# Quantum Pseudorandomness Cannot be Shrunk in a Black-Box Way

#### Samuel Bouaziz--Ermann Joint work with Garazi Muguruza

LIP6, Sorbonne Université, CNRS arXiv:2402.13324

May 17, 2024



Randomness is essential to build cryptographic primitives. We want to sample from the **uniform distribution**  $U_{\ell}$ . Problem: how to generate it **efficiently**?

Randomness is essential to build cryptographic primitives. We want to sample from the **uniform distribution**  $U_{\ell}$ . Problem: how to generate it **efficiently**?

#### Pseudorandom Number Generator

Randomness is essential to build cryptographic primitives. We want to sample from the **uniform distribution**  $U_{\ell}$ . Problem: how to generate it **efficiently**?

#### Pseudorandom Number Generator

A function  $F : \{0, 1\}^n \to \{0, 1\}^\ell$  is a Pseudorandom Number Generator (PRNG) if:

1. F(x) can be computed efficiently.

Randomness is essential to build cryptographic primitives. We want to sample from the **uniform distribution**  $U_{\ell}$ . Problem: how to generate it **efficiently**?

#### Pseudorandom Number Generator

- 1. F(x) can be computed efficiently.
- 2.  $F(x) \approx \mathcal{U}_{\ell}$ , when  $x \leftarrow \mathcal{U}_n$ .

Randomness is essential to build cryptographic primitives. We want to sample from the **uniform distribution**  $U_{\ell}$ . Problem: how to generate it **efficiently**?

#### Pseudorandom Number Generator

- 1. F(x) can be computed efficiently.
- 2.  $F(x) \approx \mathcal{U}_{\ell}$ , when  $x \leftarrow \mathcal{U}_n$ .
- 3.  $\ell > n$ .

Randomness is essential to build cryptographic primitives. We want to sample from the **uniform distribution**  $U_{\ell}$ . Problem: how to generate it **efficiently**?

#### Pseudorandom Number Generator

- 1. F(x) can be computed efficiently.
- 2.  $F(x) \approx U_{\ell}$ , when  $x \leftarrow U_n$ .
- 3.  $\ell > n$ .



## Other cryptography primitives

#### **One-Way Functions**

A function  $F : \{0, 1\}^n \to \{0, 1\}^n$  is a One-Way Function (OWF) if:

- 1. F(x) can be computed efficiently.
- 2. Given y = F(x), it is hard to compute x.

#### **One-Way Functions**

A function  $F : \{0, 1\}^n \to \{0, 1\}^n$  is a One-Way Function (OWF) if:

- 1. F(x) can be computed efficiently.
- 2. Given y = F(x), it is hard to compute x.

#### Public Key Encryption

A Public Key Encryption (PKE) scheme allows two users to communicate over an untrusted authenticated channel.

#### **One-Way Functions**

A function  $F : \{0, 1\}^n \to \{0, 1\}^n$  is a One-Way Function (OWF) if:

- 1. F(x) can be computed efficiently.
- 2. Given y = F(x), it is hard to compute x.

### Public Key Encryption

A Public Key Encryption (PKE) scheme allows two users to communicate over an untrusted authenticated channel.

Alice Bob  

$$(sk, pk) = Kgen() \xrightarrow{pk} c = Enc(m, pk)$$
  
 $m = Dec(c, sk) \xleftarrow{c}$ 

#### **One-Way Functions**

A function  $F : \{0, 1\}^n \to \{0, 1\}^n$  is a One-Way Function (OWF) if:

- 1. F(x) can be computed efficiently.
- 2. Given y = F(x), it is hard to compute x.

### Public Key Encryption

A Public Key Encryption (PKE) scheme allows two users to communicate over an untrusted authenticated channel.

