makeO
(
t ·
√

Nk

Nk−j+1

)
=

O
(
t ·N (j−1)/2) quantum queries to the oracle.

Notice that for a fixed value x0, if we consider a uniformly random function, we have that

Pr[h1(x) = h1(x0) ∧ h2(x) = hm+1(x0) ∧ · · · ∧ hk−j+1(x) = hk(x)] = N j−k−1.

Therefore, the expected number of elements such that F2(x) = 1 is t ·Nk ·N j−k−1 = t ·N j−1.
Similarly, using Chernoff bound, unless with probability e−(t·Nj−1)/12, the number of elements
such that F2(x) = 1 is greater than t ·N j−1/2. Hence, using Theorem A.1, the fourth step

of the algorithm is expected to make O
(√

Nk

t·Nj−1

)
= O

(
N(k−j+1)/2
√
t

)
quantum queries to

the oracle.

By picking t = N (k−2j+2)/3 with j ≤ k+2
2

(otherwise t < 1), the complexity of the algorithm
is O(N (k−2j+2)/3 ·N (j−1)/2) = O(N (2k−j+1)/6).

We now prove Theorem 3.17

Proof of Theorem 3.17. From Lemma 3.18, the complexity of Algorithm 3.1 isO(N (2k−j+1)/6)
when j ≤ k+2

2
.

• If k is even, then we pick j = k+2
2

to reach a complexity of O(Nk/4).

• If k is odd, then we pick j = k+1
2

to reach a complexity of O(Nk/4+1/12).
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Note that if j > k+1
2

, then the second step of the algorithm is expected to make at least

O
(
N

k+1
4

)
quantum queries, which is worse than O(Nk/4+1/12).

Remark 3.1. Note that we do not reach the lower bound of Theorem 3.13, and it would be
interesting to see if the gap can be further reduced by either improving our lower bounds or
designing a more efficient algorithm.

A slightly better algorithm We describe a more efficient algorithm when k is not constant.
The idea is to take into account the fact that we do not necessarily need the j–repetitions
from the previous algorithm to occur on the first j functions h1, . . . , hj, but they could
rather be on any hi1 , . . . , hij instead. We also consider permutations of the h1, . . . , hk in
the fourth step of Algorithm 3.1.

Theorem 3.19. There exists a quantum algorithm that finds a (1, k)–SC in:

• O
((

k
(k+2)/2

)−1/2 ·Nk/4
)

quantum queries if k is even,

• O
((

k
(k+1)/2

)−1/2 ·Nk/4+1/12
)

quantum queries if k is odd.

The gain that we obtain is a function of k and is therefore not significant if k is constant.
However, as we have shown in Theorem 3.13, the dependence in k can be quite large for
the (1, k)–SC problem.

To prove this theorem, we describe the algorithm as follows (which takes again as input two
integers j and t playing the role of parameters whose optimal values will be determined
later):

Algorithm 3.2. Input: j ∈ {2, . . . , k} and t ∈ N.

1. Define F1 : X → {0, 1} as follows:

F1(x) =


1, if there exists distinct i1, . . . , ij ∈ [1, k] such that

hi1(x) = hi2(x) = · · · = hij(x)

0, otherwise.

(Note that an element x ∈ X such that F1(x) = 1 is a j–repetition.)

2. Execute Grover’s algorithm t times on F1 to find t distinct j–repetitions in H. Let T =
{x1, . . . , xt} be the set of these j–repetitions. We write, for ℓ ∈ [1, t] Iℓ = {iℓ1, . . . , iℓj}
the set of indices such that hiℓ1(xt) = · · · = hiℓk(xt), and I ′ℓ = [1, k]\Iℓ = {iℓj+1, . . . , i

ℓ
k}.

3. Define F2 : X → {0, 1} as follows:

F2(x) =


1, if there exists distinct j0, j1, . . . , jk−j+1 ∈ [1, k],

and ℓ ∈ [1, t] s.t. hiℓ1(xℓ) = hj0(x)

and for all 1 ≤ m ≤ k − j, hjm(x) = hiℓj+m
(xℓ)

0, otherwise.
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4. Execute Grover’s algorithm to find an x such that F2(x) = 1

5. Find x0 in T , and output (x, x0).

Remark 3.2. F1 (resp. F2) can be constructed with O
((

k
j

))
(resp. O

(
k!

(j−1)!

)
) quantum

gates and one query to H.

Lemma 3.20. Algorithm 3.2 makes an expected number of O
((

k
j

)−1/2
N (2k−j+1)/6

)
queries

to the oracle when j ≤ k+2
2

for t = N (k−2j+2)/3.

The proof of Lemma 3.20 is given in Appendix B.7. We now prove Theorem 3.19.

Proof of Theorem 3.19. From Lemma 3.20, the complexity of Algorithm 3.2 isO
((

k
j

)−1/2 ·N (2k−j+1)/6
)

when j ≤ k+2
2

.

• If k is even, for j = k+2
2

, we get a complexity of O
((

k
(k+2)/2

)−1/2 ·Nk/4
)
.

• If k is odd, for j = k+1
2

, we get a complexity of O
((

k
(k+1)/2

)−1/2 ·Nk/4+1/12
)
.

Note that if j > k+1
2

, then the second step of the algorithm is expected to make at least

O
((

k
(k+1)/2

)−1/2 ·N k+1
4

)
quantum queries.

3.2.3 Algorithm for Finding a (r, k)–Subset Cover

In this section, we describe an algorithm for solving the (r, k)–SC problem. We consider
the case where |X | = |r · Y|k = rk ·Nk. The result is stated as follows:

Theorem 3.21. There exists a quantum algorithm that finds a (r, k)–SC in O
(
Nk/(2+2r)

)
quantum queries to H, if k is divisible by r + 1, and O

(
Nk/(2+2r)+1/2

)
otherwise.

The idea of the algorithm is essentially the same as Algorithm 3.1 of Section 3.2.2:

1. we first find t distinct (r − 1, k′)–SC for some integers t and k′;

2. we then find the (r, k)–SC.

The first step is done recursively, using the algorithm defined for lower values of k′ and
r− 1. The second step uses Grover’s algorithm. The algorithm can be defined for any value
of k′ and t, and we pick them to optimize the complexity.

More formally, we define the algorithm recursively. Assume that we have an algorithm that
can output a (r− 1, k′)–SC in O

(
Nk′/2r

)
queries, for any k′ < k such that k′ is divisible by

r. Then, we can find a (r, k)–SC as follows:

Algorithm 3.3. Input: t ∈ N, k′ ∈ N.

1. Execute the (r− 1, k′)–SC algorithm t times to find t distinct (r− 1, k′)–SC in H. Let
T = {(x1,0, x1,1, . . . , x1,r−1), . . . , (xt,0, xt,1, . . . , xt,r−1)} be the set of these (r−1, k′)–SC.
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2. Define F : X → {0, 1} as follows:

F (x) =


1, if there exists (xi,0, xi,1, . . . , xi,r−1) ∈ T such that
∀1 ≤ m ≤ k − k′, hm(x) = hk′+m(xi,0),

0, otherwise.

3. Execute Grover’s algorithm to find an x such that F (x) = 1

4. Find (xi,0, xi,1, . . . , xi,r−1) in T and output (xi,0, xi,1, . . . , xi,r−1, x).

Lemma 3.22. Algorithm 3.3 makes an expected number of O
(
Nk/(2+2r)

)
queries to the

oracle, when k is divisible by r, and O
(
Nk/(2+2r)+1/2

)
otherwise.

We defer the proof of Lemma 3.22 to Appendix B.8.
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Chapter 4
❈

Key Agreements and Public Key
Encryption from One-Way Functions

In this chapter, we study the security of the subset cover problem and its variant.
We show a lower bound for the k-restricted subset cover problem that matches
the upper bound of [YTA22]. We show a lower bound for the (1, k)-subset cover
problem, and present quantum algorithms for the (r,k)-subset cover problem.

4.1 Impossibility of Key Agreement with Classical Queries

In this section, we are interested in key agreement protocols with classical communication,
which we define as follow.

Definition 4.1 (Key agreement protocols with classical communication). We say that (A,B)
is a key agreement protocol between two parties Alice and Bob with classical communication
(CC-KA) if the following holds:

1. Setup. At the beginning of the protocol, Alice and Bob share no common information.
Their corresponding algorithms, A and B, are stateful oracle-aided quantum algorithms
which make at most d oracle queries.

2. Classical Communication. All of the messages are classical messages. The
transcript of the protocol is denoted as T := (m1, · · · ,mℓ).

3. Completeness. At the end of the protocol, Alice and Bob agree on a key k ∈ {0, 1}
with probability p when the protocol succeeds (i.e. when neither Alice or Bob outputs
k = ⊥).
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4. Security. Let (T, kA, kB) ← ⟨A |= B⟩, be the output of an execution of the protocol
T := (m1, · · · ,mℓ) is the transcript of the execution, kA and kB are the keys A and B,
respectively. (A,B) is secure if for any polynomially-bounded query adversary E:

Pr

[
k = kA = kB
kA, kB ̸= ⊥

∣∣∣∣ (T, kA, kB)← ⟨A |= B⟩
k← E(1λ, T )

]
≤ negl(λ).

We say that a CC-KA protocol (A,B) is (ε, s)-broken if there exists an attacker Eve
that finds the key of (A,B) with probability at least ε, (A,B) succeeds with probability
at least poly(ε), and Eve makes an expected number of queries at most s.

We show that we are able to use the Theorem 6.4 of [IR89] to prove that there exists an
attacker that can find the key of any CC-KA protocol with classical queries to the random
oracle. The proof consists of showing that a CC-KA protocol with classical queries to a
random oracle can be simulated by a classical algorithm that query a PSPACE oracle and
the random oracle.

Theorem 4.1. Let Π = (A,B) be CC-KA protocol relative to a random oracle O, where A
and B makes classical queries to O. If the protocol has completeness 1− p, then there exists
a PSPACE attacker Eve that finds the key with probability 1− p.

Proof. From Π = (A,B), we can construct A′ such that A′ is a classical algorithm that
queries a PSPACE oracle, and the distribution of the algorithms A and A′ are the same.
First of all, because the queries to O are classical, then before every oracle query there
must be a measurement. Since BQP ⊆ PSPACE, A′ simulates A by querying the PSPACE
oracle to generate every query to O. It follows that A′ can simulate the first round of the
protocol. There is a technicality in subsequent rounds, because it is possible that A has an
internal quantum states (that cannot be represented in polynomial space). Fortunately,
by a result of [Aar05], PostBQP = PP ⊆ PSPACE, hence A′ can simulate the distribution
of A postselected on the transcript by querying the PSPACE oracle. Similarly, B can be
simulated classically with a PSPACE oracle, and we write B′ this simulation.

With Π′ = (A′,B′), the proofs of [IR89] work, because they relativize. So, there exists an
attacker Eve for the protocol Π′ = (A′,B′), and the distribution of the protocol is the same
a Π = (A,B), hence Eve breaks the security of Π.

We note that the attacker makes O(n6 log n) queries to O, where n is the number of queries
that Alice and Bob makes to O during the protocol.

At last, we have the following corollary.

Corollary 4.2. There exists an oracle relative to which one-way functions exists, but
CC-KA with classical queries to the one-way functions do not exist.

Remark 4.1. The attack requires O(n6 log n) queries to O, which is not tight. An interesting
open question is whether the attack of [BM09] can be adapted to this setting, which would
reduce the query complexity to O(n2). Note that when Alice and Bob are fully classical, the
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best known attack is the classical one of [BM09], which uses O(n2) queries to the oracle.
On the other hand, the classical Merkle-puzzle protocol [GRM78] can be broken with O(n)
quantum queries. In [BHK+19], the authors propose a new protocol parameterized by any
ε > 0, for which the best quantum attacker requires O(n1.5−ε) queries. However, it is
unknown whether there exists a classical protocol such that any quantum attack requires
O(n2) queries to the oracle, or whether there is an exponent s < 2 so that every classical
key-exchange can be broken in O(ns) quantum queries. More generally, it remains open how
quantum queries can be exploited to improve attacks on arbitrary key-exchange protocols.

4.2 Towards the Impossibility of Quantum Public Key
Encryption with Classical Keys from One-Way Func-
tions

In this section, we consider key agreement protocols in an extended setting where both
parties are quantum algorithms but they can only send classical strings over the public
authenticated channel to the other party, except that the last message in the protocol
can be a quantum state (in this case, the last message is not authenticated). We call this
the Classical Communication One Quantum Message (CC1QM) model. In this extended
setting, we show a conditional result based on the polynomial compatibility conjecture,
that any protocol in the CC1QM model with perfect completeness where Alice does not
query the oracle after receiving the last message can be broken with an expected polynomial
number of queries. We present the formal definition of key agreement protocols in the
CC1QM model in section 4.2.1. In section 4.2.2, we state the main result of the section
and its proof.

4.2.1 Preparation

We start by defining the model of Classical Communication One Quantum Message, where
two quantum parties (Alice and Bob) communicate using the public authenticated classical
channel, except for the last message that can be quantum. We assume the first message
is from Alice to Bob, while the last message is from Bob to Alice, and the last quantum
message is non-authenticated. This can be assumed without loss of generality since if the
first message is from Bob to Alice, we can always transform it into the other case, by letting
Alice sends a dummy message to Bob for the first message. Furthermore, we consider the
case where the key that Alice and Bob agree on is one bit and the protocol succeeds with
probability 1 (i.e., perfect correctness). Also, as for Quantum Key Distribution (QKD), we
allow the parties to abort the protocol at any time, if they detect suspicious activity in the
quantum communication. Formally, this is done by making Alice output the character ⊥
instead of a key when the protocol is aborted. More formally, we define:

Definition 4.2 (Key agreement protocols in the CC1QM model). We say that (A,B) is a key
agreement protocol between two parties Alice and Bob in the CC1QM model (CC1QM-KA)
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if the following holds:

1. At the beginning of the protocol, Alice and Bob share no common information. Their
corresponding algorithms, A and B, are stateful oracle-aided quantum algorithms which
make at most d oracle queries.

2. CC1QM. All of the messages are classical messages, except for the last message
(from Bob to Alice) that can be a (mixed) quantum state, denoted as ψ. The transcript
of the protocol is denoted as T := (m1, · · · ,mℓ, ψ).

3. Perfect completeness. At the end of the protocol, Alice and Bob agree on a key
k ∈ {0, 1} with probability 1 when the protocol succeeds (i.e. when neither Alice or
Bob outputs k = ⊥).

4. Security. Let A′fin be Alice’s last computation in the protocol after she receives the
final message from Bob. By deferred measurement principle, we can modify A′fin
so that it applies a unitary transformation Afin followed by a measurement in the
computational basis {Πk}k∈{0,1} and outputting a key k, and we write A′fin := ΠkAfin.
Similarly, let B′fin := ΠkBfin be Bob’s last computation in the protocol after he sends the
final message to Alice. We note that Afin and Bfin can make quantum queries to the
oracle, and the output of Afin (resp. B′fin) is the output key of Alice (resp. Bob) at the
end of the protocol execution. Let (T, ϕA, ϕB)← ⟨A |= B⟩ be the output of an execution
of the protocol right before Alice receives the last quantum message from Bob, where
T := (m1, · · · ,mℓ, ψ) is the transcript of the execution, ϕA and ϕB are the internal
state of A and B, respectively. (A,B) is secure if for any polynomially-bounded query
adversary E:

Pr

 k = kA = kB
kA ̸= ⊥
kB ̸= ⊥

∣∣∣∣∣∣∣∣
(T, ϕA, ϕB)← ⟨A |= B⟩

(k, ψ′)← E(1λ, T )
kA ← A′fin(ϕA, ψ

′)
kB ← B′fin(ϕB)

 ≤ negl(λ).

We say that a CC1QM-KA protocol (A,B) is (ε, s)-broken if there exists an attacker Eve
that finds the key of (A,B) with probability at least ε, (A,B) succeeds with probability
at least poly(ε), and Eve makes an expected number of queries at most s.

4.2.2 The Attack on Key Agreements Protocols

The goal of the section is to prove the following theorem that states that are no CC1QM-KA
protocol in the QROM.

Theorem 4.3. Let (A,B) be a CC1QM-KA protocol, where Alice and Bob make at most d
queries to a random oracle h : X → Y, and Alice does not query the oracle in the last part
of the protocol (after receiving the quantum message from Bob). Assuming Conjecture 2.1
is true, then there exists an attacker Eve that makes at most poly(d, |Y|) many classical
queries to h and breaks the security (according to definition 4.2) with probability at least 0.8.
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The proof consists of two parts, the first one shows that Eve manages to find the same key
as the one computed as Bob, and this is proven in Section 4.2.2. The second part consists
of showing that Alice agrees on the same key as Eve and Bob and this corresponds to
Section 4.2.2. First, in the next section, we prove that the attack does not depend on the
group of the domain of the function.

Group Equivalence of the Attack

We first show that if there is an attack for an Abelian group Y , then there is an attack for
any other Abelian group Y ′, up to some error terms. This allows us to relax the conjecture
to be true for any Abelian group, as in [ACC+22]. The proof follows closely [ACC+22]’s
proof as they are almost identical, and we include it here for completeness.

