
Quantum Pseudorandomness Cannot be Shrunk
in a Black-Box Way

Samuel Bouaziz--Ermann
Joint work with Garazi Muguruza

LIP6, Sorbonne Université, CNRS
arXiv:2402.13324

May 17, 2024

1 / 24

Classical Pseudorandomness

Randomness in cryptography
Randomness is essential to build cryptographic primitives.
We want to sample from the uniform distribution U`.
Problem: how to generate it efficiently?

Pseudorandom Number Generator
A function F : {0, 1}n → {0, 1}` is a Pseudorandom Number
Generator (PRNG) if:

1. F (x) can be computed efficiently.
2. F (x) ≈ U`, when x ← Un.
3. ` > n.

2 / 24

Classical Pseudorandomness

Randomness in cryptography
Randomness is essential to build cryptographic primitives.
We want to sample from the uniform distribution U`.
Problem: how to generate it efficiently?

Pseudorandom Number Generator
A function F : {0, 1}n → {0, 1}` is a Pseudorandom Number
Generator (PRNG) if:

1. F (x) can be computed efficiently.
2. F (x) ≈ U`, when x ← Un.
3. ` > n.

2 / 24

Classical Pseudorandomness

Randomness in cryptography
Randomness is essential to build cryptographic primitives.
We want to sample from the uniform distribution U`.
Problem: how to generate it efficiently?

Pseudorandom Number Generator
A function F : {0, 1}n → {0, 1}` is a Pseudorandom Number
Generator (PRNG) if:

1. F (x) can be computed efficiently.
2. F (x) ≈ U`, when x ← Un.
3. ` > n.

2 / 24

Classical Pseudorandomness

Randomness in cryptography
Randomness is essential to build cryptographic primitives.
We want to sample from the uniform distribution U`.
Problem: how to generate it efficiently?

Pseudorandom Number Generator
A function F : {0, 1}n → {0, 1}` is a Pseudorandom Number
Generator (PRNG) if:

1. F (x) can be computed efficiently.

2. F (x) ≈ U`, when x ← Un.
3. ` > n.

2 / 24

Classical Pseudorandomness

Randomness in cryptography
Randomness is essential to build cryptographic primitives.
We want to sample from the uniform distribution U`.
Problem: how to generate it efficiently?

Pseudorandom Number Generator
A function F : {0, 1}n → {0, 1}` is a Pseudorandom Number
Generator (PRNG) if:

1. F (x) can be computed efficiently.
2. F (x) ≈ U`, when x ← Un.

3. ` > n.

2 / 24

Classical Pseudorandomness

Randomness in cryptography
Randomness is essential to build cryptographic primitives.
We want to sample from the uniform distribution U`.
Problem: how to generate it efficiently?

Pseudorandom Number Generator
A function F : {0, 1}n → {0, 1}` is a Pseudorandom Number
Generator (PRNG) if:

1. F (x) can be computed efficiently.
2. F (x) ≈ U`, when x ← Un.
3. ` > n.

2 / 24

Classical Pseudorandomness

Randomness in cryptography
Randomness is essential to build cryptographic primitives.
We want to sample from the uniform distribution U`.
Problem: how to generate it efficiently?

Pseudorandom Number Generator
A function F : {0, 1}n → {0, 1}` is a Pseudorandom Number
Generator (PRNG) if:

1. F (x) can be computed efficiently.
2. F (x) ≈ U`, when x ← Un.
3. ` > n.

2 / 24

Other cryptography primitives
One-Way Functions
A function F : {0, 1}n → {0, 1}n is a One-Way Function (OWF) if:

1. F (x) can be computed efficiently.
2. Given y = F (x), it is hard to compute x .

Public Key Encryption
A Public Key Encryption (PKE) scheme allows two users to
communicate over an untrusted authenticated channel.

Alice Bob

(sk, pk) = Kgen()
pk

c = Enc(m, pk)

m = Dec(c, sk) c

3 / 24

Other cryptography primitives
One-Way Functions
A function F : {0, 1}n → {0, 1}n is a One-Way Function (OWF) if:

1. F (x) can be computed efficiently.
2. Given y = F (x), it is hard to compute x .

Public Key Encryption
A Public Key Encryption (PKE) scheme allows two users to
communicate over an untrusted authenticated channel.