Alice Bob  

$$(sk, pk) = Kgen() \xrightarrow{pk} c = Enc(m, pk)$$
  
 $m = Dec(c, sk) \xleftarrow{c}$ 

## The relevance of One-Way Functions

- Most advanced cryptographic schemes require one-way functions.
- For example, a hash function has to be a one-way function.
- It is the weakest assumption to do classical cryptography.

## The relevance of One-Way Functions

- Most advanced cryptographic schemes require one-way functions.
- For example, a hash function has to be a one-way function.
- It is the weakest assumption to do classical cryptography.

#### Theorem

One-way functions and Pseudorandom Number Generators are equivalent, in a black-box way.

They are the most natural class of constructions.

They are the most natural class of constructions.

- A black-box construction of A from B means that:
  - The construction of A from B does not use the "code" of B.

They are the most natural class of constructions.

A black-box construction of A from B means that:

- The construction of A from B does not use the "code" of B.
- If an adversary breaks A, then an adversary breaks primitive B, without using the "code" of A.

They are the most natural class of constructions.

A black-box construction of A from B means that:

- The construction of A from B does not use the "code" of B.
- If an adversary breaks A, then an adversary breaks primitive B, without using the "code" of A.

Black-box constructions *relativize*, meaning that for any oracle O such that B exists (relative to O), then A exists (relative to O).

They are the most natural class of constructions.

A black-box construction of A from B means that:

- The construction of A from B does not use the "code" of B.
- If an adversary breaks A, then an adversary breaks primitive B, without using the "code" of A.

Black-box constructions *relativize*, meaning that for any oracle O such that B exists (relative to O), then A exists (relative to O). Example: Relative to random oracles, OWF exists. Thus, so does PRNG.

They are the most natural class of constructions.

A black-box construction of A from B means that:

- The construction of A from B does not use the "code" of B.
- If an adversary breaks A, then an adversary breaks primitive B, without using the "code" of A.

Black-box constructions *relativize*, meaning that for any oracle O such that B exists (relative to O), then A exists (relative to O). Example: Relative to random oracles, OWF exists. Thus, so does PRNG.

#### Black-box impossibility results

A black-box impossibility result of A from B consist of exhibiting an oracle O such that, relative to O, B exists but not A.

## Some results about classical cryptography

#### Theorem



## Some results about classical cryptography

#### Theorem

$$\exists : :: P \neq NP$$

#### Theorem



## Some results about classical cryptography

#### Theorem

$$\exists : :: P \neq NP$$

#### Theorem





Different worlds where we might live in (Imp'95):

- 😢 Algorithmica P=NP
- Heuristica NP problems are easy on average but hard on the worst case
- $\mathfrak{V}$  **Pessiland**  $P \neq NP$  but  $\nexists$  one-way function.
- Solution: Section 20 (1997) Se
- 😂 Cryptomania Public Key Encryption exists!

#### Quantum Randomness

We can also consider quantum randomness.

The equivalent to the uniform distribution is the Haar measure  $\mu_{2^n}$ .



## Quantum Pseudorandomness

#### Quantum Randomness

We can also consider quantum randomness.

The equivalent to the uniform distribution is the Haar measure  $\mu_{2^n}$ .



Quantum Pseudorandom States Generators

A function  $F : \{0, 1\}^{\lambda} \to (\mathbb{C}^2)^{\otimes n}$  is a Pseudorandom Quantum State generator (PRS) if:

## Quantum Pseudorandomness

#### Quantum Randomness

We can also consider quantum randomness.

The equivalent to the uniform distribution is the Haar measure  $\mu_{2^n}$ .



Quantum Pseudorandom States Generators

A function  $F : \{0, 1\}^{\lambda} \to (\mathbb{C}^2)^{\otimes n}$  is a Pseudorandom Quantum State generator (PRS) if:

1. F(k) can be computed efficiently.

## Quantum Pseudorandomness

#### Quantum Randomness

We can also consider quantum randomness.

The equivalent to the uniform distribution is the Haar measure  $\mu_{2^n}$ .