Lemma 4.4. Suppose there exists a finite Abelian group Y, a constant τ > 0 and a function
s(·) such that for all d ∈ N and any CC1QM-KA protocol

(
Ah1 ,B

h
1

)
where Alice and Bob asks

d queries to a random oracle h whose range is Y, and Alice does not query the oracle after
receiving the last message, it holds that

(
Ah1 ,B

h
1

)
is (τ, s(d))-broken. Then, for any finite

Abelian group Y ′, any d′ ∈ N, δ > 0 and any CC1QM-KA protocol
(
Ah

′
2 ,B

h′
2

)
where Alice

and Bob asks d′ queries to another random oracle h′ whose range is Y ′,
(
Ah

′
2 ,B

h′
2

)
, and Alice

does not query the oracle after receiving the last message, can be (τ − δ, 4s(md′))-broken,
where

m =
⌈
log|Y|(d

′3 |Y ′| /4δ2)
⌉
.

Proof. The proof follows from the proof of Lemma 4.8 from [ACC+22]. The only difference
is that we must also show that with probability at least τ − δ, Alice and Bob agree on the
same key as Eve. However, their proof relies on the fact that we can simulate a random
oracle with another random oracle, even when their ranges are different, up to some errors.
Thus, their proof follows through in our setting as well, and with the same parameters.

Lemma 4.5 (Attacking CC1QM-KA protocols). Assume Conjecture 2.1 is true for some
Abelian group Y and parameters d and δ = ν/ε. Let (A,B) be a CC1QM-KA protocol where
Alice and Bob make at most d queries to a random oracle h : X → Y, and Alice does not
query the oracle after receiving the last message. Then, there exists an active attacker Eve
who finds the secret key k with probability 1− ν according to definition 4.2. Moreover, Eve
is expected to make at most d/ε queries to h.

The proof of Lemma 4.5 is given in subsequent Section 4.2.2.

We can now prove Theorem 4.3:

Proof of Theorem 4.3. The proof follows immediately from Lemma 4.5, Lemma 4.4 and
the proof of [ACC+22, Theorem 4.5].
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Part 1: Finding Bob’s Key

In this subsection, we show that the attack algorithm described in Construction 2.1 can
efficiently find Bob’s key with high probability, assuming that Conjecture 2.1 is true. We
first state and show a useful lemma that allows us to assume that when Bob sends the last
message, he has already computed the key k on his side.

Lemma 4.6. Let (A,B) be a CC1QM-KA protocol. Let ϕB be the internal state of B after
he computed the message ψ. Then, we can assume w.l.o.g. that Bob has computed the key
kB from ϕB before he sends the last message ψ to Alice.

Proof. Since the last message of the protocol is sent to Alice by Bob, by the no-signaling
principle, Alice’s computation after receiving ψ must commute with Bob’s computation
after sending ψ. Thus, Bob can compute the key on his side before sending the last message
ψ.

Lemma 4.7 (Simulation). Let (A,B) be a CC1QM-KA protocol where Alice and Bob make
at most d queries to an oracle h : X → Y, and Alice does not query the oracle after receiving
the last message. Assuming conjecture 2.1 is true, for 0 < ν < 1, there exists an active
attacker Eve that finds Bob’s key kB with probability at least 1− ν and Eve is expected to
make at most poly

(
d, 1

ν

)
queries to h.

Proof of lemma 4.7. Let Bob’s last message be ψM =
∑

i qi |ψi⟩⟨ψi|M , and let A′fin := ΠkAfin

be Alice’s computation in the last step of the protocol. Let kB be the key computed by
Bob at the end of the protocol. By lemma 4.6, we can assume that Bob already computes
his key kB before sending the last message to Alice.

Our attacking algorithm Eve1 is described below.

Construction 4.1. Eve1 runs the quantum-heavy queries learner Eve in construction 2.1
with parameter ε := 1

poly(d, 1ν )
conditioned on the classical transcript t until before Bob sends

his last message, except that it aborts if Eve asks more than d
ε

queries. In the case Eve1
does not abort, let

∣∣ΨEve
t

〉
W ′

AW
′
BH

′ be the state that Eve outputs, conditioned on the classical
transcript t. Eve1 then outputs the measurement outcome of

A′fin

(∣∣ΨEve
t

〉
W ′

AW
′
BH

′ ⊗ ψM
)
,

where A′fin makes no oracle query to h and acts on two registers W ′
A and M only.

By lemma 2.8, the number of queries asked by Eve satisfies E [|L|] ≤ d
ε
. By Markov’s

inequality, we have

Pr

[
|L| ≥ d

ν · ε

]
≤ ν.

Thus, we can conclude that with probability at least 1− ν, all of the following events hold:
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• Eve1 is efficient: Eve1 does not abort and asks at most d
ν·ε = poly(d, 1/ν) queries.

• Up until before Bob sends his last message, no quantum ε-heavy query is left: for all
x /∈ QL, w(x) < ε, where w(·) is defined in definition 2.23.

Suppose that all the above events occur for the rest of the proof (⋆). For simplicity, denote∣∣ΨEve
t

〉
W ′

AW
′
BH

′ as
∣∣ΨEve

t

〉
W ′

AE
.

We will consider the purified version of the protocol. Let |ϕt⟩WH be the joint state of the real
protocol before Bob sends his last message to Alice, conditioned on the classical transcript
t. After Eve1 learns the heavy queries, the resulting state becomes |ϕt,L⟩ conditioned on
t and Eve’s list of query-answer L. Since the oracle registers corresponding to QL are
now measured, we can consider the “truncated” version of |ϕt,L⟩WH by discarding those
registers. Let H̃ := {Hx}x∈X\QL

be the set of remaining registers. By |ϕt,L⟩WH̃ we denote
the truncated |ϕt,L⟩WH .

Let
∣∣∣Ψ̂t,L

〉
W ′

AEWH̃
:=
∣∣ΨEve

t

〉
W ′

AE
|ϕt,L⟩WH̃ be the joint state of Eve1 and the real protocol right

before Bob sends his last message to Alice. By lemma 2.6, it holds that
∣∣∣ĥHmax (∣∣∣Ψ̂t,L

〉)∣∣∣ ≤
poly(d, 1/ν), and by lemma 2.7, it holds that

∣∣∣ĥH̃max (∣∣∣Ψ̂t,L

〉)∣∣∣ ≤ poly(d, 1/ν).

By the assumption (⋆) above, we have that
∣∣∣Ψ̂t,L

〉
is a (Y , ε, poly(d, ν), |X |)-state (with the

register H in definition 2.24 being Ĥ). Next, let ψM =
∑

i qi |ψi⟩⟨ψi|M , we need to show
that

∀i,
∥∥∥∥ΠkAfin

∣∣∣Ψ̂t,L

〉
W ′

AEWH̃
|ψi⟩M

∥∥∥∥2 ≥ 1− 1

ν
,

where Afin cannot make queries to h and only acts on W ′
A and M .

Fix i and write
∣∣∣Ψ̂(i)

t,L

〉
W ′

AEWH̃M
:= Afin

(∣∣∣Ψ̂t,L

〉
W ′

AEWH̃
⊗ |ψi⟩M

)
.

Claim 4.8. If
∣∣∣Ψ̂t,L

〉
is a (Y , ε, poly(d, ν), |X |)-state, it follows that

∣∣∣Ψ̂(i)
t,L

〉
is a (Y , ε, poly(d, ν), |X |)-

state as well.

Proof. Assume that
∣∣∣Ψ̂t,L

〉
RH

is a (Y , ε, poly(d, ν), |X |)-state. Then,
∣∣∣Ψ̂t,L

〉
RH
⊗ |ψi⟩M is

also a (Y , ε, poly(d, ν), |X |)-state, because this property only depends on the H register,
who is unchanged there. Then, since Afin makes no query to the random oracle, the oracle
register H is not modified and thus

∣∣∣Ψ̂(i)
t,L

〉
is a (Y , ε, poly(d, ν), |X |)-state.

We are going to show that there exists a key k′ = b ∈ {0, 1} such that the probability of the
key b in the key distribution of

∣∣∣Ψ̂(i)
t,L

〉
is larger than 1− ν. By contradiction, assume that
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for both b = 0 and b = 1, we have that the probability of this key is smaller than 1− ν. By
considering the complementary events, we have that:∥∥∥Π0

∣∣∣Ψ̂(i)
t,L

〉∥∥∥2 ≥ ν, and∥∥∥Π1

∣∣∣Ψ̂(i)
t,L

〉∥∥∥2 ≥ ν.

Let
∣∣∣Ψ̂(i)

t,L,k′=b

〉
be the residual state conditioned on the key equal to b. Then, it follows that∣∣∣Ψ̂(i)

t,L,k′=b

〉
is a (Y , ε/ν, poly(d, 1/ν), |X |)-state for both b = 0 and b = 1 because

1.
∣∣∣Ψ̂(i)

t,L,k′=b

〉
is poly

(
d, 1

ν

)
-sparse since

∣∣∣Ψ̂(i)
t,L

〉
is poly

(
d, 1

ν

)
-sparse and suppH̃(

∣∣∣Ψ̂(i)

t,L,k′=b

〉
) ⊆

suppH̃(
∣∣∣Ψ̂(i)

t,L

〉
).

2.
∣∣∣Ψ̂(i)

t,L,k′=b

〉
is ε/ν-light because:

Pr
[
Not measuring 0̂ in

∣∣∣Ψ̂(i)

t,L,k′=b

〉]
= Pr

[
Not measuring 0̂ in

∣∣∣Ψ̂(i)

t,L,k′=b

〉 ∣∣∣ k′ = b
]

=
Pr
[
Not measuring 0̂ in

∣∣∣Ψ̂(i)
t,L

〉
and k′ = b

]
Pr [k′ = b]

≤
Pr
[
Not measuring 0̂ in

∣∣∣Ψ̂(i)
t,L

〉]
Pr [k′ = b]

≤ ε/ν,

where the last inequality comes from the fact that
∣∣∣Ψ̂(i)

t,L

〉
is ε-light and Pr [k′ = b] =∥∥∥Πb

∣∣∣Ψ̂(i)
t,L

〉∥∥∥2 ≥ ν.

Then Conjecture 2.1 implies that the states
∣∣∣Ψ̂(i)

t,L,k′=0

〉
and

∣∣∣Ψ̂(i)

t,L,k′=1

〉
are compatible, which

means that there exists two different states w0, w1 ∈ W ′
AEW and an oracle ĥ such that ĥ

is consistent with w0 and w1. And for this specific oracle, w0 outputs the key 0 and w1

outputs the key 1, both with non-zero probability. However, Bob’s key has already been
computed by Lemma 4.6, and is fixed to some kB ∈ {0, 1}. Thus, there is an oracle such that
Bob outputs kB. Plus, for this specific oracle, Alice outputs key 0 with non-zero probability,
and outputs key 1 with non-zero probability as well. Hence there is an execution of the
protocol such that Bob outputs kB and Alice outputs kA = 1− kB, which breaks the perfect
completeness of the protocol.

We now show that the key computed by Eve is the same as hypothetical Alice’s key, defined
by kA′ = A′fin (|ϕA⟩AH ⊗ |ψi⟩M), that is the key that Alice would have computed if the
protocol had continued normally. Since the protocol is perfect, we have that kA′ = kB.
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Recall that Eve’s key is computed from the state
∣∣∣Ψ̂(i)

t,L

〉
= Afin

(∣∣∣Ψ̂t,L

〉
W ′

AEWH̃
⊗ |ψi⟩M

)
,

and the state
∣∣∣Ψ̂t,L

〉
W ′

AEWH̃
is a superposition of all of Alice’s internal states that are

consistent with Eve’s view so far. The state |ψi⟩M corresponds to the real message that
Bob sent to Alice. First note that Alice will never output kA = ⊥, because the state of Eve
consists of a superposition of Alice’s states that are consistent with the transcript. Indeed,
if the message |ψi⟩M from Bob is inconsistent with the oracle, Alice is not able to detect it
as she does not query the oracle in Afin. Note that the real oracle used in the protocol is
one of the oracles in the superposition of oracles that are consistent with Eve’s view. Also,
for a fixed oracle, the key is computed deterministically by the perfectness of the protocol,

and thus Eve’s key is equal to Bob’s hypothetical key with probability
∥∥∥Πk

∣∣∣Ψ̂(i)
t,L

〉∥∥∥2 over
the random oracles. This shows that Eve succeeds with probability at least 1− ν.

Part 2: Making Alice Agrees on the Same Key as Bob

Using Lemma 4.7, we can now prove Lemma 4.5.

Proof of Lemma 4.5. Let (A,B) be a CC1QM-KA protocol where Alice and Bob make at
most d queries to an oracle h : X → Y , and Alice does not query the oracle after receiving
the last message. Consider the following construction for Eve:

Construction 4.2. Input: ε, ν

1. Eve applies the quantum ε-heavy query learner of Construction 2.1 to compute a state∣∣ϕEA〉W ′
A

∣∣ϕEB〉W ′
B
|h⟩H which corresponds to a simulation of the internal state of Alice

and Bob after the classical communication part of the protocol.

2. Let Afin be the operations that Alice applies at the end of the protocol after receiving
the message ψ from Bob. Then, Eve outputs the resulting key kE of

ΠkAfin

∣∣ϕEA〉〈ϕEA∣∣ |h⟩⟨h|ψ(Afin)
†,

where ψ is the quantum message Bob sends to Alice.

3. Writing τEM = τ̃
∥τ̃∥ , where τ̃ = (Afin)

†ΠkAfin

∣∣ϕEA〉〈ϕEA∣∣ |h⟩⟨h|ψ, Eve sends the resulting
state TrE (τEM) to Alice, where she traces out everything but the register that contains
the message.

In the last part of the construction, Eve applies the operator (Afin)
† to uncompute Alice’s

operation before sending her state to Alice. Note that in step 2, we use the fact that Alice
and Bob’s states are unentangled, as shown by Lemma 2.25

Now, we prove that Construction 4.2 succeeds with probability at least 1 − ν. Using
Lemma 4.7, we have that Eve finds the right key k in Step 2 with probability at least 1− ν.
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Writing ψ =
∑

i qi |ψi⟩, this means that

∀i,
∥∥ΠkAfin

∣∣ϕEA〉 |h⟩ |ψi⟩∥∥2 ≥ 1− λ. (4.1)

We write ψE = TrE (τEM) the message that Eve sends to Alice. The first thing that we
want to show is that the message ψE from Eve is “close” to the real message ψ from Bob.
More precisely, we will show that:

∀i, ⟨ψi|ψE |ψi⟩ ≥ 1− λ. (4.2)

For every i, we have that:

⟨ψi|ψE |ψi⟩ = ⟨ψi|TrE (τEM) |ψi⟩

= ⟨ψi|TrE
(

τ̃

∥τ̃∥

)
|ψi⟩

≥ ⟨ψi|TrE (τ̃) |ψi⟩
= Tr (|ψi⟩⟨ψi|TrE (τ̃))

= Tr (IE ⊗ ⟨ψi|M τ̃ · IE ⊗ |ψi⟩M)

≥ Tr
(〈
ϕEA
∣∣ ⟨h| ⊗ ⟨ψi|M τ̃ ·

∣∣ϕEA〉 |h⟩ ⊗ |ψi⟩M) ,
where we used elementary properties of the trace operator. Next, we have that

Tr
(〈
ϕEA
∣∣ ⟨h| ⊗ ⟨ψi|M τ̃ ·

∣∣ϕEA〉⊗ |ψi⟩M) = 〈ϕEA∣∣⊗ ⟨ψi|M τ̃ ·
∣∣ϕEA〉 |h⟩ ⊗ |ψi⟩M ,

since the right term is a pure state. Replacing τ̃ with its value, we have:

⟨ψi|ψE |ψi⟩ ≥
〈
ϕEA
∣∣ ⟨h| ⟨ψi| ((Afin)

†ΠkAfin

∣∣ϕEA〉〈ϕEA∣∣ |h⟩⟨h|ψ) ∣∣ϕEA〉 |h⟩ |ψi⟩
=
∑
j

qj
〈
ϕEA
∣∣ ⟨h| ⟨ψi| ((Afin)

†ΠkAfin

∣∣ϕEA〉〈ϕEA∣∣ |H⟩⟨H| |ψj⟩⟨ψj|) ∣∣ϕEA〉 |h⟩ |ψi⟩
=
〈
ϕEA
∣∣ ⟨h| ⟨ψi| ((Afin)

†ΠkAfin

∣∣ϕEA〉 |h⟩ |ψi⟩)
=
∥∥(Afin)

†ΠkAfin

∣∣ϕEA〉 |h⟩ |ψi⟩∥∥2
=
∥∥ΠkAfin

∣∣ϕEA〉 |h⟩ |ψi⟩∥∥2
≥ 1− λ,

where the last inequality comes from Equation (4.1).

Now fix i. We write |ΦA⟩ = Afin |ϕA⟩ ⊗ |h⟩ ⊗ |ψi⟩ where |ϕA⟩ corresponds to Alice’s real
register before receiving the message ψ. Since Πk is a projector and Πk |ΦA⟩ = |ΦA⟩ from
perfect correctness, we can write it:

Πk = |ΦA⟩⟨ΦA|+
∑
i

|σi⟩⟨σi| ,
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where the σi are such that ⟨σi|ΦA|σi|ΦA⟩ = 0.