Alice Bob

(sk, pk) = Kgen()
pk

c = Enc(m, pk)

m = Dec(c, sk) c

3 / 24

Other cryptography primitives
One-Way Functions
A function F : {0, 1}n → {0, 1}n is a One-Way Function (OWF) if:

1. F (x) can be computed efficiently.
2. Given y = F (x), it is hard to compute x .

Public Key Encryption
A Public Key Encryption (PKE) scheme allows two users to
communicate over an untrusted authenticated channel.

Alice Bob

(sk, pk) = Kgen()
pk

c = Enc(m, pk)

m = Dec(c, sk) c

3 / 24

Other cryptography primitives
One-Way Functions
A function F : {0, 1}n → {0, 1}n is a One-Way Function (OWF) if:

1. F (x) can be computed efficiently.
2. Given y = F (x), it is hard to compute x .

Public Key Encryption
A Public Key Encryption (PKE) scheme allows two users to
communicate over an untrusted authenticated channel.

Alice Bob

(sk, pk) = Kgen()
pk

c = Enc(m, pk)

m = Dec(c, sk) c

3 / 24

The relevance of One-Way Functions

Most advanced cryptographic schemes require one-way
functions.
For example, a hash function has to be a one-way function.
It is the weakest assumption to do classical cryptography.

Theorem
One-way functions and Pseudorandom Number Generators are
equivalent, in a black-box way.

4 / 24

The relevance of One-Way Functions

Most advanced cryptographic schemes require one-way
functions.
For example, a hash function has to be a one-way function.
It is the weakest assumption to do classical cryptography.

Theorem
One-way functions and Pseudorandom Number Generators are
equivalent, in a black-box way.

4 / 24

Black-box proof

Black-box constructions
They are the most natural class of constructions.
A black-box construction of A from B means that:

The construction of A from B does not use the “code” of B.
If an adversary breaks A, then an adversary breaks primitive B,
without using the “code” of A.

Black-box constructions relativize, meaning that for any oracle O
such that B exists (relative to O), then A exists (relative to O).
Example: Relative to random oracles, OWF exists. Thus, so does
PRNG.

Black-box impossibility results
A black-box impossibility result of A from B consist of exhibiting an
oracle O such that, relative to O, B exists but not A.

5 / 24

Black-box proof

Black-box constructions
They are the most natural class of constructions.

A black-box construction of A from B means that:
The construction of A from B does not use the “code” of B.
If an adversary breaks A, then an adversary breaks primitive B,
without using the “code” of A.

Black-box constructions relativize, meaning that for any oracle O
such that B exists (relative to O), then A exists (relative to O).
Example: Relative to random oracles, OWF exists. Thus, so does
PRNG.

Black-box impossibility results
A black-box impossibility result of A from B consist of exhibiting an
oracle O such that, relative to O, B exists but not A.

5 / 24

Black-box proof

Black-box constructions
They are the most natural class of constructions.
A black-box construction of A from B means that:

The construction of A from B does not use the “code” of B.

If an adversary breaks A, then an adversary breaks primitive B,
without using the “code” of A.

Black-box constructions relativize, meaning that for any oracle O
such that B exists (relative to O), then A exists (relative to O).
Example: Relative to random oracles, OWF exists. Thus, so does
PRNG.

Black-box impossibility results
A black-box impossibility result of A from B consist of exhibiting an
oracle O such that, relative to O, B exists but not A.

5 / 24

Black-box proof

Black-box constructions
They are the most natural class of constructions.
A black-box construction of A from B means that:

The construction of A from B does not use the “code” of B.
If an adversary breaks A, then an adversary breaks primitive B,
without using the “code” of A.

Black-box constructions relativize, meaning that for any oracle O
such that B exists (relative to O), then A exists (relative to O).
Example: Relative to random oracles, OWF exists. Thus, so does
PRNG.

Black-box impossibility results
A black-box impossibility result of A from B consist of exhibiting an
oracle O such that, relative to O, B exists but not A.