Quantum Pseudorandom States Generators

A function  $F : \{0, 1\}^{\lambda} \to (\mathbb{C}^2)^{\otimes n}$  is a Pseudorandom Quantum State generator (PRS) if:

1. F(k) can be computed efficiently.

2. 
$$F(k) pprox \mu_{2^n}$$
, when  $k \leftarrow \mathcal{U}_{\lambda}$ .

#### Definition (Pseudorandom quantum states [JSL18])

A keyed family of *n*-qubit quantum states  $\{|\varphi_k\rangle\}_{k \in \{0,1\}^{\lambda}}$  is *pseudorandom* if the following two conditions hold:

#### Definition (Pseudorandom quantum states [JSL18])

A keyed family of *n*-qubit quantum states  $\{|\varphi_k\rangle\}_{k\in\{0,1\}^{\lambda}}$  is *pseudorandom* if the following two conditions hold:

**O** Efficient generation. There is a QPT algorithm *G* such that:

 $G_{\lambda}(k) = |\varphi_k\rangle\langle\varphi_k|.$ 

#### Definition (Pseudorandom quantum states [JSL18])

A keyed family of *n*-qubit quantum states  $\{|\varphi_k\rangle\}_{k\in\{0,1\}^{\lambda}}$  is *pseudorandom* if the following two conditions hold:

**O** Efficient generation. There is a QPT algorithm *G* such that:

$$G_{\lambda}(k) = |\varphi_k\rangle\langle\varphi_k|.$$

Pseudorandomness. For any QPT adversary A and all polynomials t(·), we have:

$$\Pr_{k \leftarrow \{0,1\}^{\lambda}} \left[ \mathcal{A} \left( |\varphi_k\rangle^{\otimes t(\lambda)} \right) = 1 \right] - \Pr_{|\nu\rangle \leftarrow \mu_{2^n}} \left[ \mathcal{A} \left( |\nu\rangle^{\otimes t(\lambda)} \right) = 1 \right] \right| \leq \operatorname{negl}(\lambda).$$

#### Definition (Pseudorandom quantum states [JSL18])

A keyed family of *n*-qubit quantum states  $\{|\varphi_k\rangle\}_{k\in\{0,1\}^{\lambda}}$  is *pseudorandom* if the following two conditions hold:

**O** Efficient generation. There is a QPT algorithm *G* such that:

$$G_{\lambda}(k) = |\varphi_k\rangle\langle\varphi_k|.$$

Seudorandomness. For any QPT adversary A and all polynomials t(·), we have:

$$\Pr_{k \leftarrow \{0,1\}^{\lambda}} \left[ \mathcal{A} \left( |\varphi_k\rangle^{\otimes t(\lambda)} \right) = 1 \right] - \Pr_{|\nu\rangle \leftarrow \mu_{2^n}} \left[ \mathcal{A} \left( |\nu\rangle^{\otimes t(\lambda)} \right) = 1 \right] \right| \leq \mathsf{negl}(\lambda).$$



If  $n \approx \lambda$ , it is a **long-PRS**, or just PRS.

#### Definition (Pseudorandom quantum states [JSL18])

A keyed family of *n*-qubit quantum states  $\{|\varphi_k\rangle\}_{k\in\{0,1\}^{\lambda}}$  is *pseudorandom* if the following two conditions hold:

**O** Efficient generation. There is a QPT algorithm *G* such that:

$$G_{\lambda}(k) = |\varphi_k\rangle\langle\varphi_k|.$$

Pseudorandomness. For any QPT adversary A and all polynomials t(·), we have:

$$\Pr_{k \leftarrow \{0,1\}^{\lambda}} \left[ \mathcal{A}\left( |\varphi_k\rangle^{\otimes t(\lambda)} \right) = 1 \right] - \Pr_{|\nu\rangle \leftarrow \mu_{2^n}} \left[ \mathcal{A}\left( |\nu\rangle^{\otimes t(\lambda)} \right) = 1 \right] \right| \leq \operatorname{negl}(\lambda).$$

If  $n \approx \lambda$ , it is a **long-PRS**, or just PRS.