We write:
ψE = α |ψi⟩⟨ψi|+ βρ,

where ρ =
∑

j pj |Ψj⟩⟨Ψj| is a mixed state such that ⟨ψi| ρ |ψi⟩ = 0.

For every |ψi⟩, we have that:

Tr
(
ΠkAfin(|ϕA⟩⟨ϕA| ⊗ |h⟩⟨h| ⊗ ψE) (Afin)

†
)

= Tr

((
|ΦA⟩⟨ΦA|+

∑
i

|σi⟩ ⟨σi|

)(
Afin |ϕA⟩⟨ϕA| ⊗ |h⟩⟨h| ⊗ (α |ψi⟩⟨ψi|+ βρ) (Afin)

†
))

= Tr

((
|ΦA⟩⟨ΦA|+

∑
i

|σi⟩ ⟨σi|

)(
α |ΦA⟩⟨ΦA|+ βAfin |ϕA⟩⟨ϕA| ⊗ |h⟩⟨h| ⊗ ρ (Afin)

†
))

= α ⟨ΦA|ΦA|ΦA|ΦA⟩2 + β ⟨ΦA|Afin |ϕA⟩⟨ϕA| ⊗ |h⟩⟨h| ⊗ ρ(Afin)
† |ΦA⟩

+ α
∑
i

| ⟨ΦA|σi|ΦA|σi⟩ |2 + β
∑
i

⟨σi|Afin |ϕA⟩⟨ϕA| ⊗ |h⟩⟨h| ⊗ ρ(Afin)
† |σi⟩

= α + β
∑
i

⟨σi|Afin |ϕA⟩⟨ϕA| ⊗ |h⟩⟨h| ⊗ ρ(Afin)
† |σi⟩

≥ α

≥ 1− λ,

where the fourth equality comes from the fact that

⟨ΦA|Afin |ϕA⟩⟨ϕA| ⊗ ρ(Afin)
† |ΦA⟩ = ⟨ϕA| ⟨ψi| (Afin)

†Afin |ϕA⟩⟨ϕA| ⊗ ρ(Afin)
†Afin |ϕA⟩ |ψi⟩

= ⟨ψi| ρ |ψi⟩ = 0,

and that ⟨σi|ΦA|σi|ΦA⟩ = 0. The first inequality comes from the fact that the terms in
the sum are positive, because they correspond to the probability of measuring the state
|ϕA⟩⟨ϕA| ⊗ |h⟩⟨h| ⊗ ρ using the projection Afin ⟨σi|Afin⟩†, and the last inequality comes from
Equation (4.2).

This means that Alice measures the key k with probability at least 1− λ when receiving
the message ψE from Eve and for pure message |ψi⟩, and if this is the case the meet-in-
the-middle attack is a success. Since this is true for all of the |ψi⟩, it also follows for ψ by
convexity. This concludes the proof.

4.2.3 Impossibility of Quantum Public Key Encryption with Classi-
cal Keys

In this section, we show that the (conditional) impossibility of CC1QM-KA protocols proven
above also implies a (conditional) impossibility for quantum public key encryption (qPKE)
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with classical public keys, but secret keys and ciphertexts can be quantum states. More
precisely, we are interested in perfectly correct (c, q, q)-PKE, as defined in Definition 2.7.

Next, in Definition 4.3, we define the indistinguishability security of one-bit qPKE. This
is a slight modification of the definition given in Definition 2.8, which we restate here for
clarity. When considering one-bit encryption this notion coincides with the one-way security
notion, which is considered the weakest security notion of encryption. Thus, using this
notion makes our negative result stronger.

Definition 4.3. A one-bit qPKE scheme with classical public keys is IND-CPA secure if
for every QPT adversary A, for any λ ∈ N, there exists a negligible function negl(λ) such
that

Pr [IND− CPA(λ,A) = 1] ≤ 1

2
+ negl(λ),

where IND− CPA(λ,A) is the following experiment:

1. The challenger chooses a random key pair (pk, sk)← KGen(1λ), and sends pk to the
adversary A.

2. A, upon receiving the public key pk, sends two bits m0,m1 ∈ {0, 1} to the challenger.

3. The challenger samples a random bit b←$ {0, 1}, and sends c← Enc(pk,mb) to A.

4. A responds with a guess b′ for b.

5. The challenger outputs 1 if b′ = b, and 0 otherwise.

Since the existence of an IND-CPA secure qPKE scheme with classical public keys in the
QROM implies the existence of a CC1QM-KA protocol in the QROM, we also obtain the
following result.

Corollary 4.9. Assuming Conjecture 2.1 is true, there is no IND-CPA secure qPKE
scheme with classical public keys in the QROM, where the decryption algorithm does not
query the random oracle.

Proof. By contradiction, let Π = (KGen,Enc,Dec) be a qPKE scheme with classical public
keys and assume it is IND-CPA secure. We construct a two-message one-bit CC1QM-KA
protocol Π̃, where the first message from Alice to Bob is classical and the second message
from Bob to Alice is quantum, as follows.

1. Alice generates (pk, sk)← KGen(1λ), and sends pk to Bob.

2. Bob generates uniformly at random a secret key k ∈ {0, 1} and computes c ←
Enc(pk, k), and sends c to Alice.

3. Alice recovers the common key by computing k← Dec(sk, c).

It is easy to see that Π̃ is a secure CC1QC-KM protocol in the QROM if Π is IND-CPA
secure. Furthermore, if Π is perfectly correct, Π̃ is also perfectly correct. Finally, if Dec(·, ·)
does not query the oracle, then Alice in the last step of Π̃ does not query the oracle as well.
This contradicts theorem 4.3 and concludes our proof.
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Remark 4.2. We note that our impossibility of CC1QM-KA is the strongest possible
impossibility (conditioned on the assumption that conjecture 2.1 is true), in the sense that
the adversary can find the shared key and maintain the correctness of the protocol (that is,
Alice and Bob can still find the shared key), while the usual security definition only asks the
adversary to find the key of one of two parties. This strong impossibility allows us to rule
out the possibility of qPKE in the QROM with stronger requirements, for example, qPKE
with decryption error detectability as defined in [KMNY23].

101





Chapter 5
❈

On Limits on The Provable Consequences of
Quantum Pseudorandomness

In this chatper, we study the construction of cryptographic schemes from quan-
tum pseudorandomness. We show separations between different quantum crypto-
graphic primitives, and also study the possibility of constructing different kinds
of public-key encryption and signatures from PRUs.

5.1 Separating PRSs from Short PRSs

In this section, we prove that we can separate poly-size PRSs and log-size PRSs. Formally,
we will be proving the following theorem.

Theorem 5.1. There exists a quantum oracle O such that relative to O, λ-PRSs exist, but
(c log λ)-PRSs with c > 12 do not exist.

The oracle necessary for the separation is actually the same oracle that Kretschmer used to
separate PRSs and OWFs (Theorem 2.23). It turns out that this oracle is also separating
PD-OWFs from PRSs, we prove here that if PromiseBQP = PromiseQMA, then we do not
have PD-OWFs. This in addition with Barhoush and Salvail’s result that short-PRSs are
enough to build PD-OWFs (Theorem 2.22) will give us the theorem.

According to the above considerations, the main theorem follows directly from the following
proposition.

Proposition 5.2. If PD-OWFs exist relative to a quantum oracle O, then PromiseBQPO ̸=
PromiseQMAO.
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Proof. Let λ ∈ N and F : {0, 1}λ → {0, 1}ℓ(λ) be a PD-OWF relative to the oracle O. Let
us define a promise language L = Lyes ∪ Lno ∪ L⊥ with L ⊆ {0, 1}∗ where yes instances
have a pre-image with respect to Fλ but no instances do not. Formally,

Lyes =
{
(1ℓ(λ), x′, y) ∈ {1ℓ(λ)} × {0, 1}λ × {0, 1}ℓ(λ)

∣∣∣
∃x ∈ {0, 1}λ , x′ ≺ x and ∀c > 0, ∃λ0,∀λ ≥ λ0,Pr[y = Fλ(x)] ≥ 1− 1

λc

}
, (5.1)

Lno =
{
(1ℓ(λ), x′, y) ∈ {1ℓ(λ)} × {0, 1}λ × {0, 1}ℓ(λ)

∣∣∣
∀x ∈ {0, 1}λ , x′ ⊀ x or Pr[y = Fλ(x)] ≤ 1− 1

λ

}
. (5.2)

Note that in the definition of Lyes, we have that Pr[y = Fλ(x)] is a negligible function, and
we will use this property in the rest of the section. We claim that L ∈ PromiseQMAO but
L ̸∈ PromiseBQPO, thus there must be a separation between both complexity classes. These
claims are proven in Lemma 5.3 and Lemma 5.4 respectively.

We now prove the two claims from the proposition. We start by showing that the language
defined in Proposition 5.2 is in PromiseQMAO, this is, we will construct an algorithm
(verifier) that given an element of the domain and a (quantum) proof can distinguish if the
element is a yes or no instance of the language.

Lemma 5.3. Let F be a PD-OWF and let L be the language defined in Proposition 5.2,
then L ∈ PromiseQMAO.

Proof. We define a quantum polynomial-time algorithm AO that given an element of the
domain (1ℓ(λ), x′, y) ∈ {1ℓ(λ)} × {0, 1}λ × {0, 1}ℓ(λ) and a classical proof x ∈ {0, 1}λ, will
check if the proof x is indeed a pre-image of the PD-OWF by checking if it coincides with
the output y.

Algorithm 5.1. Input: (1ℓ(λ), x′, y) ∈ {1ℓ(λ)} × {0, 1}λ × {0, 1}ℓ(λ) and x ∈ {0, 1}λ.
1. If x′ ⊀ x, return 0.

2. For 1 ≤ i ≤ 2λ, compute yi = Fλ(x). If yi ̸= y, return 0.

3. Return 1.

Note that Algorithm 5.1 runs in polynomial-time trivially because computing Fλ is done
efficiently relative to O by definition and we make 2λ calls to it. We now prove that Algo-
rithm 5.1 distinguishes between the yes/no instances.

(i) Let (1ℓ(λ), x′, y) ∈ Lyes. Then by definition there exists a proof x ∈ {0, 1}λ such that

x′ ≺ x and Pr[y = Fλ(x)] ≥ 1− negl(λ).
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Then the proof x will be an element of the input ((1ℓ(λ), x′, y), x) for which the algorithm
A will output 1 with high probability because

Pr
[
AO((1ℓ(λ), x′, y), x) = 1

]
= Pr [∀1 ≤ i ≤ 2λ, the execution of Fλ(x) outputs y]

≥ (1− negl(λ))2λ ≥ 2/3,

which holds whenever λ is big enough. Indeed, recall that negl(λ) ≤ 1/λc for all c > 1 and
λ big enough, thus in particular negl(λ) ≤ 1/λ2 for λ big enough, hence

(1− negl(λ))2λ ≥
(
1− 1

λ2

)2λ

≥ 2

3
,

whenever λ is big enough and for the last inequality we need at least λ ≥ 6, where we used
that we have an increasing function in λ.

(ii) Let (1ℓ(λ), x′, y) ∈ Lno. Then by definition for every potential proof x ∈ {0, 1}λ we have
that either

x′ ⊀ x or Pr[y = Fλ(x)] ≤ 1− 1

λ
.

Then for every possible input ((1ℓ(λ), x′, y), x) the algorithm will output 0 with high proba-
bility because

Pr
[
A((1ℓ(λ), x′, y), x) = 1

]
= Pr [x′ ≺ x ∧ ∀1 ≤ i ≤ 2λ, the execution of Fλ(x) outputs y]

≤ Pr [∀1 ≤ i ≤ 2λ, the execution of Fλ(x) outputs y]

≤
(
1− 1

λ

)2λ

≤ e−2 ≤ 1/3.

Lemma 5.4. Let F be a PD-OWF and let L be the language defined in Proposition 5.2,
then L /∈ PromiseBQPO.

Proof. We will prove this by contradiction. Let us assume that instead L ∈ PromiseBQPO,
this is, there exists a BQP algorithm AO such that:

1. If (1ℓ(λ), x′, y) ∈ Lyes, then Pr
[
AO(1ℓ(λ), x′, y) = 1

]
≥ 2/3.

2. If (1ℓ(λ), x′, y) ∈ Lno, then Pr
[
AO(1ℓ(λ), x′, y) = 1

]
≤ 1/3.

Without loss of generality, we can assume that the algorithm AO has completeness 1− 1
ℓ(λ)

and soundness 1
ℓ(λ)

. We will now show how we can construct a QPT algorithm A′O that
finds a pre-image of every Fλ with high probability when it exists, by querying the original
BQP algorithm AO at most ℓ(λ) + 1 times.
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Algorithm 5.2. Input: (1ℓ(λ), y) ∈ {1}ℓ(λ) × {0, 1}ℓ(λ).

1. b← AO(1ℓ(λ), ε, y).

2. If b = 0, return ⊥.

3. x0 ← ε.

4. For 1 ≤ i ≤ ℓ(λ) :

1. b← AO(1ℓ(λ), x0||0, y).

2. If b = 1, x0 = x0||0. Else, x0 = x0||1.

5. Return x0.

Indeed if (1ℓ(λ), ε, y) ∈ Lyes, then the probability that Algorithm 5.2 outputs a correct
pre-image is very high

Pr

[
y = argmax

y∈{0,1}ℓ(λ)
Pr [y = Fλ(x)]

∣∣∣∣∣ x← A′O (1ℓ(λ), y)
]
≥
(
1− 1

ℓ(λ)

)ℓ(λ)+1

. (5.3)

However, this raises a contradiction with the security of the PD-OWF from the assump-
tion Definition 2.2,

Pr
x←{0,1}ℓ(λ)

[
Fλ(A′O(1ℓ(λ), Fλ(x))) = Fλ(x)

]
= Pr

x←{0,1}ℓ(λ)

[
Fλ(A′O(1ℓ(λ), Fλ(x))) = Fλ(x)

∣∣ x ∈ Kλ] Pr
x←{0,1}ℓ(λ)

[x ∈ Kλ]

+ Pr
x←{0,1}ℓ(λ)

[
Fλ(A′O(1ℓ(λ), Fλ(x))) = Fλ(x)

∣∣ x /∈ Kλ] Pr
x←{0,1}ℓ(λ)

[x /∈ Kλ]

≥ Pr
x←{0,1}ℓ(λ)

[
Fλ(A′O(1ℓ(λ), Fλ(x))) = Fλ(x)

∣∣ x ∈ Kλ] Pr
x←{0,1}ℓ(λ)

[x ∈ Kλ]

≥ Pr
x←{0,1}ℓ(λ)

[
Fλ(A′O(1ℓ(λ), Fλ(x))) = Fλ(x)

∣∣ x ∈ Kλ] (1− µ(λ)) ,

where the first equality comes from the law of total probability and the second inequality
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comes from the property of Kλ. We can rewrite the last element as:

Pr
x←{0,1}ℓ(λ)

[
y3 = y1

∣∣ y1, y2 ← Fλ(x), x1 ← A′O(1ℓ(λ), y2), y3 ← Fλ(x1), x ∈ Kλ
]

≥ Pr
x←{0,1}ℓ(λ)

[(
y3 = y2 = y1 = argmax

y∈{0,1}ℓ(λ)
Pr[y = Fλ(x)]

)
∧ (x1 = x)

∣∣∣∣∣ y1, y2, y3 ← Fλ(x)
x1 ← A′O(1ℓ(λ), y2), x ∈ Kλ

]

= Pr
x←{0,1}ℓ(λ)

[
Fλ(x) = argmax

y∈{0,1}ℓ(λ)
Pr[y = Fλ(x)]

∣∣∣∣∣ x ∈ Kλ
]3

· Pr
x←{0,1}ℓ(λ)

[
A′O

(
1ℓ(λ), argmax

y∈{0,1}ℓ(λ)
Pr[y = Fλ(x)]

)
= x

∣∣∣∣∣ x ∈ Kλ
]

≥ (1− negl(λ))3
(
1− 1

ℓ(λ)

)ℓ(λ)+1

,

where the first inequality comes from the law of total probability, and the last inequality
from the definition of a PD-OWF and Equation (5.3). This gives that:

Pr
x←{0,1}ℓ(λ)

[
Fλ(A′O(1ℓ(λ), Fλ(x))) = Fλ(x)

]
≥ (1− negl(λ))3

(
1− 1

ℓ(λ)

)ℓ(λ)+1

(1− µ(λ))

≥ (1−O(µ(λ)))
(
1− 1

ℓ(λ)

)ℓ(λ)+1

.

Note that this bound is not negligible since(
1− 1

ℓ(λ)

)ℓ(λ)+1

≥ 1

10
,

whenever λ ≥ 2, which contradicts Equation (2.2).

5.2 Separating Short PRSs from Shorter PRSs

Theorem 5.1 shows that short-PRSs and PD-PRGs require a computational assumption to
exist. Combining our result with a prior result of Brakerski and Shmueli [BS20] that show
that statistically secure PRSs1 with shorter than log(λ) length exist unconditionally, we
can separate them from short-PRSs and PD-OWFs. More formally, we have the following
result.

Corollary 5.5. Let L be a PSPACE-complete language, and let O be an oracle that solves
L. There exist a constant 0 < c0 < 1 such that relative to O:

• For any n < c0 log λ, n-PRSs exist.
1We note that their construction relativizes because the security is statistical.
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• For any c > 12, c log λ-PRSs do not exist.