5 / 24

Black-box proof

Black-box constructions
They are the most natural class of constructions.
A black-box construction of A from B means that:

The construction of A from B does not use the “code” of B.
If an adversary breaks A, then an adversary breaks primitive B,
without using the “code” of A.

Black-box constructions relativize, meaning that for any oracle O
such that B exists (relative to O), then A exists (relative to O).

Example: Relative to random oracles, OWF exists. Thus, so does
PRNG.

Black-box impossibility results
A black-box impossibility result of A from B consist of exhibiting an
oracle O such that, relative to O, B exists but not A.

5 / 24

Black-box proof

Black-box constructions
They are the most natural class of constructions.
A black-box construction of A from B means that:

The construction of A from B does not use the “code” of B.
If an adversary breaks A, then an adversary breaks primitive B,
without using the “code” of A.

Black-box constructions relativize, meaning that for any oracle O
such that B exists (relative to O), then A exists (relative to O).
Example: Relative to random oracles, OWF exists. Thus, so does
PRNG.

Black-box impossibility results
A black-box impossibility result of A from B consist of exhibiting an
oracle O such that, relative to O, B exists but not A.

5 / 24

Black-box proof

Black-box constructions
They are the most natural class of constructions.
A black-box construction of A from B means that:

The construction of A from B does not use the “code” of B.
If an adversary breaks A, then an adversary breaks primitive B,
without using the “code” of A.

Black-box constructions relativize, meaning that for any oracle O
such that B exists (relative to O), then A exists (relative to O).
Example: Relative to random oracles, OWF exists. Thus, so does
PRNG.

Black-box impossibility results
A black-box impossibility result of A from B consist of exhibiting an
oracle O such that, relative to O, B exists but not A.

5 / 24

Some results about classical cryptography

Theorem

∃ ⇒ P 6= NP

Theorem

∃ ⇒ ∃
Theorem

∃ ; ∃

6 / 24

Some results about classical cryptography

Theorem

∃ ⇒ P 6= NP
Theorem

∃ ⇒ ∃

Theorem

∃ ; ∃

6 / 24

Some results about classical cryptography

Theorem

∃ ⇒ P 6= NP
Theorem

∃ ⇒ ∃
Theorem

∃ ; ∃

6 / 24

Worlds of cryptography

Different worlds where we might live in (Imp’95):
����� Algorithmica P=NP
�� Heuristica NP problems are easy on average

but hard on the worst case
��� Pessiland P 6=NP but @ one-way function.
�� Minicrypt One-Way Functions exist!
���� Cryptomania Public Key Encryption exists!

7 / 24

Quantum Pseudorandomness

Quantum Randomness
We can also consider quantum randomness.
The equivalent to the uniform distribution is the Haar measure µ2n .

Quantum Pseudorandom States Generators
A function F : {0, 1}λ →

(
C2)⊗n is a Pseudorandom Quantum

State generator (PRS) if:
1. F (k) can be computed efficiently.
2. F (k) ≈ µ2n , when k ← Uλ.

8 / 24

Quantum Pseudorandomness

Quantum Randomness
We can also consider quantum randomness.
The equivalent to the uniform distribution is the Haar measure µ2n .

Quantum Pseudorandom States Generators
A function F : {0, 1}λ →

(
C2)⊗n is a Pseudorandom Quantum

State generator (PRS) if:

1. F (k) can be computed efficiently.
2. F (k) ≈ µ2n , when k ← Uλ.

8 / 24

Quantum Pseudorandomness

Quantum Randomness
We can also consider quantum randomness.
The equivalent to the uniform distribution is the Haar measure µ2n .

Quantum Pseudorandom States Generators
A function F : {0, 1}λ →

(
C2)⊗n is a Pseudorandom Quantum

State generator (PRS) if:
1. F (k) can be computed efficiently.

2. F (k) ≈ µ2n , when k ← Uλ.

8 / 24

Quantum Pseudorandomness

Quantum Randomness
We can also consider quantum randomness.
The equivalent to the uniform distribution is the Haar measure µ2n .

Quantum Pseudorandom States Generators
A function F : {0, 1}λ →

(
C2)⊗n is a Pseudorandom Quantum

State generator (PRS) if:
1. F (k) can be computed efficiently.
2. F (k) ≈ µ2n , when k ← Uλ.

