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The relevance of One-Way Functions

@ Most advanced cryptographic schemes require one-way
functions.

@ For example, a hash function has to be a one-way function.

@ It is the weakest assumption to do classical cryptography.

One-way functions and Pseudorandom Number Generators are
equivalent, in a black-box way.
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without using the “code” of A.

Black-box constructions relativize, meaning that for any oracle O
such that B exists (relative to O), then A exists (relative to O).
Example: Relative to random oracles, OWF exists. Thus, so does
PRNG.

Black-box impossibility results

A black-box impossibility result of A from B consist of exhibiting an
oracle O such that, relative to O, B exists but not A.
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Worlds of cryptography

Different worlds where we might live in (Imp’95):

** Algorithmica P=NP

22 Heuristica NP problems are easy on average
but hard on the worst case

> Pessiland P#NP but 7 one-way function.

Minicrypt One-Way Functions exist!

o\
<)

O
)

'C Cryptomania Public Key Encryption exists!
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Quantum Pseudorandom States Generators

A function F : {0,1}* — (C?)“" is a Pseudorandom Quantum
State generator (PRS) if:

1. F(k) can be computed efficiently.
2. F(k) = pon, when k < U,.
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< negl(A).
k{0,1}* [v)<pion - g( )

If na A, it is a long-PRS, or just PRS. ﬁ
£)

If n ~ log A, it is a short-PRS. &
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@ Another world: short-PRSs exist!
bit commitments, pseudodeterministic one-way functions,
pseudodeterministic pseudorandom number generators,
pseudodeterministic signatures...

e Cryptomania: Public Key Encryption exists! (resistant to
quantum attacks)
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Relation between quantum primitives

Theorem ([JLS18])

Idea: Use Tomography, with cost O(29) = poly(n)
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What about the size of PRS?

The output length of a PRNG do not matter, as they are all
equivalent to each other.

The relationship between long-PRS and short-PRS is unclear

This work: long-PRSs do not imply short-PRSs.
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and all A € IN:

Q Pr {x €Ky ‘ x « {0, 1}"’(”} >1-0(A~°).
@ For any x € K,

e Prly = F(x)] > 1 —negl(A). (1)

@ Security. For every QPT inverter A:

Pr[F(A(F(x))) = F(x)] < negl(A).  (2)
x+{0,1}m(V)
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Quantum complexity classes
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Quantum complexity classes

Definition (PromiseQMA)
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Definition (The language)
We define £ = (Lyes, Lno) as:

Ciman
VBT

Pr[F(x) =]

(y,x") such that 3x, x" < x

> 1—negl(n)

x' < x & x = 0101010001
-

y,x") such that Vx, x’ 74 X or
[FOx) =yl <1-

}

Pr poly(n)

L € PromiseQMA

L ¢ PromiseBQP

Ver(x, (x',y)) checks that
x" < x and runs F(x) many
times and checks that F(x)
every time.

=Yy

Otherwise, it would break the
security definition of PD-OWF:
for some y, we can learn a
pre-image bit by bit.
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@ Whether short-PRSs imply PRSs or not is still open. However,
poly-time short-PRSs imply one-time long-PRSs.
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between quantum cryptographic primitives (EFI, OWSG,
PRU...)

@ Ongoing work: separating Quantum Computation Classical
Communication (QCCC) primitives from PRSs, such as KE
and PKE with classical keys.

Thank you for your attention!
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