In particular, we have that c log λ-PRSs for c < c0 are separated from c log λ-PRSs for
c > 12 in a black-box way. Moreover, c log λ-PRS for c < c0 are separated from PD-OWFs,
while c log λ-PRS for c > 12 imply PD-OWFs.

5.3 On Constructing Public Key Encryption

The goal of this section is to study the construction of public key encryption schemes
(PKEs) from PRUs. Remember that we let (pk, sk, c) ∈ {c, q}3 and discuss (pk, sk, c)-PKE
where a c indicate a classical string, while a q indicate a quantum state.

5.3.1 (c,c,q) and (c,c,c) Encryption

In this section, we show that public key encryption with classical keys cannot be build
from PRU. To do so, we simply show that EV-OWPs can be built from PKE with classical
keys, and the proof follows by the oracle of Theorem 2.23 and Lemma 2.24. Note that
this result was already proven in previous works [KT24a, CGG24], and we add it here for
completeness. The result is the following theorem:

Theorem 5.6. The existence of PKE with classical keys imply the existence of EV-OWP.

Corollary 5.7. There is no black-box construction of PKE with classical keys from PRUs.

Proof. Let (KGen,Enc,Dec) be a public key encryption scheme with classical keys.

We define the following one-way puzzle:

• Gen(λ) = KGen(λ) = (pk, sk) = (s, k).

• Ver(s, k) : Sample m←$ {0, 1}λ. Return ⊤ if Dec(Enc(m, s), k) = m, otherwise return
⊥.

It is straightforward that (Gen,Ver) is an efficient verifiable one-way puzzle. Indeed, the
correctness from the correctness the public key encryption scheme. Security also follows
from the security of the public key encryption scheme, from an adversary that breaks the
above construction, one can construct an adversary that breaks the security of the public
key encryption scheme. At last, the verification is clearly efficient, because the public key
encryption scheme is efficient.

We note that we only require the keys to be classical and the ciphertext can be a quantum
state.

5.3.2 (c,q,c) Encryption

In this section, we show that public key encryption with classical public key and classical
ciphertext cannot be build from PRUs in a black-box way. To show this result, we show that
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the existence of (c,q,c)-PKE imply that BQP ̸= QMA, and the proof relativizes. Remark
that unlike the previous section, we do not show that the existence of (c,q,c)-PKE imply
the existence of EV-OWPs. It was proven that the existence of (c,q,c)-PKE imply the
existence of (inefficient) OWPs [KT24a], but that is not enough to show the separation, as
OWPs can be built from PRUs and thus exist relative to Kretschmer’s oracle. However,
we are still able to show that, just like EV-OWPs, (c,q,c)-PKE do not exist relative to
Kretschmer’s oracle.

Theorem 5.8. Let O be an oracle relative to which PKE with classical public keys and
classical ciphertexts exist. Then BQPO ̸= QMAO.

Proof. Let O be an oracle relative to which PKE with classical public key and classical
ciphertext exists, and let (KGen,Enc,Dec) be such a PKE. We write Mλ = {1ℓ(λ)}×{0, 1}λ×
{0, 1}ℓ(λ) × {0, 1}ℓ(λ) and define the promise problem L = (Lyes,Lno) as follows:

Lyes =

(1ℓ(λ), m′, pk, c) ∈Mλ

∣∣∣∣∣∣∣∣∣∣
∃ sk, ∃m0 ∈ {0, 1}λ , such that m′ ≺ m0,

Pr
[
m = Dec

(
Enc(m, pk), sk

)]
≥ 1− negl(λ),

Pr
[
Dec(c, sk) = m0

]
≥ 1− negl(λ).



Lno =


(1ℓ(λ), m′, pk, c) ∈Mλ

∣∣∣∣∣∣∣∣∣∣∣

∀ sk,∀m0 ∈ {0, 1}λ , either m′ ⊀ m0 or

Pr
[
m = Dec(Enc(m, pk), sk)

]
≤ 1− 1

λ
or

Pr
[
Dec(c, sk) = m0

]
≤ 1− 1

λ
.


(5.4)

1. L ∈ QMA.

We define a quantum polynomial time algorithm that can decide L as follows, given
m0 ∈ {0, 1}λ and sk ∈ {0, 1}ℓ(λ)v.
Algorithm 5.3. Input: (1ℓ(λ),m′, pk, c) ∈Mλ and (m0, sk) ∈ {0, 1}λ × {0, 1}ℓ(λ).
(a) If m′ ⊀ m0, return 1.

(b) For 1 ≤ i ≤ 2λ, compute mi = Dec(c, sk). If mi ̸= m0, return 0.

(c) For 1 ≤ i ≤ 2λ, sample mi ←$ {0, 1}λ. If mi ̸= Dec(Enc(mi, pk), sk), return 0.

(d) Return 1.

It is easy to see that if (1ℓ(λ),m′, pk, c) ∈ Lyes, then there exist m0 ∈ {0, 1}λ and sk
such that Algorithm 5.3 output 1 on input ((1ℓ(λ),m′, pk, c), (m0, sk)) with probability
1− negl(λ).

Note that since the decryption algorithm succeeds with probability exponentially close
to 1, by the gentle lemma, the secret key is not disturbed much, hence a polynomial
amount of encryption is possible.
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Now suppose that (1ℓ(λ),m′, pk, c) ∈ Lno, and let m0 ∈ {0, 1}λ and sk be a secret key.
If m′ ⊀ m0, then Algorithm 5.3 output 0 with probability 1. Otherwise, assume that
we have that Pr[m = Dec(Enc(m, pk), sk)] ≤ 1− 1

λ
. Hence we have that Algorithm 5.3

does not output 0 on the first loop with probability at most(
1− 1

λ

)2λ

≤ exp(−2) ≤ 1

3
.

Similarly, if Pr[Dec(ct, sk) = m0] ≤ 1− 1
λ
, we can conclude that algorithm 5.3 output

0 with probability at least 2
3
.

Also note that even if the secret key is partially destroyed when applying the decryption
algorithm, this is not a problem. Indeed Equation (5.4) holds for any secret key sk,
thus is also holds for the partially destroyed secret key.

2. L /∈ BQP.

By contradiction, assume that L ∈ BQP. Let (pk, sk) = KGen(1λ), and c0 =
Enc(m0, sk) for some m0 ←$ {0, 1}λ. There exists a quantum polynomial time algo-
rithm that, on input (pk, c0), can find an m1 such that with non-negligible probability,
there exists sk′ such that2

Pr[m = Dec(Enc(m, pk), sk′)] ≥ 1− 1

λ
, and (5.5)

Pr [m1 = Dec(c0, sk
′)] ≥ 1− 1

λ
. (5.6)

Let

M =

{
m0

∣∣∣∣Pr [Dec(Enc(m0, pk), sk
′) = m0] >

2

3

}
.

By contradiction, assume that Pr
[
m0 ∈M

∣∣∣m0 ←$ {0, 1}λ
]
< 1

6
. Then, we have

that:

Pr [m0 = Dec(Enc(m0, pk), sk
′)] = Pr [m0 = Dec(Enc(m0, pk), sk

′) |m0 ∈M ] Pr [m0 ∈M ]

+ Pr [m0 = Dec(Enc(m0, pk), sk
′) |m0 /∈M ] Pr [m0 /∈M ]

≤ 1

6
+

2

3
=

5

6
,

which contradicts Equation (5.5) for large enough λ. Thus, with probability at least
1
6

over m0 ←$ {0, 1}λ, we have that

Pr [Dec(Enc(m0, pk), sk
′) = m0] >

2

3
(5.7)

2A search-to-decision reduction is needed but omitted here.
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Let us now assume that we are in the case where Equation (5.7) holds. Then,
by a similar averaging argument, we have that with probability at least 1

24
over

c0 ← Enc(m0, sk), we have that3:

Pr [m0 = Dec(c0, sk
′)] ≥ 7

12
. (5.8)

If we are in the case where Equation (5.8) holds, then by Equation (5.6) we have that
m0 = m1. And in that case, the output of the algorithm breaks the security of the
scheme.

Thus, with probability at least 1
24
· 1
6
, the algorithm breaks the security of the scheme,

which is impossible. Thus L /∈ BQP which concludes the proof.

5.3.3 (q,c,c) Encryption

In this section, we show that public key encryption with classical ciphertexts and classical
secret keys cannot be build from PRUs in a black-box way. Similarly to the previous
section, we show that the existence of such a scheme imply that BQP ̸= QMA, and the
proof relativizes. We note that a previous work [AGL24] shows that (q,c,c)-PKE cannot be
build from PRSs, which is a weaker primitive than PRUs. Thus we improve their result, by
showing that PRUs cannot be used either to build (q,c,c)-PKE in a black-box way.

The proof follows the idea of the beginning of the proof of [CM24] that shows that digital
signatures with classical signatures, classical secret key and quantum public key are separated
from PRUs. We note that the results of this subsection are somewhat folklore, as the proof
of [CM24] can easily be adapted to this setting, with a shorter proof. However, we include
the proof here for completeness, and also because the oracle that we use (Kretschmer’s
oracle) is slightly weaker than the one of [CM24].

Theorem 5.9. Let O be an oracle relative to which PKE with classical ciphertexts and
classical secret keys exist. Then BQPO ̸= QMAO.

Proof. Let O be an oracle relative to which PKE with classical ciphertexts and classical
secret keys exist, and let (Gen,QPKGen,Enc,Dec) be such a scheme.

Let s = 200λ and Mλ = {1ℓ(λ)} × {0, 1}λ·(2s+1). We define the following promise problem
L = (Lyes,Lno)

Lyes =


(
1ℓ(λ), (c0, . . . , cs),

(m′, m1, . . . , ms)
) ∈Mλ

∣∣∣∣∣∣∣∣
∃ sk, such that QPKGen(sk) = pk,

∃m0 ∈ {0, 1}λ , such that m′ ≺ m0,

∀ i,Pr
[
Dec(ci, sk) = mi

]
≥ 1− negl(λ).


3That is because 1

24 + 7
12 ≤

2
3
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Lno =


(
1ℓ(λ), (c0, . . . , cs),

(m′, m1, . . . , ms)
) ∈Mλ

∣∣∣∣∣∣∣∣∣
∀ sk such that QPKGen(sk) = pk,

∀m0 ∈ {0, 1}λ , either m′ ⊀ m0 or

∃ i,Pr
[
Dec(ci, sk) = mi

]
≤ 1

λ
.


1. L ∈ QMA.

We define a quantum polynomial time algorithm that can decide L as follows, given
m0 ∈ {0, 1}λ and sk ∈ {0, 1}ℓ(λ).

Algorithm 5.4. (1ℓ(λ), (c0, . . . , cs), (m
′,m1, . . . ,ms)) ∈Mλ and (m0, sk) ∈ {0, 1}λ ×

{0, 1}ℓ(λ):

(a) If m′ ⊀ m0, return 1.

(b) For 1 ≤ i ≤ s, and 1 ≤ j ≤ 2λ, compute mi,j = Dec(ci, sk). If mi,j ̸= mi, return
0.

(c) For 1 ≤ i ≤ 2λ, sample m′i ←$ {0, 1}λ. If m′i ̸= Dec(Enc(m′i, pk), sk), return 0.

(d) Return 1.

It is easy to see that if (1ℓ(λ),m′, pk, c) ∈ Lyes, then there existm0 ∈ {0, 1}λ and sk such
that Algorithm 5.4 output 1 on input ((1ℓ(λ), (m′,m1, . . . ,ms), (c0, . . . , cs)), (m0, sk))
with probability 1− negl(λ).

Now suppose that (1ℓ(λ), (m′,m1, . . . ,ms), (c0, . . . , cs)) ∈ Lno, and let m0 ∈ {0, 1}λ
and sk be a secret key. If m′ ⊀ m0, then Algorithm 5.3 output 0 with probability 1.
Otherwise, assume that we have that Pr[m = Dec(Enc(m, pk), sk)] ≤ 1− 1

λ
. Hence we

have that Algorithm 5.4 does not output 0 on the first loop with probability at most(
1− 1

λ

)2λ

≤ exp(−2) ≤ 1

3
.

Similarly, if Pr[Dec(ci, sk) = mi] ≤ 1 − 1
λ

for some 1 ≤ i ≤ s, we can conclude
that algorithm 5.3 output 0 with probability at least 2

3
.

2. L /∈ BQP.

By contradiction, assume that L ∈ BQP. Let pk = KGen(1λ), and for 1 ≤ i ≤ s, ci =
Enc(mi,QPKGen(pk)) for some mi ←$ {0, 1}λ. Finally, we pick the challenge m0 ←$

{0, 1}λ, and compute the ciphertext c0 = Enc(m0,QPKGen(pk)). By assumption,
there exists a QPT algorithm that, on input (m1, . . . ,ms), (c0, . . . , cs), can find an m̃0

such that there exists sk′,

Pr [Dec(c0, sk
′) = m̃0] ≥ 1− 1

λ
and ∀1 ≤ i ≤ s,Pr [Dec(ci, sk

′) = mi] ≥ 1− 1

λ
.

We will need the following claim to finish the proof.
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Claim 5.10. Unless with probability 2−λ, we have that:

Pr [m = Dec(Enc(m,QPKGen(sk)), sk′)] ≥ 2

3
,

Proof. We write, for any sk∗,

p(sk∗) = Pr [m = Dec(Enc(m,QPKGen(sk)), sk∗)] .

Fix sk∗, and assume that p(sk∗) < 2
3
. Then, by an averaging argument, there is a

fraction at least 1
9

of the m such that:

Pr [m = Dec(Enc(m,QPKGen(sk)), sk∗)] ≤ 3

4
.

By an other averaging argument, for those m, with probability at least 1
16

over the
choice of c = Enc(m,QPKGen(sk)), we have that:

Pr [m = Dec(c, sk∗)] <
4

5
.

Thus if p(sk∗) < 2
3
, with probability 1

16
× 1

9
= 1

144
over the choice of m and c, we have

that:

Pr [m = Dec(c, sk∗)] <
4

5
.

Now recall that for (1ℓ(λ), (m′,m1, . . . ,ms), (c1, . . . , cs)) /∈ Lno, we have that:

∀i,Pr [m = Dec(ci, sk
∗)] ≥ 1− 1

λ
.

This mean that we can bound, for any sk∗,

Pr

[
∀i,Pr [m = Dec(Enc(mi, sk), sk

∗)] ≥ 1− 1

λ

∣∣∣∣ p(sk∗) < 2

3

]
≤
(
143

144

)s
≤ 2−2λ,

where the probability is over the choice of the mi and the randomness of the encryption
algorithm. And finally, by a union bound

Pr

[
∃sk∗,∀i,Pr [m = Dec(Enc(mi, sk), sk

∗)] ≥ 1− 1

λ
and p(sk∗) <

2

3

]
≤ 2−λ,

for sufficiently large λ. This proves the claim.
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From Claim 5.10 and using an averaging argument, we have that with probability at
least 1

24
over the choice of m0,

Pr [m0 = Dec(Enc(m0,QPKGen(sk)), sk
′)] ≥ 7

12
.

In that case, using an other averaging argument, we have that with probability at
least 1

24
over the choice of c0,

Pr [m0 = Dec(c0, sk
′)] ≥ 3

7
.

In that case, we have that m0 = m∗0 for large enough λ. Thus, with probability at
least 1

24
× 1

24
, m0 = m̃0.

This breaks the security property of the public key encryption scheme, which is
impossible by assumption. Thus L /∈ BQP which concludes the proof.

5.3.4 Overview

In Figure 5.1 we summarize the state of the art of the feasibility of black-box constructions
of public key encryption from pseudorandom unitaries. The figure, which is depicted as a
cube, helps illustrate the relationship between the different kind of public key encryption
schemes, highlighting that having a classical string is stronger than having a quantum
state. In terms of feasibility result, the strongest possible construction is a (c,c,c)-PKE
scheme, hence the closer the construction is to this point, the stronger it is. Conversely, the
weakest possible construction is a (q,q,q)-PKE scheme, so the nearer a separation is to this
point, the stronger it is. Two open questions remain regarding whether (c,q,q)-PKE and
(q,q,c)-PKE can be constructed from PRUs in a black-box way. We note that in Figure 6.1
we compare this figure with a similar one that presents feasibility result from one-way
functions in a black-box way.
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PRU

(Cpk,Csk,Cc)

(Cpk,Qsk,Cc)

(Qpk,Csk,Cc)

(Qpk,Qsk,Cc)

(Cpk,Csk,Qc)

(Cpk,Qsk,Qc)

(Qpk,Csk,Qc)

(Qpk,Qsk,Qc)

[BGH
+ 23]

[K
T2

4a
, C

G
G
24

]

Figure 5.1: Summary of feasibility and impossibility result of public key encryption (PKE)
from pseudorandom unitaries (PRUs). Each triplet corresponds to a different kind of PKE,
where the order is (pk, sk, c), and a C indicates a classical string, and a Q indicates a
quantum state. A blue arrow indicates a black-box construction, and a dotted red arrow
indicates a black-box separation.