8 / 24

Formal definition of PRSs
Definition (Pseudorandom quantum states [JSL18])
A keyed family of n-qubit quantum states {|ϕk〉}k∈{0,1}λ is
pseudorandom if the following two conditions hold:

1 Efficient generation. There is a QPT algorithm G such that:

Gλ(k) = |ϕk〉〈ϕk | .

2 Pseudorandomness. For any QPT adversary A and all
polynomials t(·), we have:∣∣∣∣∣ Pr

k←{0,1}λ

[
A

(
|ϕk 〉⊗t(λ)

)
= 1

]
− Pr
|ν〉←µ2n

[
A

(
|ν〉⊗t(λ)

)
= 1

]∣∣∣∣∣ ≤ negl(λ).

If n ≈ λ, it is a long-PRS, or just PRS.

If n ≈ log λ, it is a short-PRS.

9 / 24

Formal definition of PRSs
Definition (Pseudorandom quantum states [JSL18])
A keyed family of n-qubit quantum states {|ϕk〉}k∈{0,1}λ is
pseudorandom if the following two conditions hold:

1 Efficient generation. There is a QPT algorithm G such that:

Gλ(k) = |ϕk〉〈ϕk | .

2 Pseudorandomness. For any QPT adversary A and all
polynomials t(·), we have:∣∣∣∣∣ Pr

k←{0,1}λ

[
A

(
|ϕk 〉⊗t(λ)

)
= 1

]
− Pr
|ν〉←µ2n

[
A

(
|ν〉⊗t(λ)

)
= 1

]∣∣∣∣∣ ≤ negl(λ).

If n ≈ λ, it is a long-PRS, or just PRS.

If n ≈ log λ, it is a short-PRS.

9 / 24

Formal definition of PRSs
Definition (Pseudorandom quantum states [JSL18])
A keyed family of n-qubit quantum states {|ϕk〉}k∈{0,1}λ is
pseudorandom if the following two conditions hold:

1 Efficient generation. There is a QPT algorithm G such that:

Gλ(k) = |ϕk〉〈ϕk | .

2 Pseudorandomness. For any QPT adversary A and all
polynomials t(·), we have:∣∣∣∣∣ Pr

k←{0,1}λ

[
A

(
|ϕk 〉⊗t(λ)

)
= 1

]
− Pr
|ν〉←µ2n

[
A

(
|ν〉⊗t(λ)

)
= 1

]∣∣∣∣∣ ≤ negl(λ).

If n ≈ λ, it is a long-PRS, or just PRS.

If n ≈ log λ, it is a short-PRS.

9 / 24

Formal definition of PRSs
Definition (Pseudorandom quantum states [JSL18])
A keyed family of n-qubit quantum states {|ϕk〉}k∈{0,1}λ is
pseudorandom if the following two conditions hold:

1 Efficient generation. There is a QPT algorithm G such that:

Gλ(k) = |ϕk〉〈ϕk | .

2 Pseudorandomness. For any QPT adversary A and all
polynomials t(·), we have:∣∣∣∣∣ Pr

k←{0,1}λ

[
A

(
|ϕk 〉⊗t(λ)

)
= 1

]
− Pr
|ν〉←µ2n

[
A

(
|ν〉⊗t(λ)

)
= 1

]∣∣∣∣∣ ≤ negl(λ).

If n ≈ λ, it is a long-PRS, or just PRS.

If n ≈ log λ, it is a short-PRS.

9 / 24

Formal definition of PRSs
Definition (Pseudorandom quantum states [JSL18])
A keyed family of n-qubit quantum states {|ϕk〉}k∈{0,1}λ is
pseudorandom if the following two conditions hold:

1 Efficient generation. There is a QPT algorithm G such that:

Gλ(k) = |ϕk〉〈ϕk | .

2 Pseudorandomness. For any QPT adversary A and all
polynomials t(·), we have:∣∣∣∣∣ Pr

k←{0,1}λ

[
A

(
|ϕk 〉⊗t(λ)

)
= 1

]
− Pr
|ν〉←µ2n

[
A

(
|ν〉⊗t(λ)

)
= 1

]∣∣∣∣∣ ≤ negl(λ).