If  $n \approx \log \lambda$ , it is a **short-PRS**.

## Worlds of quantum cryptography

Worlds relative to which quantum computation is possible.

• MiniQcrypt: Quantum resistant One-Way Functions exist!

Worlds relative to which quantum computation is possible.

- MiniQcrypt: Quantum resistant One-Way Functions exist!
- MicroCrypt: PRSs exist!

oblivious transfer, multi party computation, public key encryption with quantum keys, quantum one-time digital signatures, pseudo one-time pad encryption schemes, statistically binding and computationally hiding commitments and quantum computational zero knowledge proofs, bit commitments... Worlds relative to which quantum computation is possible.

- MiniQcrypt: Quantum resistant One-Way Functions exist!
- MicroCrypt: PRSs exist!

oblivious transfer, multi party computation, public key encryption with quantum keys, quantum one-time digital signatures, pseudo one-time pad encryption schemes, statistically binding and computationally hiding commitments and quantum computational zero knowledge proofs, bit commitments...

• Another world: short-PRSs exist!

bit commitments, pseudodeterministic one-way functions, pseudodeterministic pseudorandom number generators, pseudodeterministic signatures... Worlds relative to which quantum computation is possible.

- MiniQcrypt: Quantum resistant One-Way Functions exist!
- MicroCrypt: PRSs exist!

oblivious transfer, multi party computation, public key encryption with quantum keys, quantum one-time digital signatures, pseudo one-time pad encryption schemes, statistically binding and computationally hiding commitments and quantum computational zero knowledge proofs, bit commitments...

- Another world: short-PRSs exist! bit commitments, pseudodeterministic one-way functions, pseudodeterministic pseudorandom number generators, pseudodeterministic signatures...
- Cryptomania: Public Key Encryption exists! (resistant to quantum attacks)

## Theorem ([JLS18])



Theorem ([JLS18])













Idea: Use Tomography, with cost  $O(2^d) = poly(n)$ 

## Different type of PRSs

What about the size of PRS?

What about the size of PRS?

#### Claim

The output length of a PRNG do not matter, as they are all equivalent to each other.

#### Claim

The relationship between long-PRS and short-PRS is unclear

What about the size of PRS?

#### Claim

The output length of a PRNG do not matter, as they are all equivalent to each other.

#### Claim

The relationship between long-PRS and short-PRS is unclear

This work: long-PRSs do not imply short-PRSs.

## Relations between primitives



#### Kretschmer's oracle

There exists an oracle  $\mathcal{U}$ , relative to which:

- PRSs exist.
- PromiseBQP = PromiseQMA. (no OWF)

#### Kretschmer's oracle

There exists an oracle  $\mathcal{U}$ , relative to which:

- PRSs exist.
- PromiseBQP = PromiseQMA. (no OWF)

It suffices to show that PD-OWF imply PromiseBQP  $\neq$  PromiseQMA (in a black-box way)!

## Relations between primitives



## Quantum Pseudo-deterministic One-Way Functions

#### Definition

A QPT algorithm  $F : \{0, 1\}^{m(\lambda)} \to \{0, 1\}^{\ell(\lambda)}$  is a quantum pseudo-deterministic one-way function if:

#### Definition

A QPT algorithm  $F : \{0, 1\}^{m(\lambda)} \to \{0, 1\}^{\ell(\lambda)}$  is a quantum pseudo-deterministic one-way function if:

 Pseudodeterminism. There exits a set K<sub>λ</sub>, for some c > 0 and all λ ∈ N:

• Pr 
$$\left[x \in \mathcal{K}_{\lambda} \mid x \leftarrow \{0, 1\}^{m(\lambda)}\right] \ge 1 - O(\lambda^{-c}).$$