5.4 On Constructing Signatures

The goal of this section is to study the relationship between (one-time and digital) signatures
and PRUs in a black-box way. Remember that we let (vk, sk, s) ∈ {c, q}3 and discuss (vk, sk, s)
signatures where a c indicate a classical string, while a q indicate a quantum state.

5.4.1 (c,c,c) and (c,c,q) Signatures

In this subsection, we discuss signatures with classical verification key, classical secret key,
and quantum signature. It has been proven that (c,c,q) signatures are separated from
PRUs in previous work [KT24a, CGG24]. Similar to the case of public key encryption with
classical keys, one can prove that the existence of (c,c,q) signature implies the existence of
EV-OWPs.
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5.4.2 (c,q,c) Signatures

In this subsection, we discuss signatures with classical verification key, quantum secret key,
and classical signature. This case was also tackled in previous work [KT24a]. Similar to
the previous case, the existence of (c,q,c) signatures implies the existence of EV-OWPs.
Very briefly, the puzzle is the verification key, and the secret is a signature of 0.

5.4.3 (q,c,c) Signatures

In this subsection, we discuss signatures with quantum verification key, classical secret key,
and classical signature. One-time (q,c,c) signatures can be constructed from PRSs [MY22b].

Multi-time (q,c,c) signatures schemes are known to be separated from PRUs in a black-box
way from previous work [CM24].

5.4.4 (c,q,q) Signatures

In this subsection, we discuss signatures with classical verification key, quantum secret
key, and quantum signature. We will show that (c,q,q) signatures imply the existence
of EV-OWSPs. In fact, we even have that such signatures schemes are equivalent to
EV-OWSPs.

Theorem 5.11. One-time signatures with quantum secret keys, classical verification keys
and quantum signatures are equivalent to EV-OWSPs in a black-box way.

Proof. The proof is similar to the proof of [CGG24]. We include a sketch for completeness.

1. Signature imply EV-OWSP.

Let KGen(·), Sign(·),Ver(·) be a signature scheme with quantum secret keys, classical
verification keys and quantum signatures. We define the following EV-OWSP:

• Gen(1λ) = KGen(1λ) = (sk, vk).

• Ver(s, k): Sample ψ ←$ {0, 1}∗. Return Ver(Sign(ψ, s), k).

Correctness of the EV-OWSP follows from the correctness of the signature scheme.
Security follows from the security of the signature scheme: if an attacker can break
the puzzle, it can forge a signature with high probability, which is impossible.

2. EV-OWSP imply signature.

Let Gen(·),Ver(·) be a EV-OWSP. We define the following signature:

• KGen(1λ) : Let (s0, k0) = Gen(1λ) and (s1, k1) = Gen(1λ). The algorithm output
(sk = (s0, s1), pk = (k0, k1)).

• Sign(sk,m): If m = 0, output s0, otherwise, output s1.

• Ver(vk, s,m): Let vk = (k0, k1). Output Ver(s, km).
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Correctness follows from the correctness of the EV-OWSP. Security follows from the
security of the EV-OWSP: if an attacker can forge a signature, it can find a state
that passes the verification of the EV-OWSP with high probability.

Discussion on EV-OWSPs It is proven in [GMMY24] that there exists an oracle O
relative to which OWSPs exist but BQP = QCMA. In fact, one can easily see that EV-
OWSPs exist relative to O. We note however that their oracle is a CPTP map, making it a
non standard oracle. This still indicate that EV-OWSPs seems weaker than EV-OWPs.

We also note that (c,q,c)-PKE imply EV-OWSPs with a similar proof. Moreover, we
have that QCCC-NIKE imply (c,q,c)-PKE with the standard construction of PKE from
NIKE, and noticing that if the NIKE has classical communication, then the PKE scheme
has classical public keys and classical ciphertexts. Since QCCC-NIKE exist relative to
O, this imply that (c,q,c)-PKE also exist relative to O. We proved in Section 5.3.2 that
the existence of (c,q,c)-PKE scheme imply that BQP ̸= QMA necessarily, thus is also hold
relative to O. Thus BQPO = QCMAO ̸= QMAO, but EV-OWSPs exist relative to O.

An interesting open question is: can EV-OWSPs exist if BQP = QMA? More generally,
what is the computational complexity characterization of the existence of EV-OWSPs?
The last paragraph suggests that BQP = QCMA is not enough to break EV-OWSPs, what
about BQP = QMA? Do EV-OWSPs exist relative to Kretschmer’s oracle?

5.4.5 (q,c,q) Signatures

In this subsection, we discuss signatures with quantum verification key, classical secret key,
and quantum signature. One-time (q,c,q) signatures can be constructed from PRSs [MY22b].
In fact, one can easily see that they also imply OWSGs using similar techniques as in the
previous subsection, and thus are equivalent to one-time (q,c,c) signatures.

5.4.6 Overview

In Figure 5.2 we summarize the state of the art regarding the feasibility of black-box
constructions of one-time and digital signatures from pseudorandom unitaries. Similar
to the public key encryption figure, this figure is represented as a cube, and the same
observations apply. Notably some one-time signature schemes are equivalent; in fact,
(c,c,c)-one-time signatures, (c,q,c)-one-time signatures and (c,c,q)-one-time signatures are
all equivalent. Likewise, (q,c,c)-one-time signatures and (q,c,c)-one-time signatures are
equivalent. Furthermore, if EV-OWPs imply digital signatures, then it would follow
that (c,c,c)-digital signature, (c,q,c)-digital signature and (c,c,q)-digital signatures are all
equivalent.
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(a) One-time signature.
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(b) Digital signature.

Figure 5.2: Summary of feasibility and impossibility result of one-time signatures and
digital signatures from pseudorandom unitaries (PRUs). Each triplet corresponds to a
different kind of signature, where the order is (vk, sk, s), and a C indicates a classical string,
and a Q indicates a quantum state. A blue arrow indicates a black-box construction, and a
dotted red arrow indicates a black-box separation.
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5.5 Common Haar Function-like State Oracles

The rest of this chapter is dedicated to some separations relative to a variant of the Common
Haar State Oracle, that we call the Common Haar Function-like State Oracle. We start by
defining this model.

5.5.1 CHFS Oracles and Unitarization

We first recall the definition of swap (or reflection) oracles [BCN24, CCS24].

Definition 5.1. For a n-qubit pure quantum state |ϕ⟩, the swap (or reflection) unitary is
defined by

S|ϕ⟩ := |0n⟩⟨ϕ|+ |ϕ⟩⟨0n|+ I⊥ = I − 2 |ϕ−⟩⟨ϕ−| ,

where we assume w.l.o.g. that |ϕ⟩ is orthogonal to |0n⟩, since if not, we can always append
a single |1⟩ to it in order to make it orthogonal. Here, I⊥ is the identity on the subspace
orthogonal to span{|0n⟩ , |ϕ⟩} and |ϕ−⟩ = |0n⟩−|ϕ⟩√

2
.

The last equality implies that S|ϕ⟩ is actually the reflection unitary with respect to |ϕ−⟩.

We proceed to define the length-ℓ common Haar-random function-like state (CHFS) oracle
and its “unitarized” oracle. We fix a (QPT-computable) function ℓ : N→ N representing
the output length for each oracle, where we typically consider ℓ(λ) = Θ(log λ) or ℓ(λ) = λ.
We define two versions of the CHFS oracles as follows.

Definition 5.2 (The isometry CHFS oracle). We denote by Oℓ the distribution over the
family of isometry oracles where

• Randomness: Choose a ℓ(|x|)-qubit Haar random quantum state |ϕx⟩ for each
x ∈ {0, 1}∗ and define Φ = {|ϕx⟩}x∈{0,1}∗.

• Setup: A family of oracles OΦ = (OΦ
x )x∈{0,1}∗ ← Oℓ is chosen by randomly sampling

Φ, where OΦ
x := |ϕx⟩⟨0| denotes the isometry operator. Here |0⟩ denotes the trivial

quantum state of dimension 1.

• Query: It takes a quantum state ρXZ as input and applies the isometry

OΦ :=
∑

x∈{0,1}|X|

|x⟩⟨x|X ⊗O
Φ
x =

∑
x∈{0,1}|X|

|x⟩⟨x|X ⊗ |ϕx⟩Y ⟨0| ,

on ρXZ, where Y denotes a new ℓ(|X|)-qubit register, i.e., appending a new register
Y.

We say the CHFS oracle is classical-accessible if the register X must always be measured in
the computational basis before applying the query. Otherwise, we call the oracle quantum-
accessible.

Definition 5.3 (The unitarized CHFS oracle). We denote by Sℓ the distribution over the
family of unitary oracles where
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• Randomness: Choose a ℓ(|x|)-qubit Haar random quantum state |ϕx⟩ for each
x ∈ {0, 1}∗ and define Φ = {|ϕx⟩ |1⟩}x∈{0,1}∗.4

• Setup: A family of oracles SΦ = (SΦ
x )x∈{0,1}∗ ← Sℓ is chosen by randomly sampling

Φ, where SΦ
x := S|ϕx⟩ denotes the reflection operator as defined in definition 5.1.

• Query: It takes a quantum state ρXYZ as input such that |Y| = ℓ(|X|) + 1 and
applies the unitary

SΦ :=
∑

x∈{0,1}|X|

|x⟩⟨x|X ⊗ S
Φ
x =

∑
x∈{0,1}|X|

|x⟩⟨x|X ⊗ S|ϕx⟩,

on ρXYZ, where Sx is applied on the register Y.

The classical-accessible and quantum-accessible unitarized CHFS oracles are defined analo-
gously.

The (length-ℓ) CHFS model is defined as follows. The randomness Φ is chosen as an
initialization. We note that the sets of randomness Φ used to define the isometry and
unitarized CHFS oracles are the same. We omit the superscript Φ if the context makes
it clear. Then, all parties have oracle access to the CHFS oracle O = OΦ or S = SΦ. We
say the log-length CHFS model for ℓ(λ) = O(log λ), and the standard CHFS model for
ℓ(λ) = ωlog λ.5

We call it the state (or isometry) CHFS model when the oracle is OΦ, and the unitary (or
swap/reflection) CHFS model when the oracle is SΦ.

5.5.2 Construction of PRFSs in the CHFS Model

We show that PRFSs with output length ℓ exist in the length-ℓ CHFS model. Again, we
stress that the PRFSs are adaptively-secure by default.

Theorem 5.12. Quantum-accessible (resp. classical-accessible) (κ,m, ℓ)-PRFSs exist in
the length-ℓ quantum-accessible (resp. classical-accessible) CHFS model for any key size
κ = ω(log λ) and input size m = poly(λ), regardless of the choice of unitary or isometry
models. The same statement even holds relative to the QPSPACE oracle.

Proof. We define the following (κ,m, ℓ)-PRFSs. We explain the construction in the isometry
CHFS model, but modifying it to the unitary CHFS model is obvious.

GenO(k, ·): On the m-qubit input register X, it applies the map

|x⟩X → |x⟩X ⊗ |ϕk,x⟩ .

This is done by, on input ρXZ, appending the κ-qubit register |k⟩K and makes a query
to the oracle OΦ on the register KX and discards the registers K.

4Here we explicitly append |1⟩ to make the unitary CHFS oracle well-defined w.r.t. definition 5.1.
5We usually consider the standard CHFS model with ℓ(λ) = λ for simplicity.
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We have that |k|+ |x| = m+κ = poly(λ) thus Gen can be implemented by a BQP algorithm
with a single query to the CHFS oracle with m+ κ length input.

We claim that this construction is a secure PRFS. More precisely, we prove the following
statement: For any algorithm A that makes q queries, it holds that

∣∣Pr [AGen(k,·),O → 1
]
− Pr

[
AGHaar(·),O → 1

]∣∣ = O( q2
2κ

)
,

where GHaar(x) outputs an ℓ-qubit Haar random state |ψx⟩. When we consider the classical-
accessible model, the upper bound becomes O(q/2κ).

This is done by reducing it to an unstructured search (cf. [Kre21, Section 5]). Formally,
we consider a quantum oracle algorithm Bs for s ∈ {0, 1}2

κ

as follows. Let λ′ := κ+m. B

samples independent ℓ-qubit Haar random quantum states
∣∣∣ϕ̃z〉 for each z ∈ {0, 1}λ

′
and

GHaar(·) as defined in definition 2.5. After the initialization, B runs A, but the queries to
the first oracle is answered by GHaar(·), and the query z = (k′, x) ∈ {0, 1}λ

′
for any x to the

second oracle is answered by GHaar(x) if sk′ = 1 and
∣∣∣ϕ̃z〉 if sk′ = 0.

Let ek be the all-0 string except for the k-th entry 1, then it holds that

∣∣∣∣PrO [AGen(k,·),O → 1
]
− Pr

O,GHaar

[
AGHaar(·),O → 1

]∣∣∣∣ = ∣∣∣Prk [Bek → 1]− Pr
[
B0κ → 1

]∣∣∣ = O( q2
2κ

)
,

where the last inequality holds because of the BBBV theorem [BBBV97]. The security proof
for the unitary CHFS model works by replacing O into S. This concludes the proof.

5.6 On Separating QPRGs from Short PRFSs

This section presents a candidate separation between QPRGs and log-length PRFSs, which
can be rigorously proven under some geometric conjecture about the product Haar measure
on states. We first present the conjecture, and then the formal statement together with the
proof follows.

5.6.1 The conjecture and candidate separation

Let X = S(2n1)× · · · × S(2nk) be the product space of quantum states equipped with the
product Haar measure σ := σn1 × · · · × σnk

. For two elements Φ = (|ϕ1⟩ , . . . , |ϕk⟩),Ψ =
(|ψ1⟩ , . . . , |ψk⟩) in X, we define the max-trace distance dtr(Φ,Ψ) := maxi∈[k] ∥ϕi − ψi∥tr.
For two subsets S, T of X, we define their distance as dtr(S, T ) := infΦ∈S,Ψ∈T dtr(Φ,Ψ).

We consider the following mathematical conjecture.
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Conjecture 5.1. Let X = S(2n1)×· · ·×S(2nk) with the corresponding product Haar measure
σ = σn1 × · · · × σnk

, and let S0, S1 be two measurable subsets of X. If dtr(S0, S1) ≥ ∆ and
σ(S0), σ(S1) ≥ Γ, then σ(X \ (S0 ∪ S1)) = Ω(∆aΓb) for some constants a, b > 0.

Intuitively, the conjecture is stating that regardless of their shape, if two sets have a gap
between them, then there must be a non-negligible section of the whole space that they are
not covering. For a detailed geometric intuition, we refer the reader to appendix C.

Assuming the conjecture to be true, the candidate separation is with respect to log-length
CHFS oracles, relative to which we showed in theorem 5.12 that log-length PRFSs exist.
The result is stated in the following theorem

Theorem 5.13. Relative to the quantum-accessible CHFS oracle Sℓ with ℓ(λ) = ⌊log λ⌋,
there exist adaptively-secure quantum-accessible short PRFSs but QPRGs do not exist unless
BQP ̸= QCMA.

It remains to show the impossibility of QPRGs, which we prove in the next subsection.

5.6.2 Impossibility of QPRGs

In this section, we drop ℓ in S for simplicity.

Lemma 5.14. Let S be the (unitarized) quantum-accessible CHFS oracle with ℓ(λ) = ⌊log λ⌋
and let AS be a polynomial-query oracle algorithm. Let p = poly(λ) be the maximal length
of the CHFS oracles that A accesses. Suppose that there exist bΦ ∈ {0, 1} such that

Pr
Φ←σ

[
Pr
(
AS

Φ

(1λ)→ bΦ

)
= 1− negl(λ)

]
= 1− negl(λ). (5.9)

Assuming conjecture 5.1 is true, then there exists b ∈ {0, 1} such that

Pr
Φ←σ

(b = bΦ) = 1− negl(λ).

Proof. Given the upper bound of the maximum query length p, the algorithm accesses
a finite number of reflection oracles. Let X = S(2n1) × · · · × S(2nk) be the states6 to
define the CHFS oracle up to the length p, with the corresponding product Haar measure
σ = σn1 × · · · × σnk

. Let S0, S1 ⊆ X be defined as

S0 :=
{
Φ ∈ X : Pr

(
AS

Φ

(1λ)→ 0
)
≥ 2/3

}
, S1 :=

{
Φ ∈ X : Pr

(
AS

Φ

(1λ)→ 1
)
≥ 2/3

}
.