If n ≈ λ, it is a long-PRS, or just PRS.

If n ≈ log λ, it is a short-PRS.
9 / 24

Worlds of quantum cryptography

Worlds relative to which quantum computation is possible.
MiniQcrypt: Quantum resistant One-Way Functions exist!

MicroCrypt: PRSs exist!
oblivious transfer, multi party computation, public key encryption with
quantum keys, quantum one-time digital signatures, pseudo one-time pad
encryption schemes, statistically binding and computationally hiding
commitments and quantum computational zero knowledge proofs, bit
commitments...

Another world: short-PRSs exist!
bit commitments, pseudodeterministic one-way functions,
pseudodeterministic pseudorandom number generators,
pseudodeterministic signatures...

Cryptomania: Public Key Encryption exists! (resistant to
quantum attacks)

10 / 24

Worlds of quantum cryptography

Worlds relative to which quantum computation is possible.
MiniQcrypt: Quantum resistant One-Way Functions exist!
MicroCrypt: PRSs exist!
oblivious transfer, multi party computation, public key encryption with
quantum keys, quantum one-time digital signatures, pseudo one-time pad
encryption schemes, statistically binding and computationally hiding
commitments and quantum computational zero knowledge proofs, bit
commitments...

Another world: short-PRSs exist!
bit commitments, pseudodeterministic one-way functions,
pseudodeterministic pseudorandom number generators,
pseudodeterministic signatures...

Cryptomania: Public Key Encryption exists! (resistant to
quantum attacks)

10 / 24

Worlds of quantum cryptography

Worlds relative to which quantum computation is possible.
MiniQcrypt: Quantum resistant One-Way Functions exist!
MicroCrypt: PRSs exist!
oblivious transfer, multi party computation, public key encryption with
quantum keys, quantum one-time digital signatures, pseudo one-time pad
encryption schemes, statistically binding and computationally hiding
commitments and quantum computational zero knowledge proofs, bit
commitments...

Another world: short-PRSs exist!
bit commitments, pseudodeterministic one-way functions,
pseudodeterministic pseudorandom number generators,
pseudodeterministic signatures...

Cryptomania: Public Key Encryption exists! (resistant to
quantum attacks)

10 / 24

Worlds of quantum cryptography

Worlds relative to which quantum computation is possible.
MiniQcrypt: Quantum resistant One-Way Functions exist!
MicroCrypt: PRSs exist!
oblivious transfer, multi party computation, public key encryption with
quantum keys, quantum one-time digital signatures, pseudo one-time pad
encryption schemes, statistically binding and computationally hiding
commitments and quantum computational zero knowledge proofs, bit
commitments...

Another world: short-PRSs exist!
bit commitments, pseudodeterministic one-way functions,
pseudodeterministic pseudorandom number generators,
pseudodeterministic signatures...

Cryptomania: Public Key Encryption exists! (resistant to
quantum attacks)

10 / 24

Relation between quantum primitives

Theorem ([JLS18])

⇒

Theorem ([Kre21])

;
Theorem ([BBO+24,ALY24])

⇒
Idea: Use Tomography, with cost O(2d) = poly(n)

11 / 24

Relation between quantum primitives

Theorem ([JLS18])

⇒
Theorem ([Kre21])

;

Theorem ([BBO+24,ALY24])

⇒
Idea: Use Tomography, with cost O(2d) = poly(n)

11 / 24

Relation between quantum primitives

Theorem ([JLS18])

⇒
Theorem ([Kre21])

;
Theorem ([BBO+24,ALY24])

⇒

Idea: Use Tomography, with cost O(2d) = poly(n)

11 / 24

Relation between quantum primitives

Theorem ([JLS18])

⇒
Theorem ([Kre21])

;
Theorem ([BBO+24,ALY24])

⇒
Idea: Use Tomography, with cost O(2d) = poly(n)

11 / 24

Different type of PRSs

What about the size of PRS?

Claim
The output length of a PRNG do not matter, as they are all
equivalent to each other.