#### Definition

A QPT algorithm  $F : \{0, 1\}^{m(\lambda)} \to \{0, 1\}^{\ell(\lambda)}$  is a quantum pseudo-deterministic one-way function if:

• **Pseudodeterminism**. There exits a set  $\mathcal{K}_{\lambda}$ , for some c > 0 and all  $\lambda \in \mathbb{N}$ :

• Pr 
$$\left[x \in \mathcal{K}_{\lambda} \mid x \leftarrow \{0,1\}^{m(\lambda)}\right] \ge 1 - O(\lambda^{-c}).$$

**2** For any  $x \in \mathcal{K}_{\lambda}$ :

$$\max_{y \in \{0,1\}^{\ell(\lambda)}} \Pr\left[y = F(x)\right] \ge 1 - \operatorname{negl}(\lambda). \tag{1}$$

#### Definition

A QPT algorithm  $F : \{0, 1\}^{m(\lambda)} \to \{0, 1\}^{\ell(\lambda)}$  is a quantum pseudo-deterministic one-way function if:

• **Pseudodeterminism**. There exits a set  $\mathcal{K}_{\lambda}$ , for some c > 0 and all  $\lambda \in \mathbb{N}$ :

• Pr 
$$\left[x \in \mathcal{K}_{\lambda} \mid x \leftarrow \{0,1\}^{m(\lambda)}\right] \ge 1 - O(\lambda^{-c}).$$

**2** For any  $x \in \mathcal{K}_{\lambda}$ :

$$\max_{y \in \{0,1\}^{\ell(\lambda)}} \Pr\left[y = F(x)\right] \ge 1 - \operatorname{negl}(\lambda). \tag{1}$$

• Security. For every QPT inverter  $\mathcal{A}$ :

$$\Pr_{x \leftarrow \{0,1\}^{m(\lambda)}} \left[ F\left(\mathcal{A}(F(x))\right) = F(x) \right] \le \operatorname{negl}(\lambda).$$
(2)

#### Definition (PromiseBQP)



## Definition (PromiseQMA)

$$\mathcal{L} = (\mathcal{L}_{yes}, \mathcal{L}_{no}) \in \text{PromiseQMA if } \exists \text{ a QTP } \mathcal{A} \text{ such that:}$$

$$\mathcal{L}_{yes} \quad x \in \mathcal{L}_{yes}, \exists |\phi\rangle, \Pr[\mathcal{A}(x, |\phi\rangle) = 1] \ge 2/3$$

$$\mathcal{L}_{no} \quad x \in \mathcal{L}_{no}, \forall |\phi\rangle, \Pr[\mathcal{A}(x, |\phi\rangle) = 0] \ge 2/3$$

Assume we have a PD-OWF F. The goal is to exhibit a language  $\mathcal{L}$  such that  $\mathcal{L} \in \mathsf{PromiseQMA}$ , and  $\mathcal{L} \notin \mathsf{PromiseBQP}$ .

Assume we have a PD-OWF *F*. The goal is to exhibit a language  $\mathcal{L}$  such that  $\mathcal{L} \in \mathsf{PromiseQMA}$ , and  $\mathcal{L} \notin \mathsf{PromiseBQP}$ .

#### Definition (The language)



#### Definition (The language)



## Definition (The language)

We define 
$$\mathcal{L} = (\mathcal{L}_{yes}, \mathcal{L}_{no})$$
 as:  

$$\mathcal{L}_{yes} = \begin{cases} y \text{ such that } \exists x \\ \Pr[F(x) = y] \ge 1 - \operatorname{negl}(n) \end{cases}$$

$$\mathcal{L}_{no} = \begin{cases} y \text{ such that } \forall x \\ \Pr[F(x) = y] \le 1 - \frac{1}{\operatorname{poly}(n)} \end{cases}$$

#### $\mathcal{L} \in \mathsf{PromiseQMA}$

Ver(x, y) runs F(x) many times and checks that F(x) = y every time.