By the hypothesis in eq. (5.9), with overwhelming probability over σ, either

Pr
(
AS

Φ → 1
)
≥ 2/3 or Pr

(
AS

Φ → 0
)
≥ 2/3,

thus σ(X \ (S0 ∪ S1)) = negl(λ).
6This is implicitly parameterized by λ.
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We will prove the theorem by contradiction. Assume that for both b ∈ {0, 1}, we have
PrΦ←σ (b = bΦ) ≤ 1− 1/poly(λ), thus σ(Sb) ≤ 1− 1/poly(λ). However, we just proved that
σ(S0 ∪ S1) = 1 − negl(λ), hence σ(S0), σ(S1) ≥ 1/poly(λ)Γ necessarily. Given a pair of
elements Φ ∈ S0 and Ψ ∈ S1, we will show that the difference between the applications
of classically accessible SΦ and SΨ cannot be too large. Indeed, for every input state
γ =

∑
x px |x⟩⟨x| ⊗ γx, we have

∥SΦ(γ)− SΨ(γ)∥tr ≤
∑
x

px∥S|ϕx⟩(γx)− S|ψx⟩(γx)∥tr

≤
∑
x

px∥S|ϕx⟩ − S|ψx⟩∥op∥γx∥tr

≤
∑
x

px
√
1− | ⟨ϕx|ψx⟩ |2 =

∑
x

px∥ |ϕx⟩ − |ψx⟩ ∥tr

≤
∑
x

pxdtr(Φ,Ψ)

≤ dtr(Φ,Ψ),

where we used the structure of the unitarized oracles SΦ =
∑

x |x⟩⟨x| ⊗ S|ϕx⟩, and that the
difference of reflection oracles is ∥S|ϕ⟩ − S|ψ⟩∥op = 2

√
1− | ⟨ϕ|ψ⟩ |2. This implies that the

diamond distance of the unitary oracles SΦ and SΨ must also be at most 2dtr(Φ,Ψ). On
the one hand, if the algorithm A makes T queries to the oracles, the subadditivity of the
diamond norm under composition implies that

∥ASΦ − ASΨ∥⋄ ≤ 2Tdtr(Φ,Ψ).

On the other hand, by definition the diamond norm is the maximum distinguishability of
two systems, therefore we can lower bound this quantity by

∥ASΦ − ASΨ∥⋄ ≥
∣∣∣Pr(ASΦ → 1

)
− Pr

(
AS

Ψ → 1
)∣∣∣ ≥ 1

3
,

where the last inequality is obtain from the definition of Φ ∈ S0 and Ψ ∈ S1. Finally, since
the lower bound is independent of Φ and Ψ, in particular it also holds for the infimum over
the sets S0 and S1, this is

∆ := dtr(S0, S1) = inf
Φ∈S0
Ψ∈S1

dtr(Φ,Ψ) ≥ 1/poly(λ).

We find therefore ourselves in the hypothesis of conjecture 5.1, thus σ(X \ (S0 ∪ S1)) =
poly(∆,Γ), however this is in contradiction with what we proved earlier, that σ(X \ (S0 ∪
S1)) = negl(λ), concluding the proof.

Remark 5.1. The proof of lemma 5.14 above can be easily extended to the case of isometry
CHFS oracles.
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Lemma 5.15. Assuming conjecture 5.1 is true, there are no QPRGs relative to the
quantum-accessible CHFS oracle Sℓ with ℓ(λ) = ⌊log λ⌋, unless BQP ̸= QMA.

Proof. By the above lemma, the classical-output function relative to the short CHFS oracle
must output a value independent of the oracle with overwhelming probability. That is, the
existence of the QPRGs in this model implies the existence of the QPRGs without any
oracle, which is impossible unless BQP ̸= QMA.

5.7 Toward Separating PRSs from Short-PRSs

In this section we show that, under conjecture 5.1, the output size of a pseudorandom state
may be relevant, i.e. there exist short-PRSs but PRSs in a certain form do not exist.

5.7.1 Preparation

Universal oracle. For a quantum oracle algorithm with access to the oracle O = {Oλ}λ∈N,
we consider a universal oracle Õ that takes as input a state over two registers ΛX, measures
the register Λ to obtain λ, then apply Oλ on (the first parts of) X. The (qu)bit-length n of
Λ may be specified by Õn if needed, in which case Õn can make queries up to O2n .

We give the definition here because we explicitly discuss the measurement regarding λ here;
the results in the previous section may use the universal oracles implicitly but are not
changed.

Pure quantum algorithm, with the isometry CHFS oracles. In this section, we consider
quantum oracle algorithms without trace-out operators, which we refer by pure algorithms,
written as

A(·) = Ut ◦ Õ ◦ Nt ◦ · · · ◦ U1 ◦ Õ ◦ N1 ◦ U0(·), (5.10)

where each measurement Ni decides which oracle to query (the parameter λ) on what input
x.

Recall that the isometry CHFS oracle with input x outputs |ϕx⟩Y in a new register Y. For
the pure algorithm A with the isometry CHFS oracles, we assume that the register Y was
included in the input register of A initialized by |0⟩Y, but it is never changed until the
oracle query is applied. After the query, it becomes |ϕx⟩Y and arbitrary operation may be
applied on Y.

When the universal oracle is considered, we assume that some register is initialized by |0n⟩
for some n and the oracle query uses some qubits of them as Λ, which is measured when
the query to the universal oracle is made. Arbitrary operations may be applied to these
qubits at any point.
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5.7.2 Purity test on the output of pure algorithms

Recall that the purity of a quantum state ρ is defined by Tr(ρ2) and can be estimated by
the swap test as shown in lemma 2.15 on the two copies of ρ. If the outcome of an algorithm
is pure, then it can be shown that the initial or intermediate states must have also been
pure and the intermediate measurements are deterministic (which is in fact nontrivial).
This is the idea behind the following lemma, which states that if the output of a pure
quantum algorithm is nearly pure, then the intermediate binary measurements are almost
deterministic, and can be removed at the cost of a negligible difference in the output state.

Note that the measurements in the following lemmas are binary ; when we apply this lemma,
we may implicitly decompose the general measurements into binary measurements.

Lemma 5.16. Let A be a pure quantum algorithm that makes t projective binary mea-
surements described by {U0,M1, . . . ,Mt, Ut} for unitaries U0, ..., Ut and measurements
Mi = (|0⟩⟨0| ⊗ I, |1⟩⟨1| ⊗ I) as follows:

A(·) = Ut ◦Mt ◦ · · · ◦ U1 ◦M1 ◦ U0(·), (5.11)

where the oracle queries may be included in Ui’s.7 Suppose that for a pure input state ϕ, there
exists an ε > 0, such that Tr(A(ϕ)2) ≥ 1−ε. Define bi+1 := argmaxb∈{0,1}Tr((|b⟩⟨b| ⊗ I)(Ui ◦Mi ◦ · · · ◦M1 ◦ U0(ϕ))).
Then, it holds that the algorithm A can be approximated by projecting only onto the most
likely outcomes of the binary measurements

∥Ut ◦ (|bt⟩⟨bt| ⊗ I) ◦ · · · ◦ U1 ◦ (|b1⟩⟨b1| ⊗ I) ◦ U0(ϕ)− Ut ◦Mt ◦ · · · ◦ U1 ◦M1 ◦ U0(ϕ)∥1 ≤ tε.
(5.12)

For any intermediate state ϕi right after applying Ui, it also holds that Tr((|bi+1⟩⟨bi+1| ⊗ I)ϕi) ≥
1 − ε for all i. Furthermore, assuming conjecture 5.1 is true, there exists an algorithm
that learns b1, . . . , bt, i.e., the query inputs of A without making any oracle queries with
overwhelming probability.

Proof. We rewrite the algorithm A in simpler terms for the proof by considering

Ni := (Π0
i ,Π

1
i ), where Πb

i := U †0 · · ·U
†
i−1(|b⟩⟨b| ⊗ I)Ui−1 · · ·U0,

acting on any mixed input state ρ as Ni(ρ) = Π0
i ρΠ

0
i + Π1

i ρΠ
1
i . The algorithm A can be

reformulated as follows8:

A(ρ) = Ut ◦ · · · ◦ U0 ◦ Nt ◦ · · · ◦ N1(ρ)

=
∑

b1,··· ,bt∈{0,1}

Ut · · ·U0Π
bt
t · · ·Π

b1
1 ρΠ

b1
1 · · ·Πbt

t U
†
0 · · ·U

†
t . (5.13)

7This is possible for the isometry oracle as we assume that the output register is not touched before the
oracle queries.

8Careful readers may be concerned about the isometry oracle implicit in Ui’s when using U†
i . We note

that the same proof applies to the original algorithm represented as in eq. (5.11); we only use eq. (5.13) for
the simplicity of the proof of claim 5.17.
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We also define the intermediate states {ϕi}i∈[t] after measurement Ni as

ϕi := Ni ◦ · · · ◦ N1(ϕ).

The most probable outcomes for the original binary measurements are also simplified with
this notation, in particular bi+1 = argmaxb∈{0,1}Tr

(
Πb
i+1ϕi

)
, and we define the associated

measurement operator

Λi+1(ρ) := Π
bi+1

i+1 ρΠ
bi+1

i+1 .

Since the trace-norm is invariant under unitaries, in order to prove the theorem it is enough
to show that

∥Λt ◦ · · · ◦ Λ1(ϕ)−Nt ◦ · · · ◦ N1(ϕ)∥tr ≤ tε.

It turns out that proving that “it also holds” part suffices for proving the above inequality.
In the formulation of this proof, it can be written as follows.

Claim 5.17. For every i ∈ [t] and measurement operator Λi+1 := Π
bi+1

i+1 ρΠ
bi+1

i+1 ., we have

Tr(Λi+1(ϕi)) ≥ 1− ε.

We prove that the claim implies the main inequality of the theorem, as the measurement
channel and the operator associated with the most likely outcome are closely related. This
is, their difference is just the operator associated with the least likely outcome, whose
probability of occurring is bounded by claim 5.17:

∥Λi+1(ϕi)−Ni+1(ϕi)∥1 = ∥Π1−bi+1

i+1 ϕiΠ
1−bi+1

i+1 ∥1 = 1− Tr
(
Π
bi+1

i+1 ϕi

)
≤ ε,

so that ∥Λi+1(ϕi)−Ni+1(ϕi)∥tr ≤ ε. The theorem follows by the triangle inequality as

∥Λt ◦ · · · ◦ Λ1(ϕ)−Nt ◦ · · · ◦ N1(ϕ)∥tr
≤ ∥Λt ◦ · · · ◦ Λ1(ϕ)− Λt ◦ · · · ◦ N1(ϕ)∥tr

+ ∥Λt ◦ · · · ◦ Λ2 ◦ N1(ϕ)− Λt ◦ · · · ◦ N2 ◦ N1(ϕ)∥tr
+ · · ·+ ∥Λt ◦ Nt−1 ◦ · · · ◦ N1(ϕ)−Nt ◦ Nt−1 ◦ · · · ◦ N1(ϕ)∥tr

≤
t−1∑
i=0

∥Λi+1(ϕi)−Ni+1(ϕi)∥tr ≤
t−1∑
i=0

ε = tε,

where we used the fact that a quantum channel does not increase the trace norm, see eq. (2.6),
for the quantum channel Λj in the second inequality.
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Proof of claim 5.17. Note that measurement channels can only decrease purity, this is for
all i ∈ [t]:

Tr
(
ϕ2
i+1

)
= Tr

(
Ni+1(ϕi)

2
)

= Tr
((

Π0
i+1ϕiΠ

0
i+1 +Π1

i+1ϕiΠ
1
i+1

)2)
= Tr

(
Π0
i+1ϕiΠ

0
i+1ϕiΠ

0
i+1 +Π1

i+1ϕiΠ
1
i+1ϕiΠ

1
i+1

)
≤ Tr

(
Π0
i+1ϕ

2
i

)
+ Tr

(
Π1
i+1ϕ

2
i

)
= Tr

(
ϕ2
i

)
,

where we use Tr
(
CρC†

)
≤ Tr(ρ) for any unnormalized state ρ = ϕiΠ

b
i+1ϕi and quantum

channel C(·) = Πb
i+1(·)Πb

i+1, and the cyclicity of the trace.

Moreover, we know by hypothesis of lemma 5.16 that the outcome of the algorithm A is
pure with high probability, i.e. Tr(ϕ2

t ) ≥ 1 − ε. In particular, the above implies that for
every i ∈ [t], the intermediate state ϕi is pure with high probability, and hence the channel
described by the most probable measurement element must have high probability

1− ε ≤ Tr
(
ϕ2
t

)
≤ Tr

(
ϕ2
i+1

)
≤ Tr

(
Π0
i+1ϕiΠ

0
i+1

)2
+ Tr

(
Π1
i+1ϕiΠ

1
i+1

)2
≤ Tr

(
Π
bi+1

i+1 ϕiΠ
bi+1

i+1

) (
Tr
(
Π0
i+1ϕiΠ

0
i+1

)
+ Tr

(
Π1
i+1ϕiΠ

1
i+1

))
≤ Tr

(
Π
bi+1

i+1 ϕiΠ
bi+1

i+1

)
Tr(ϕi)

= Tr(Λi+1(ϕi)).

5.7.3 Conditional separation

We now show the following theorem, which is the main result of this section.

Theorem 5.18. Assuming conjecture 5.1 is true, there exists an isometry oracle O relative
to which (classical-accessible) short-PRFSs exist, but long-PRSs with pure generation
algorithms do not.

The separating oracle O consists of two oracles: the classical-accessible isometry CHFS
oracle Oℓ for ℓ(λ) = ⌊2 log λ⌋ and the QPSPACE oracle. The existence of short-PRFSs
follows immediately from theorem 5.12. It remains to break long PRSs with pure generation
algorithm.

Proof of theorem 5.18. By contradiction, assume there exists a PRS Gen(·) with a pure
generation algorithm relative to O. We write d(λ) and κ(λ) to denote the output length
and the key length of the PRS. Since the QPSPACE oracle is unitary, we can embed them
in the unitaries and write the output state of the algorithm GenO(k) = ρ(k) by

(U
(k)
t ◦ Õ(k)

nt
◦ N (k)

t ) ◦ . . . ◦ (U (k)
1 ◦ Õn1 ◦ N

(k)
1 ) ◦ U (k)

0 (|0⟩⟨0|⊗d(λ)). (5.14)
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We omit the superscript (k) when it is clear from the context. Here U0, . . . , Ut denote
unitary operations and N1, . . . ,Nt are measurements on some registers Λ1X1, . . . ,ΛtXt,
where Λj specifies the index for the CHFS oracle to be applied on Xj . The values n1, . . . , nt
denote the size of Λ1, . . . ,Λt.

Let us denote by ρ(k) = ρ
(k)
t the final state, and we denote by ρ(k)j the intermediate state

right after applying the unitary Uj for j = 0, . . . , t− 1. We consider the following adversary
A, given the polynomial copies of either ρ = ρ(k) for some k (in which case it outputs 1)
or Haar random state ρ (in which case it outputs 0). In the following, let r = 10λ2 and
T = 20r2(2td+ 1)3.

Algorithm 5.5. A does to following on input multiple copies of a state ρ.

1. A executes the purity test 16Tλ times on ρ. If the test fails at least 8λ times, A
returns 1 and aborts. Otherwise, it proceeds to the next step.

2. A defines Ũk = U
(k)
t ◦ · · · ◦ U

(k)
0 . For each k, and i = 0, . . . , t − 1, let (λ(k)i , x

(k)
i ) =

argmaxλ,xTr
(
|λ, x⟩⟨λ, x| ρ(k)i−1

)
. We define the following sub-protocol Pk that takes as

input a state Ψ = (ρ⊗2)⊗r for r = 10λ2:

Pk: For each i ∈ [M ], compute Ũ †k ⊗ Ũ †k(ρ ⊗ ρ) and apply the product test for
ℓ(λ

(k)
1 ), . . . , ℓ(λ

(k)
t ), 1, . . . , 1 qubits, where the number of 1 is sk = d−

∑
i∈[t] λ

(k)
i .

Let mk = t+sk be the total number of swap tests used in the product test. Return
1 if all tests pass, and return 0 otherwise.

Then A runs the quantum OR tester with {Pk}k∈{0,1}κ on Ψ = (ρ⊗2)⊗r, and returns
the same output.

We first argue that the sub-protocol Pk can be implemented in polynomial time. This is
because the (λ

(k)
i , x

(k)
i ) can be learned without making any query by lemma 5.14.

Claim 5.19. If ρ = ρ(k) and Tr(ρ2) ≥ 1− 1/T , then Pr[Pk(Φ)] ≥ 4/5.

Claim 5.20. If ρ is Haar random state, then Pr[Pk(Φ)→ 1] ≤ 1/22λ for all k with
probability at least 1− 1/22λ.

The correctness of the algorithm can be shown by the case analysis. If ρ = ρ(k) for some k
and Tr(ρ2) ≤ 1−1/T , then lemma 2.16 asserts that the first step outputs 1 with probability
1− 2−λ.

The other case, i.e., ρ = ρ(k) and Tr(ρ2) ≥ 1 − 1/T or ρ is a true Haar random state is
dealt with the quantum or lemma. In this case, by claim 5.19 and claim 5.20, the POVMs
{Pk}k∈{0,1}λ and Ψ satisfies the conditions of the quantum or lemma (lemma 2.19) unless
with probability 1/2λ·. Therefore, A outputs 1 with probability at least 1/8 if ρ = ρ(k) for
some k, but it outputs 1 with probability at most 4/2λ if ρ ← νn, that is, A breaks the
PRS security of Gen(·).
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Proof of claim 5.19. By the above claim, we can assume that Tr(ρ2) ≥ 1− 1/T , otherwise
Algorithm 5.5 would have terminated at step 1 with probability at least 1 − 2−λ. We
can decompose the measurement Ni by Mi,di ◦ ... ◦Mi,1 for some binary measurements
Mi,1, ...,Mi,di where di ≤ d, which is bounded by the number of qubits.