Claim
The relationship between long-PRS and short-PRS is unclear

This work: long-PRSs do not imply short-PRSs.

12 / 24

Different type of PRSs

What about the size of PRS?

Claim
The output length of a PRNG do not matter, as they are all
equivalent to each other.

Claim
The relationship between long-PRS and short-PRS is unclear

This work: long-PRSs do not imply short-PRSs.

12 / 24

Different type of PRSs

What about the size of PRS?

Claim
The output length of a PRNG do not matter, as they are all
equivalent to each other.

Claim
The relationship between long-PRS and short-PRS is unclear

This work: long-PRSs do not imply short-PRSs.

12 / 24

Relations between primitives

∃

∃ ∃

∃

�

?

?

13 / 24

Idea of the proof

Kretschmer’s oracle
There exists an oracle U , relative to which:

PRSs exist.
PromiseBQP = PromiseQMA. (no OWF)

It suffices to show that PD-OWF imply
PromiseBQP 6= PromiseQMA (in a black-box way)!

14 / 24

Idea of the proof

Kretschmer’s oracle
There exists an oracle U , relative to which:

PRSs exist.
PromiseBQP = PromiseQMA. (no OWF)

It suffices to show that PD-OWF imply
PromiseBQP 6= PromiseQMA (in a black-box way)!

14 / 24

Relations between primitives

∃

∃ ∃

∃

“P 6=NP”

�

?

?

15 / 24

Quantum Pseudo-deterministic One-Way Functions

Definition
A QPT algorithm F : {0, 1}m(λ) → {0, 1}`(λ) is a quantum
pseudo-deterministic one-way function if:

Pseudodeterminism. There exits a set Kλ, for some c > 0
and all λ ∈N:

1 Pr
[
x ∈ Kλ

∣∣∣ x ← {0, 1}m(λ)
]
≥ 1−O(λ−c).

2 For any x ∈ Kλ:

max
y∈{0,1}`(λ)

Pr [y = F (x)] ≥ 1− negl(λ). (1)

Security. For every QPT inverter A:

Pr
x←{0,1}m(λ)

[F (A(F (x))) = F (x)] ≤ negl(λ). (2)

16 / 24

Quantum Pseudo-deterministic One-Way Functions

Definition
A QPT algorithm F : {0, 1}m(λ) → {0, 1}`(λ) is a quantum
pseudo-deterministic one-way function if:

Pseudodeterminism. There exits a set Kλ, for some c > 0
and all λ ∈N:

1 Pr
[
x ∈ Kλ

∣∣∣ x ← {0, 1}m(λ)
]
≥ 1−O(λ−c).

2 For any x ∈ Kλ:

max
y∈{0,1}`(λ)

Pr [y = F (x)] ≥ 1− negl(λ). (1)

Security. For every QPT inverter A:

Pr
x←{0,1}m(λ)

[F (A(F (x))) = F (x)] ≤ negl(λ). (2)

16 / 24

Quantum Pseudo-deterministic One-Way Functions

Definition
A QPT algorithm F : {0, 1}m(λ) → {0, 1}`(λ) is a quantum
pseudo-deterministic one-way function if:

Pseudodeterminism. There exits a set Kλ, for some c > 0
and all λ ∈N:

1 Pr
[
x ∈ Kλ

∣∣∣ x ← {0, 1}m(λ)
]
≥ 1−O(λ−c).

2 For any x ∈ Kλ:

max
y∈{0,1}`(λ)

Pr [y = F (x)] ≥ 1− negl(λ). (1)

Security. For every QPT inverter A:

Pr
x←{0,1}m(λ)

[F (A(F (x))) = F (x)] ≤ negl(λ). (2)

16 / 24

Quantum Pseudo-deterministic One-Way Functions

Definition
A QPT algorithm F : {0, 1}m(λ) → {0, 1}`(λ) is a quantum
pseudo-deterministic one-way function if:

Pseudodeterminism. There exits a set Kλ, for some c > 0
and all λ ∈N:

1 Pr
[
x ∈ Kλ

∣∣∣ x ← {0, 1}m(λ)
]
≥ 1−O(λ−c).