## Definition (The language)

We define 
$$\mathcal{L} = (\mathcal{L}_{yes}, \mathcal{L}_{no})$$
 as:  

$$\mathcal{L}_{yes} = \begin{cases} y \text{ such that } \exists x \\ \Pr[F(x) = y] \ge 1 - \operatorname{negl}(n) \end{cases}$$

$$\mathcal{L}_{no} = \begin{cases} y \text{ such that } \forall x \\ \Pr[F(x) = y] \le 1 - \frac{1}{\operatorname{poly}(n)} \end{cases}$$

### $\mathcal{L} \in \mathsf{PromiseQMA}$

Ver(x, y) runs F(x) many times and checks that F(x) = y every time.

#### $\mathcal{L} \notin \mathsf{PromiseBQP}$

Otherwise, it would break the security definition of PD-OWF.

## Sketch proof

#### Definition (The language)



## Sketch proof

#### Definition (The language)



#### $\mathcal{L} \in \mathsf{PromiseQMA}$

Ver(x, (x', y)) checks that  $x' \prec x$  and runs F(x) many times and checks that F(x) = y every time.

## Sketch proof

#### Definition (The language)

We define 
$$\mathcal{L} = (\mathcal{L}_{yes}, \mathcal{L}_{no})$$
 as:  

$$\mathcal{L}_{yes} = \begin{cases} (y, x') \text{ such that } \exists x, x' \prec x \\ \Pr[F(x) = y] \ge 1 - \operatorname{negl}(n) \end{cases}$$

$$x' \prec x \Leftrightarrow x = \underbrace{0101}_{x'} \underbrace{010001}_{x'}$$

$$\mathcal{L}_{no} = \begin{cases} (y, x') \text{ such that } \forall x, x' \not\prec x \text{ or} \\ \Pr[F(x) = y] \le 1 - \frac{1}{\operatorname{poly}(n)} \end{cases}$$

#### $\mathcal{L} \in \mathsf{PromiseQMA}$

Ver(x, (x', y)) checks that  $x' \prec x$  and runs F(x) many times and checks that F(x) = y every time.

#### $\mathcal{L} \notin \mathsf{PromiseBQP}$

Otherwise, it would break the security definition of PD-OWF: for some y, we can learn a pre-image bit by bit.



Pictures of the presentation are adapted from icons from flaticon.com

• We showed that PRSs do not imply short-PRSs.

- We showed that PRSs do not imply short-PRSs.
- Whether short-PRSs imply PRSs or not is still open. However, poly-time short-PRSs imply one-time long-PRSs.

- We showed that PRSs do not imply short-PRSs.
- Whether short-PRSs imply PRSs or not is still open. However, poly-time short-PRSs imply one-time long-PRSs.
- There are many open questions regarding the relationship between quantum cryptographic primitives (EFI, OWSG, PRU...)

- We showed that PRSs do not imply short-PRSs.
- Whether short-PRSs imply PRSs or not is still open. However, poly-time short-PRSs imply one-time long-PRSs.
- There are many open questions regarding the relationship between quantum cryptographic primitives (EFI, OWSG, PRU...)
- Ongoing work: separating Quantum Computation Classical Communication (QCCC) primitives from PRSs, such as KE and PKE with classical keys.

- We showed that PRSs do not imply short-PRSs.
- Whether short-PRSs imply PRSs or not is still open. However, poly-time short-PRSs imply one-time long-PRSs.
- There are many open questions regarding the relationship between quantum cryptographic primitives (EFI, OWSG, PRU...)
- Ongoing work: separating Quantum Computation Classical Communication (QCCC) primitives from PRSs, such as KE and PKE with classical keys.

Thank you for your attention!

# Bibliography