Let ρ̃(k)t be defined as

(U
(k)
t ◦ Õnt ◦ |λt, xt⟩⟨λt, xt|) ◦ . . . ◦ (U

(k)
1 ◦ Õn1 ◦ |λ1, x1⟩⟨λ1, x1|) ◦ U

(k)
0 (|0⟩⟨0|⊗d(λ)),

where we replaced Ni by |λi, xi⟩⟨λi, xi| in eq. (5.14). It is not hard to see that each bit of
(λi, xi) coincides with some of bj defined in lemma 5.16 because td/T < 1/2. By lemma 5.16,
we have

∥ρ̃(k)t − ρ
(k)
t ∥tr ≤

td

T
. (5.15)

Now we give another representation of ρ̃(k)t . Given fixed (λi, xi), the oracle Õni
generates

|ϕxi⟩Yi
that is initialized by |0⟩ and never changed, so we can write

Õni
◦ |λi, xi⟩⟨λi, xi|ΛiXi

⊗ |0⟩⟨0|Yi
= |λi, xi⟩⟨λi, xi|ΛiXi

⊗ |ϕxi⟩⟨0|Yi
,

which allows us to write ρ̃(k)t as

Ut ◦ |λt, xt⟩⟨λt, xt| ◦ . . . ◦ U1 ◦ |λ1, x1⟩⟨λ1, x1| ◦ U0(|ϕxt , . . . , ϕx1⟩⟨ϕxt , . . . , ϕx1| ⊗ |0⟩⟨0|),

where |ϕxt , . . . , ϕx1⟩ is stored in the register Yt . . .Y1. Now let ρ̃(k)j be the state after
applying Uj in the above equation. We have that ∥ρ̃(k)j −ρ

(k)
j ∥tr ≤ 2td

T
using eq. (5.15) for all

j = 0, . . . , t− 1 and the fact that the quantum channel never increases the trace distance.

By the part “it also holds” of lemma 5.16, for any projector Π = |b⟩⟨b| ⊗ I induced from
(λi, xi)

9, it holds that

Tr(Πρi−1) ≥ 1− 1/T. (5.16)

Using the triangular inequality, this gives Tr(Πρ̃i−1) ≥ 1 − (2td + 1)/T . By applying
corollary 2.10 for each binary measurement, we can replace each projectors by identity and
use the triangular inequality to derive

∥ρ̃(k)t − Ut ◦ · · · ◦ U0(|ϕxt , . . . , ϕx1⟩⟨ϕxt , . . . , ϕx1| ⊗ |0⟩⟨0|)∥tr ≤ 2td ·
√

2td+ 1

T
.

9In other words, Π = |λij⟩⟨λij | ⊗ I for λi = λi1...λin or Π = |xij⟩⟨xij | ⊗ I for xi = xi1...xim with some
rearrangement of the registers.
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Together with eq. (5.15), this implies that

∥ρ(k)t − ρ̃
(k)
t ∥tr ≤

td

T
+ 2td ·

√
2td+ 1

T
≤ (2td+ 1) ·

√
2td+ 1

T
. (5.17)

Note that Pr
[
Pk((ρ̃

(k)
t )⊗2r)→ 1

]
= 1 by lemma 2.17. This implies that Pk outputs 1 on

input Φ = (ρ(k))⊗2r with probability at least 1− 2r(2td+ 1) ·
√

2td+1
T
≥ 4/5.

Proof of claim 5.20. Here, we need to show that the number of swap test done mk in the
product test is at least 13 for some large enough λ. This is because

mk = t+ sk ≥
t · 2 log λ+ sk

2 log λ
≥
∑t

i=1 ℓ(λ
(k)
i ) + sk

2 log λ
=
ω(log λ)

2 log λ
= ω(1),

where we used the fact that the candidate PRS generator has output dimension d(λ) =
ω(log λ).

By lemma 2.18, we have that a single product test (for key k) succeeds with expected
probability at most 2 · (3/4)13 ≤ 0.05. By the concentration inequality, we can show that
with probability at least 1 − 1/22λ over Haar random states, a single product test for k
succeeds with probability at most 0.1. Using Chernoff’s inequality, we conclude that for
each k, Pr[Pk(Φ)→ 1] ≤ 1/22λ.
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❈

Conclusion

This work

In summary, our work explores the rich and complex landscape of quantum cryptographic
primitives and highlights several fundamental differences from classical cryptography.

Quantum security of SPHINCS(+) The analysis of cryptographic primitives have been
challenging in the quantum setting since its introduction, but remains possible. Our bounds
for the subset cover problems and its variants mark a step towards proving formally the
security of primitive standardized by the National Institute of Standards and Technology
(NIST). There is still a lot of work left open in that direction, as the security of SPHINCS+
in the quantum settin remains to be proven and we believe this to be an important open
problem.

Quantum versus Classical Cryptographic Primitives Unlike pseudorandom generators
(PRGs) and one-way functions (OWFs), quantum primitives such as pseudorandom quantum
states (PRSs) exhibit critical dependencies on their output length. We show that, contrary
to the classical setting, shrinking PRSs to a shorter form (short-PRSs) is impossible in a
black-box way, and make steps toward an impossibility result for expanding short-PRSs to
long PRSs. These impossibility results reveals that the output size is a crucial parameter
in quantum pseudorandomness.

Oracle Separations in Idealized Models Our work uses idealized quantum models,
namely the Quantum Random Oracle Model (QROM) and the Common Haar Function-Like
State model (CHFS), to demonstrate separations between different quantum cryptographic
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assumptions. Our work show that key agreements where Alice and Bob exchange classical
messages and only the final message is quantum, is unlikely to exist in the QROM.

Overall, our results not only establish new separations but also demonstrate the inherent
challenges of constructing and relating classical and quantum cryptographic primitives.
This work is a contribution to the quest of understanding the power of quantum computers
at a theoretical level, in the domain of cryptography.

Future directions

SPHINCS and SPHINCS+ To assess the security of SPHINCS from [BHH+15, Theorem
1] for concrete parameters such as those proposed in [BHH+15] (namely h = 60, qs = 230),
it would also be necessary to upper-bound the success probabilities SuccA((2, k) − SC)
and SuccA((3, k)− SC), which we leave for future work. While our work left this question
open, the work of [YTA23] give a bound that matches our algorithms, hence it is possible
to prove the security of SPHINCS against quantum adversaries. For SPHINCS+ however,
there are still conjectures in the security proof against quantum adversaries, thus formally
assessing the security of the scheme remains an open question.

Black-box separations in the QROM In the Quantum Random Oracle Model, quantum
queries continue to introduce serious analytical challenges. In particular, it remains open
whether querying the oracle in superposition can lead to more efficient attacks—so far, all
known key-agreement and public-key encryption attacks use only classical queries.

On building quantum public key encryption More generally, there are still restrictions
regarding the separations of quantum public key encryption from one-way functions (OWFs),
and pseudorandom unitaries (PRUs). We highlight the state of the art of the impossibility
and feasibility results of building public key encryption in Figure 6.1.

Minimal assumption for quantum cryptography Finally, there are still a lot of open
questions in the field of quantum cryptographic primitives. New tools and assumptions
are consistently being discovered, and we believe it is necessary to compare them to each
other, to assess their strength. What is the minimal assumption needed to build quantum
cryptography? More practically, which purely quantum computational problem can realize
that assumption, and more generally, quantum cryptography? For example, Learning
With Error can be used to construct post-quantum cryptography, but what would be
a quantum assumption that allows to construct pseudorandom quantum states but not
one-way functions?
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Figure 6.1: Summary of feasibility and impossibility result of public key encryption (PKE)
from one-way functions (OWFs) and pseudorandom unitaries (PRUs). Each triplet cor-
responds to a different kind of PKE, where the order is (pk, sk, c), and a C indicates a
classical string, and a Q indicates a quantum state. A blue arrow indicates a black-box
construction, and a dotted red arrow indicates a black-box separation. An asterisk denotes
a conditioned result, i.e. assuming Conjecture 2.1 holds.
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Appendices

A Grover’s Algorithm and Quantum Fourier Transform

A.1 Grover’s Algorithm

Here we quickly recall Grover’s algorithm. We start by defining the search problem.

Definition .1 (Search problem). We are given a function F : X → {0, 1}. The search
problem consists of finding an x ∈ X such that F (x) = 1, in the least amount of queries to
F possible.

Grover’s algorithm solves the search problem in O

(√
|X |
t

)
, where t is the number of x

such that F (x) = 1. The result is stated as follows:

Theorem A.1 ([Gro96][BBHT98]). Let F : X → {0, 1} be a function, t = |{x|F (x) = 1}|,
and N = |X |. Then, Grover’s algorithm finds an x such that F (x) = 1 with constant
probability with O

(√
N
t

)
queries to F. Moreover, this algorithm is optimal.

Remark .1. When constructing quantum algorithms in the Quantum Random Oracle
Model, we are given a black box access to a function H : X → Y. To use Grover’s algorithm
in this model, we need to construct the function F : X → {0, 1} from the function H. Then,
to count the number of queries to H, it is sufficient to compute the number of queries to F .

A.2 The Quantum Fourier Transform

Let Y = {0, 1}n, for some n ∈ N. We recall that the computational basis is {|y⟩}y∈Y . The
Quantum Fourier Transform is a unitary that, given an input state |ϕ⟩ =

∑2n−1
k=0 xk |k⟩,

outputs
∑2n

k=0 yk |k⟩ where the yk’s are computed with the following formula:

yk =
1

2n/2

2n−1∑
ℓ=0

xℓω
kℓ
N
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where ωN = e2πi/2
n thus ωℓN is a 2n-th root of unity.

This unitary can be efficiently implemented, and we write it QFT.

Applying the QFT to the computational basis yields the Fourier basis {|ŷ⟩}y∈Y .

B Technical Proofs

B.1 Proof of Lemma 2.5

As previously mentioned, the proof closely follows the proof of Corollary 11 from [LZ19].

We write P ′ℓ−col−h1 the set of databases that contain at least ℓ distinct collisions on h1.

Let i ∈ N. Let |ϕi⟩ be the state just before the ith query to H = (h1, h2), namely

|ϕi⟩ =
∑
x,ŷ,z,D

αx,ŷ,z,D |x, ŷ, z⟩ ⊗ |D⟩ ,

where x is the query register, y is the answer register, z is the work register and D is the
database register. Let |ψi⟩ be the state right after the ith query to H, namely

|ψi⟩ =
∑
x,ŷ,z,D
D(x)=⊥

1√
N2

∑
y′

ωyy
′

N αx,ŷ,z,D |x, ŷ, z⟩ ⊗ |D ∪ (x, y′)⟩+ cO
∑
x,ŷ,z,D
D(x) ̸=⊥

αx,ŷ,z,D |x, ŷ, z⟩ ⊗ |D⟩ .

From Lemma 2.4, we have that:

∣∣P ′ℓ−col−h1 |ψi⟩∣∣ ≤ ∣∣P ′ℓ−col−h1 |ϕi⟩∣∣+ ∣∣P ′ℓ−col−h1cO(I − P ′ℓ−col−h1) |ϕi⟩∣∣ . (1)

Writing f coli,ℓ =
∣∣P ′ℓ−col−h1 |ψi⟩∣∣ and similarly to the proof of Lemma 3.2, using Lemma 2.2

and Lemma 2.3 we obtain the following recursive inequality:
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f coli,ℓ ≤ f coli−1,ℓ + 4

√
i− 1√
N

f coli−1,ℓ−1

≤
i−1∑
j=0

4

√
j√
N
f colj,ℓ−1

≤
i−1∑
j1=0

4

√
j1√
N

j1−1∑
j2=0

4

√
j2√
N
f colj2,ℓ−2

...

≤
∑

0≤jℓ<jℓ−1<···<j1<i

ℓ∏
k=1

4

√
jk√
N

≤ 1

ℓ!

∑
0≤jℓ,jℓ−1,...,j1<i

ℓ∏
k=1

4

√
jk√
N

=
1

ℓ!

(∑
0<j<i

4

√
i− 1√
N

)j

≤
(
4e · i3/2

j
√
N

)j
,

where the computation follows from the proof of Lemma 11 in [LZ19].
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B.2 Proof of Equation 3.5

Writing Dy′ = D ∪ (x, y′),∣∣∣∣∣∣∣∣∣∣
P2

∑
y′

1√
N2

∑
x,ŷ,z
D:¬P2
D(x)=⊥

ωyy
′

N αx,ŷ,z,D |x, ŷ, z,Dy′⟩

∣∣∣∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣∣∣∣∣∣
∑
ℓ≥0

ℓ

N

∑
b∈{1,2}

∑
x,ŷ,z
D:¬P2

exactly ℓ
collisions on hb

∑
y′

1√
N2

ωyy
′

N αx,ŷ,z,D |x, ŷ, z,Dy′⟩

+
(i− 1)2

N2

∑
x,ŷ,z
D:¬P2

∑
y′

1√
N2

ωyy
′

N αx,ŷ,z,D |x, ŷ, z,Dy′⟩

∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣∣∣∣∣∣
2 ·
∑
ℓ≥0

ℓ

N

∑
x,ŷ,z
D:¬P2

exactly ℓ
collisions on h1

∑
y′

1√
N2

ωyy
′

N αx,ŷ,z,D |x, ŷ, z,Dy′⟩

∣∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
(i− 1)2

N2

∑
x,ŷ,z
D:¬P2

∑
y′

1√
N2

ωyy
′

N αx,ŷ,z,D |x, ŷ, z,Dy′⟩

∣∣∣∣∣∣∣

≤

2 ·
∑
ℓ≥0

ℓ

N

∑
x,ŷ,z
D:¬P2

exactly ℓ
collisions on h1

|αx,ŷ,z,D|2



1/2

+

(i− 1)2

N2

∑
x,ŷ,z
D:¬P2

|αx,ŷ,z,D|2


1/2

≤

(
2 ·
∑
ℓ≥0

ℓ

N
|Pℓ−col−h1 |ϕi⟩|

2

)1/2

+
(i− 1)

N
,

where in the second inequality, we used the symmetry of finding collisions on h1 and
collisions on h2, and used the definition of |Pℓ−col−h1 |ϕi⟩|

2 in the last inequality.
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B.3 Proof of Lemma 3.6

Proof. We have that

Ai ≤
∑

ℓ:µ(ℓ)=8e ℓ3/2√
N

√
2 ·
√
8eℓ3/2

N3/4
+

∑
ℓ:µ3(ℓ)=10N1/8

√
2 ·
√
10N1/8

N1/2
+

i−1∑
ℓ=0

4 · ℓ− 1

N

≤
i−1∑
ℓ=1

√
2 ·
√
8eℓ3/2

N3/4
+

∑
ℓ:µ3(ℓ)=10N1/8

√
2 ·
√
10N1/8

N1/2
+

i−1∑
ℓ=0

4 · ℓ− 1

N

≤ 4
√
e
i7/4

N3/4
+
√
2 ·
(
10

8e

)2/3

·N5/12 ·
√
10N1/8

N1/2
+ 4 · i

2

N

≤ 4
√
e · i

7/4

N3/4
+ 4 · i

2

N
+O

(
N−1/48

)
,

where the third inequality comes from counting the number of ℓ such that µ3(ℓ) = 10N1/8,
which is equal to the number of ℓ such that 8e ℓ

3/2
√
N
≤ 10N1/8.

B.4 Proof of Equation 3.13

Here, we give a proof of Equation (3.13). Starting from Equation (3.12), we have that:

gi,k ≤ gi−1,k +
√
2

(√
µ3(i− 1)

N
+
√
8
i− 1

N

)
gi−1,k−1 +

√
2 · f coli−1,µ3(i−1)

...

≤
√
2
i−1∑
ℓ=0

((√
µ3(ℓ)

N
+
√
8
ℓ

N

)
gℓ,k−1 + f colℓ,µ3(ℓ)

)

≤
√
2
i−1∑
ℓ=0

((√
µ3(ℓ)

N
+
√
8
ℓ

N

)
gℓ,k−1 +

(
1

2

)10N1/8
)

≤
i−1∑
ℓ=0

√
2

(√
µ3(ℓ)

N
+
√
8
ℓ

N

)
gℓ,k−1 +

√
2 · 2−10N1/8 ·N1/2

≤
i−1∑
ℓ=0

√
2

(√
µ3(ℓ)

N
+
√
8
ℓ

N

)
gℓ,k−1 +

√
2 · 2−9.5N1/8

,

where the second inequality comes from the recursion on the first term gi−1,k, and using
the fact that g0,k = 0. For the third inequality, we used Lemma 2.5 and the definition of µ3.
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Expanding recursively inside the sum, we have:

gi,k ≤
i−1∑
ℓ=0

√
2

(√
µ3(ℓ)

N
+
√
8
ℓ

N

)
gℓ,k−1 +

√
2 · 2−9.5N1/8

≤
i−1∑
ℓ1=0

√
2

(√
µ3(ℓ1)

N
+
√
8
ℓ1
N

)(
ℓ1∑
ℓ2=0

√
2

(√
µ3(ℓ2)

N
+
√
8
ℓ2
N

)
gℓ2,k−2

+
√
2 · 2−9.5N1/8

)
+
√
2 · 2−9.5N1/8

...

≤
∑

0≤ℓk<ℓk−1<···<ℓ1<i

k∏
j=1

√
2

(√
µ3(ℓj)

N
+
√
8
ℓj
N

)

+
√
2 · 2−9.5N1/8

k−1∑
t=0

∑
0≤ℓt<ℓt−1<···<ℓ1<i

t∏
j=1

√
2

(√
µ3(ℓj)

N
+
√
8
ℓj
N

)

≤ Aki
k!