2 For any x ∈ Kλ:

max
y∈{0,1}`(λ)

Pr [y = F (x)] ≥ 1− negl(λ). (1)

Security. For every QPT inverter A:

Pr
x←{0,1}m(λ)

[F (A(F (x))) = F (x)] ≤ negl(λ). (2)

16 / 24

Quantum complexity classes

Definition (PromiseBQP)
L = (Lyes ,Lno) ∈ PromiseBQP if ∃ a QTP A such that:

Lyes

Lno

x ∈ Lyes , Pr [A(x) = 1] ≥ 2/3

x ∈ Lno , Pr [A(x) = 0] ≥ 2/3

17 / 24

Quantum complexity classes

Definition (PromiseQMA)
L = (Lyes ,Lno) ∈ PromiseQMA if ∃ a QTP A such that:

Lyes

Lno

x ∈ Lyes , ∃ |φ〉 , Pr [A(x , |φ〉) = 1] ≥ 2/3

x ∈ Lno , ∀ |φ〉 , Pr [A(x , |φ〉) = 0] ≥ 2/3

18 / 24

Sketch proof

Assume we have a PD-OWF F . The goal is to exhibit a language
L such that L ∈ PromiseQMA, and L /∈ PromiseBQP.

Definition (The language)
We define L = (Lyes ,Lno) as:

Lyes

Lno

Lyes =

{
y that have a pre-image

relative to F

}

Lno =

{
y that do not have a pre-image

relative to F

}

19 / 24

Sketch proof

Assume we have a PD-OWF F . The goal is to exhibit a language
L such that L ∈ PromiseQMA, and L /∈ PromiseBQP.

Definition (The language)
We define L = (Lyes ,Lno) as:

Lyes

Lno

Lyes =

{
y that have a pre-image

relative to F

}

Lno =

{
y that do not have a pre-image

relative to F

}

19 / 24

Sketch proof

Definition (The language)
We define L = (Lyes ,Lno) as:

Lyes

Lno

Lyes =

{
y such that ∃x

Pr [F (x) = y] ≥ 1− negl(n)

}

Lno =

{
y such that ∀x

Pr [F (x) = y] ≤ 1− 1
poly(n)

}

20 / 24

Sketch proof

Definition (The language)
We define L = (Lyes ,Lno) as:

Lyes

Lno

Lyes =

{
y such that ∃x

Pr [F (x) = y] ≥ 1− negl(n)

}

Lno =

{
y such that ∀x

Pr [F (x) = y] ≤ 1− 1
poly(n)

}

L ∈ PromiseQMA
Ver(x , y) runs F (x) many times
and checks that F (x) = y every
time.

L /∈ PromiseBQP
Otherwise, it would break the
security definition of PD-OWF.

21 / 24

Sketch proof

Definition (The language)
We define L = (Lyes ,Lno) as:

Lyes

Lno

Lyes =

{
y such that ∃x

Pr [F (x) = y] ≥ 1− negl(n)

}

Lno =

{
y such that ∀x

Pr [F (x) = y] ≤ 1− 1
poly(n)

}

L ∈ PromiseQMA
Ver(x , y) runs F (x) many times
and checks that F (x) = y every
time.

L /∈ PromiseBQP
Otherwise, it would break the
security definition of PD-OWF.

21 / 24

Sketch proof

Definition (The language)
We define L = (Lyes ,Lno) as:

Lyes

Lno

Lyes =

{
(y , x ′) such that ∃x , x ′ ≺ x
Pr [F (x) = y] ≥ 1− negl(n)

}

Lno =

{
(y , x ′) such that ∀x , x ′ ⊀ x or
Pr [F (x) = y] ≤ 1− 1

poly(n)

}x ′ ≺ x ⇔ x = 0101︸︷︷︸
x ′

010001

L ∈ PromiseQMA
Ver(x , (x ′, y)) checks that
x ′ ≺ x and runs F (x) many
times and checks that F (x) = y
every time.

L /∈ PromiseBQP
Otherwise, it would break the
security definition of PD-OWF:
for some y , we can learn a
pre-image bit by bit.