+
√
2 · 29.5N1/8

k−1∑
t=0

Ati
t!

≤ Aki
k!

+
√
2 · eAi29.5N

1/8

,

where the third inequality comes from expanding recursively all of the terms gℓt,k−t, and
using the fact that gℓ,0 = 1. The fourth inequality comes from the fact that:

∑
0≤ℓk<ℓk−1<···<ℓ1<i

k∏
j=1

√
2

(√
µ3(ℓj)

N
+
√
8
ℓj
N

)

≤ 1

k!

∑
0≤ℓk,ℓk−1,...,ℓ1<i

k∏
j=1

√
2

(√
µ3(ℓj)

N
+
√
8
ℓj
N

)

=
1

k!

k∏
j=1

∑
0≤ℓj<i

√
2

(√
µ3(ℓj)

N
+
√
8
ℓj
N

)

=
1

k!

k∏
j=1

Ai

=
Aki
k!
.
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B.5 Proof of Lemma 3.11

Proof. We have that:

Ai,s =
i−1∑
ℓ=0

√(s− 1) · µs(ℓ)
N

+ 4

(
ℓ

N

)s/2
+

(
s∑
r=2

ℓ

N r

)1/2


=
√
s− 1

i−1∑
ℓ=0

√
µs(ℓ)

N
+ 4

i−1∑
ℓ=0

(
ℓ

N

)s/2
+

i−1∑
ℓ=0

(
s∑
r=2

ℓ

N r

)1/2

. (2)

Notice that

i−1∑
ℓ=0

√
µs(ℓ)

N

=
∑

ℓ:µs(ℓ)=40·s2·Πs−1·N1/2s

√
40 · s2 · Πs−1 ·N1/2s

N
(3)

+
∑

ℓ:µs(ℓ)>40·s2·Πs−1·N1/2s

√
µs(ℓ)

N

≤
∑

ℓ:µs(ℓ)=40·s2·Πs−1·N1/2s

√
40 · s2 · Πs−1 ·N1/2s

N
(4)

+
i−1∑
ℓ=0

(8e)
2s−2−1

2s−2
ℓ(2

s−1−1)/2s−1

N (2s−2−1)/2s−1 ·N−1/2 ·
√
Πs−1,

where we replaced µs(ℓ) by its value, and the inequality comes from the fact that there
cannot be more than i values such that µs(ℓ) > 40 · s2 ·Πs−1 ·N1/2s . The second summation

is at most (8e)
2s−2−1

2s−2 i(2
s−1)/2s−1

N(2s−1−1)/2s−1 ·
√
Πs−1.

For the first summation of Equation (4), we need to count the values of ℓ such that
µs(l) = 40s2 · Πs−1 ·N1/2s . By using the definition of µs(ℓ), this quantity corresponds to
the number of ℓ that satisfies:

Πs−1 · (8e)
2s−2−1

2s−3
ℓ(2

s−1−1)/2s−2

N (2s−2−1)/2s−2 ≤ 40 · s2 · Πs−1 ·N1/2s

⇔ℓ ≤

(
40

(8e)
2s−2−1

2s−3

)2s−2/(2s−1−1)

·N
(

1
2s

+ 2s−2−1

2s−2

)
2s−2

2s−1−1 · s
2s

2s−1−1

⇔ℓ ≤ O

(
s

2s

2s−1−1 ·N
(

1
2s

+ 2s−2−1

2s−2

)
2s−2

2s−1−1

)
.
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Thus the first summation of Equation (4) is upper-bounded by:

∑
ℓ:µs(ℓ)=10·Πs−1·N1/2s

√
10 · s2 · Πs−1 ·N1/2s

N
=

√
10 · s2 · Πs−1 ·N1/2s

N
·O
(
s

2s

2s−1−1 ·N
(

1
2s

+ 2s−2−1

2s−2

)
2s−2

2s−1−1

)
≤ O

(
N
− 1

2
+ 1

2s+1+
2s−3

4(2s−1−1) · s4 ·
√
Πs−1

)
≤ O

(
N

−22s−1+2s+2s−1−1+22s−4

2(2s−2) · s4 ·
√
Πs−1

)
≤ O

(
N−1/(2

s(2s−2)) · s4 ·
√

Πs−1

)
= O

(
N−1/(2

s(2s−2)) · s4 · Πs

)
,

where for the first inequality we use that 2s

2s−1−1 + 1 ≤ 4 for all s ≥ 3.

Therefore, we have that:

i−1∑
ℓ=0

√
µs(ℓ)

N
≤ (2e)

2s−2−1

2s−2
i(2

s−1)/2s−1

N (2s−1−1)/2s−1

√
Πs−1 +O

(
N−1/(2

s(2s−2)) · s4 · Πs

)
. (5)

For the second term of Equation (2), we have:

4
i−1∑
ℓ=0

(
ℓ

N

)s/2
≤ 4

i−1∑
ℓ=0

(
ℓ

N

)

≤ 4
i−1∑
ℓ=0

(
ℓ

N

)(2s−1−1)/2s−1

, (6)

where we use that s ≥ 3 and 1 ≥ (2s−1 − 1)/2s−1. And for the third term,

i−1∑
ℓ=0

(
s∑
r=2

ℓ

N r

)1/2

≤
i−1∑
ℓ=0

(
(s− 1)

ℓ

N2

)1/2

≤
i−1∑
ℓ=0

(√
s− 1

ℓ

N

)

≤
i−1∑
ℓ=0

(
√
s− 1

(
ℓ

N

)(2s−1−1)/2s−1
)
, (7)

where we used that r ≥ 2 for the second inequality, and that 1 ≥ (2s−1− 1)/2s−1 for the last

inequality. Thus, using that 2 · (8e)
2s−2−1

2s−2 ≥ 6 and combining Equation (2), Equation (5),
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Equation (6) and Equation (7) yields that:

Ai,s ≤ 2 · (8e)
2s−2−1

2s−2
i(2

s−1)/2s−1

N (2s−1−1)/2s−1 ·
√
s− 1 ·

√
Πs−1

+O
(
N−1/(2

s(2s−2)) · s4 · Πs

)
= (8e)

2s−2−1

2s−2
i(2

s−1)/2s−1

N (2s−1−1)/2s−1 · Πs +O
(
s4 · Πs ·N−1/(2

s(2s−2))) .

B.6 Proof of Equation 3.18

We have

gi,k ≤

(
i−1∑
ℓ=0

Bℓ,s · gℓ,k−1

)
+ s3/2 · 2−9.5·4·(s+1)2·Πs·N1/2s+1

≤

(
i−1∑
ℓ1=0

Bℓ1,s

(
i−1∑
ℓ2=ℓ1

Bℓ2,s · gℓ2,k−1 + s3/2 · 2−9.5·4·(s+1)2·Πs·N1/2s+1

))
+ s3/2 · 2−9.5·4·(s+1)2·Πs·N1/2s+1

.

We get by induction

gi,k ≤

(
i−1∑
ℓ1=0

Bℓ1,s

(
i−1∑
ℓ2=ℓ1

Bℓ2,s

(
i−1∑
ℓ3=ℓ2

Bℓ3,s · · ·

+ s3/2 · 2−9.5·4·(s+1)2·Πs·N1/2s+1

)
+ s3/2 · 2−9.5·4·(s+1)2·Πs·N1/2s+1

))
+ s3/2 · 2−9.5·4·(s+1)2·Πs·N1/2s+1

.

We thus obtain

gi,k ≤

 ∑
0≤ℓk<ℓk−1<···<ℓ1<i

k∏
j=1

Bℓj ,s


+ s3/2 · 2−9.5·4·(s+1)2·Πs·N1/2s+1

·
k−1∑
t=0

∑
0≤ℓt<ℓt−1<···<ℓ1<i

t∏
j=1

Bℓj ,s,
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and finally

gi,k ≤
Aki,s+1

k!
+

k−1∑
ℓ=0

Aℓi,s+1

ℓ!
· s3/2 · 2−9.5·4·(s+1)2·Πs·N1/2s+1

≤
Aki,s+1

k!
+ s3/2 · eAi,s+1 · 2−9.5·4·(s+1)2·Πs·N1/2s+1

.

B.7 Proof of Lemma 3.20

Proof. Similarly to the proof of Lemma 3.18, we can consider that there are O
(
Nk−j+1

)
marked elements in the function F1. Hence, using Theorem A.1, the second step of the
algorithm is expected to make

O

(
t ·
√

Nk

Nk−j+1 ·
(
k
j

)) = O

 t√(
k
j

) ·N (j−1)/2


quantum queries to the oracle.

Similarly to the proof of Lemma 3.18, we can consider that there are t ·N j−1 · k!
(j−1)! marked

elements in the function F2. Hence, using Theorem A.1, the fourth step of the algorithm is
expected to make

O

(√
Nk

t ·N j−1 · k!
(j−1)!

)
= O

(
N (k−j+1)/2

√
t

·
√

(j − 1)!

k!

)

quantum queries to the oracle.

By picking t = N (k−2j+2)/3 with j ≤ k+2
2

, the complexity of the algorithm is

O

(
N (k−2j+2)/3 ·N (j−1)/2 ·

(√
1(
k
j

) +√ j!

k!

))
= O

N (2k−j+1)/6√(
k
j

)


quantum queries to the oracle.

B.8 Proof of Lemma 3.22

Proof. We first prove the result when k is divisible by r + 1. The result holds for r = 1
(using Algorithm 3.1 and Lemma 3.18).

Fix r > 2, and assume the result holds for r − 1.

The first step of the algorithm is expected to make O
(
t ·Nk′/2r

)
quantum queries to the

oracle if k′ is divisible by r.
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Similarly to the proof of Lemma 3.18, we can consider that there are t ·Nk′ marked elements
in the function F1. Hence, using Theorem A.1, the third step of the algorithm is expected
to make O

(√
Nk

t·Nk′

)
quantum queries to the oracle.

Picking t = N (rk−rk′−k′)/3r gives a complexity O
(
N (2rk+(1−2r)k′)/6r).

By picking k′ = r
r+1

k, k′ is an integer since k is divisible by r + 1. Moreover, k′ is divisible
by r and the complexity becomes O

(
Nk/(2+2r)

)
.

If k is not divisible by r + 1, then there is a k′ between k and k + r + 1 such that k′ is
divisible by r + 1. Then, we can use Algorithm 3.3 to find a (r, k′)–SC with the same
functions h1, . . . , hk and new random functions hk+1, . . . , hk′ . This gives us a (r, k)–SC for
the functions h1, . . . , hk, and the quantum query complexity is

O
(
Nk′/(2+2r)

)
≤ O

(
N (k+r+1)/(2+2r)

)
.
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C Geometric Interpretation of the Conjecture

Recall the conjecture for convenience.

Conjecture 5.1. Let X = S(2n1) × · · · × S(2nk) and the corresponding product Haar
measure σ = σn1×· · ·×σnk

, and let S0, S1 be two measurable subsets of X. If dtr(S0, S1) ≥ ∆
and σ(S0), σ(S1) ≥ Γ, then σ(X \ (S0 ∪ S1)) = Ω(∆aΓb) for some constant a, b > 0.

Note that the space of pure random states S(N) can be understood as an N -dimensional
unit hypersphere with complex coordinates with the quotient structure; we will use this
idea to illustrate the diagrams.

Without loss of generality σ(S0) < 1/2, and the most extreme case for S1 is when S∗1 = {x ∈
X : dtr(S0, x) ≥ ∆}, since for any other S1 we have that σ(X \ (S0∪S1)) ≥ σ(X \ (S0∪S∗1)).
We will show that the conjecture holds in this extreme situation for some natural scenarios.

We will also make use of the following lemma, which is proven in [AK07, Lemma 3.6].

Lemma C.1. For any ε ∈ [0, 1] and any n-qubit quantum state |ϕ⟩, it holds

Pr
|ψ⟩←σn

[
| ⟨ψ|ϕ⟩ |2 ≥ 1− ε

]
= ε2

n−1.

We can rephrase the lemma in terms of trade-distance, so that

Pr
|ψ⟩←σn

[dtr(|ψ⟩ , |ϕ⟩) ≤ ε] = ε2(2
n−1).

Single pure quantum state. We first consider the case of k = 1, i.e. X = S(2n). Let
Γ≪ 1 and ∆≪ 1. Consider S ⊆ X with σn(S) ≥ Γ and T = {|ψ⟩ ∈ X : dtr(|ψ⟩ , S) ≤ ∆}.
Consider two extreme cases for S ⊂ X: when it is concentrated around a fixed state and
when it is in the form of a “band”.

Case 1: For some ε > 0, the set S is concentrated around a fixed state |ϕ⟩:

S := {|ψ⟩ ∈ X : dtr(|ψ⟩ , |ϕ⟩) ≤ ε}.

Based on lemma C.1 we can compute σn(S) = ε2(2
n−1), and the measure of the associated

T by
σn(T ) = Pr

|ψ⟩←σn
[dtr(|ψ⟩ , |ϕ⟩) ≤ ε+∆] = (ε+∆)2(2

n−1),

which implies that the measure of the difference is

σn(T \ S) = σn(T )− σn(S) = (ε+∆)2(2
n−1) − ε2(2n−1),

where we used the additivity of measures for S ⊂ T . For ∆≪ 1 the above expression is the
finite difference of f(ε) = ε2(2

n−1), with derivative f ′(ε) = 2(2n − 1)ε2(2
n−1)−1. Therefore,

assuming σn(S) ≥ Γ, we have

σn(T \ S) ≥ 2(2n − 1)σn(S)ε
−1∆ ≥ Γ∆. (8)

158



C. Geometric Interpretation of the Conjecture

|ϕ⟩
ε

ε+∆
S
T

(a) (S, T ) from Case 1.

|ϕ⟩

1− ε
1− (ε+∆)

T
S

(b) (S, T ) from Case 2.

Figure C.1: Geometric representation of the conjecture for X = S(2).

Case 2: For some ε > 0, the set S is concentrated far from the state |ϕ⟩:

S := {|ψ⟩ ∈ X : dtr(|ψ⟩ , |ϕ⟩) ≥ 1− ε}.

Based on lemma C.1 we can compute σn(S) = 1− (1− ε)2(2n−1), and the measure of the
associated T by

σn(T ) = Pr
|ψ⟩←σn

[dtr(|ψ⟩ , |ϕ⟩) ≥ 1− ε−∆]

= 1− Pr
|ψ⟩←σn

[dtr(|ψ⟩ , |ϕ⟩) ≤ 1− ε−∆]

= 1− (1− ε−∆)2(2
n−1),

which implies that for ∆≪ 1, the measure of the difference σn(T \S) is the finite difference
of f(ε) = 1 − (1 − ε)2(2n−1), with derivative f ′(ε) = 2(2n − 1)(1 − ε)2(2n−1)−1. Therefore,
assuming σn(S) ≤ 1/2, we have

σn(T \ S) ≥ 2(2n − 1)(1− σn(S))(1− ε)−1∆ ≥ ∆.

Product space. We now consider the case of k = 2, i.e. X = S(2n1) × S(2n2). Let
ε1, ε2 > 0 and two fixed states |ϕ1⟩ , |ϕ2⟩ ∈ X. Consider S ⊂ X as a product of two subsets
S = S1 × S2, where

S1 := {|ψ⟩ ∈ X : dtr(|ψ⟩ , |ϕ1⟩) ≤ ε1},
S2 := {|ψ⟩ ∈ X : dtr(|ψ⟩ , |ϕ2⟩) ≤ ε2}.

Let us denote by Ni = 2ni for i ∈ {0, 1}. We also consider T ⊂ X as before, i.e.
T = {|ψ⟩ ∈ X : dtr(|ψ⟩ , S) ≤ ∆}.

159



|ϕ1⟩
ε1
∆

|ϕ2⟩

ε2 ∆

S

T

S(N1)

S(N2)

Figure C.2: Geometric representation of the conjecture for X = S(N1)×S(N2), S = S1×S2,
and S ⊂ T .

Let T1 = {|ψ⟩ ∈ X : dtr(|ψ⟩ , S1) ≤ ∆} and T2 = {|ψ⟩ ∈ X : dtr(|ψ⟩ , S2) ≤ ∆}, then
T = T1 × T2. Note that the Haar-measure is a product measure and S ⊂ T1 × T2, therefore
from the calculations of the previous example we obtain

σ(T \ S) ≥ σn1(T1) · σn2(T2)− σn1(S1) · σn2(S2)

≥ (ε1 +∆)2(N1−1)(ε2 +∆)2(N2−1) − ε2(N1−1)
1 ε

2(N2−1)
2 .

In the case that ε1 = ε2 this can be interpreted as a finite difference of f(ε) = ε2(N1+N2−2)

as before, with derivative f ′(ε) = 2(N1 + N2 − 2)ε2(N1+N2−2)−1, thus assuming σ(S) =
σn1(S1) · σn2(S2) ≥ Γ we get

σ(T \ S) ≥ 2(N1 +N2 − 2)σn1(S1)σn2(S2)ε
−1∆ ≥ Γ∆.

Actually, note that this obeys the same inequality as in eq. (8); with the multiplicative
overhead just increasing from N − 1 to N1 +N2 − 2.
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