22 / 24

Sketch proof

Definition (The language)
We define L = (Lyes ,Lno) as:

Lyes

Lno

Lyes =

{
(y , x ′) such that ∃x , x ′ ≺ x
Pr [F (x) = y] ≥ 1− negl(n)

}

Lno =

{
(y , x ′) such that ∀x , x ′ ⊀ x or
Pr [F (x) = y] ≤ 1− 1

poly(n)

}x ′ ≺ x ⇔ x = 0101︸︷︷︸
x ′

010001

L ∈ PromiseQMA
Ver(x , (x ′, y)) checks that
x ′ ≺ x and runs F (x) many
times and checks that F (x) = y
every time.

L /∈ PromiseBQP
Otherwise, it would break the
security definition of PD-OWF:
for some y , we can learn a
pre-image bit by bit.

22 / 24

Sketch proof

Definition (The language)
We define L = (Lyes ,Lno) as:

Lyes

Lno

Lyes =

{
(y , x ′) such that ∃x , x ′ ≺ x
Pr [F (x) = y] ≥ 1− negl(n)

}

Lno =

{
(y , x ′) such that ∀x , x ′ ⊀ x or
Pr [F (x) = y] ≤ 1− 1

poly(n)

}x ′ ≺ x ⇔ x = 0101︸︷︷︸
x ′

010001

L ∈ PromiseQMA
Ver(x , (x ′, y)) checks that
x ′ ≺ x and runs F (x) many
times and checks that F (x) = y
every time.

L /∈ PromiseBQP
Otherwise, it would break the
security definition of PD-OWF:
for some y , we can learn a
pre-image bit by bit.

22 / 24

Conclusion

∃

∃ ∃

∃

�

�

?
?

Pictures of the presentation are adapted from icons from flaticon.com
23 / 24

Conclusion

We showed that PRSs do not imply short-PRSs.

Whether short-PRSs imply PRSs or not is still open. However,
poly-time short-PRSs imply one-time long-PRSs.
There are many open questions regarding the relationship
between quantum cryptographic primitives (EFI, OWSG,
PRU...)
Ongoing work: separating Quantum Computation Classical
Communication (QCCC) primitives from PRSs, such as KE
and PKE with classical keys.

Thank you for your attention!

24 / 24

Conclusion

We showed that PRSs do not imply short-PRSs.
Whether short-PRSs imply PRSs or not is still open. However,
poly-time short-PRSs imply one-time long-PRSs.

There are many open questions regarding the relationship
between quantum cryptographic primitives (EFI, OWSG,
PRU...)
Ongoing work: separating Quantum Computation Classical
Communication (QCCC) primitives from PRSs, such as KE
and PKE with classical keys.

Thank you for your attention!

24 / 24

Conclusion

We showed that PRSs do not imply short-PRSs.
Whether short-PRSs imply PRSs or not is still open. However,
poly-time short-PRSs imply one-time long-PRSs.
There are many open questions regarding the relationship
between quantum cryptographic primitives (EFI, OWSG,
PRU...)

Ongoing work: separating Quantum Computation Classical
Communication (QCCC) primitives from PRSs, such as KE
and PKE with classical keys.

Thank you for your attention!

24 / 24

Conclusion

We showed that PRSs do not imply short-PRSs.
Whether short-PRSs imply PRSs or not is still open. However,
poly-time short-PRSs imply one-time long-PRSs.
There are many open questions regarding the relationship
between quantum cryptographic primitives (EFI, OWSG,
PRU...)
Ongoing work: separating Quantum Computation Classical
Communication (QCCC) primitives from PRSs, such as KE
and PKE with classical keys.

Thank you for your attention!

24 / 24

Conclusion

We showed that PRSs do not imply short-PRSs.
Whether short-PRSs imply PRSs or not is still open. However,
poly-time short-PRSs imply one-time long-PRSs.
There are many open questions regarding the relationship
between quantum cryptographic primitives (EFI, OWSG,
PRU...)
Ongoing work: separating Quantum Computation Classical
Communication (QCCC) primitives from PRSs, such as KE
and PKE with classical keys.

Thank you for your attention!

24 / 24

Bibliography

24 / 24

	Introduction
	Our result
	Sketch of the proof
	Conclusion
	Bibliography

