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Properties

@ Make sure that the message comes from Alice

o Verify the integrity of the message
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Motivation

Relation between SPHINCS and the SC problem

o Finding a lower bound for the subset cover problem gives a
lower bounds for the security of SPHINCS(+).

@ An algorithm that finds a subset cover cannot directly be used
to attack SPHINCS(+).

@ The subset cover variations (RSC, TSC, and ITSC) are also
linked to the security of SPHINCS and SPHINCS+.
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Definition
@ A hash function is a function h: {0,1}* — {0,1}".

@ In the Random Oracle Model (ROM), a hash function is
modelized as a random function H : X — ).

@ In the Quantum Random Oracle Model (QROM), the
random function H can be queried in superposition:

0 (Z“x,y [x) |y>> =)y [X) |y + O(x))

X,y

Our model

In our model, we have quantum access to hy, - - - , hy such that
hi: X = Y, and |Y| = N.
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Definition
A (r, k)-subset cover ((r, k)-SC) for hy, ..., hx consist of r +1
elements xg, x1, ..., Xy in domain X such that:

()1 < < Kk} € | ()L <7< A}
j=0
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Restricted Subset Cover

Definition
A k-restricted subset cover (k—RSC) for hy, ..., hy consist of k + 1
elements xg, x1, ..., X in domain X such that:
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Results on subset cover

Theorem ([YTA22])

There exists an algorithm that find a k—RSC by making
k_
(0] (k . N2k2+111> queries to hy, ..., hy.
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Results on subset cover

Theorem ([YTA22])

There exists an algorithm that find a k—RSC by making
k_
(0] (k . N2k2+111> queries to hy, ..., hy.

No other work!
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Our results on k—RSC

Lower bound on k—RSC

2k 2k_1 )
We prove that Q) [ kK 2F¥T-1 . N2¥¥1-1 | quantum queries to the

idealized hash functions are needed to find a k—RSC with constant
probability.
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Our results on k—RSC

Lower bound on k—RSC

2k 2k_1
We prove that Q) [ kK 2F¥T-1 . N2¥¥1-1 | quantum queries to the

idealized hash functions are needed to find a k—RSC with constant
probability.

Lower bound on 2-RSC

Given two random functions hy, hy : X — ) where [N| =), a
quantum algorithm needs to make Q(N3/7) queries to h; and hy to
find a 2-RSC with a constant probability.
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Quantum information

@ We consider elements of a Hilbert space H of dimension 2”.
e We write |0),|1),---,|2" — 1) the computational basis.
@ A quantum state |¢) is an element of H of norm 1, and can be
written:
2n—1
9) =} wili).

i=0
e We write (¢| the conjugate transpose of |¢).
@ We can apply unitaries U to quantum state, and this

corresponds to doing computation.

@ We can measure quantum state, doing so give / with
probability |a;|2.
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Quantum Fourier Transform
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Quantum Fourier Transform

The Quantum Fourier Transform is a unitary that, given an input
state |k), outputs:

12
on/2 Z W |k>’
/=0
where w,, = 27i/2"

@ This unitary can be efficiently implemented, and we write it

QFT.
o Applying the QFT to the computational basis |0),..., |N)
yields the Fourier basis ‘0 ‘N>

@ In particular, we have that:

2"—1

0 =7 L 10
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Compressed Random Oracle

@ When making a query in the QROM:

StO (Z“x,y [x) |y>> =)y %) |y + O(x))

@ We add a new register, for the database: |D). We write D the
set of all possible database.

e |D) is initially equal the uniform supersition:

1
ZW|D>

DeD

@ When we make a query:

Y ( Y, o %) y) |D>> = ) %y |X) ) D& (x.y))

x,y,D x,y,D
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Compressed Random Oracle

Compression part

We apply the compression operator in the Fourier basis

Comp =@ | L) 0]+ X In) vl |,
x y:y#0
where L is a new symbol and |0) = Z,?lal % |i) is the uniform
superposition.
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Compressed Random Oracle

Compression part

We apply the compression operator in the Fourier basis

Comp =@ | L) 0]+ X In) vl |,
x y:y#0
where L is a new symbol and |0) = Z,?lal % |i) is the uniform
superposition.

The full Oracle

cO = Comp o O o Comp’

v
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Compressed Random Oracle

Description

After g queries the state of the database can be described with g
vectors.

Lemma (Zhandry)

Let A be an algorithm that makes k queries to a random oracle
H:X — Y. Then, the compressed random oracle technique

simulates H with an error at most ﬁ

This essentially corresponds to on-the-fly simulation of H.
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Using CROM to compute lower bounds

Database properties

o A database property P is a subset of D.
o For example, Ppre_image = {D|3x € D, H(x) = 0}.

@ Any database property P can be seen as a projector on D, as

follows:
Y |d) (d|
deP
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Using CROM to compute lower bounds

Database properties

@ A database property P is a subset of D.
@ For example, Ppre—image = {D|3x € D, H(x) = 0}.
@ Any database property P can be seen as a projector on D, as

follows:
Y |d) (d|
deP

Computing lower bounds

If we write |¢;) = cOUycOUy—1 ...cOU; |0)°" the state of an
algorithm A after i queries to the oracle, we want to bound:

|Plgi) | < £(i)

Thus f~1(i) queries to H are necessary to find a database that
satisfies property P.
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Sketch of the proof

Lower bound on 2-RSC

Given two random functions hy, hy : X — ) where [N| =), a
quantum algorithm needs to make Q(N3/7) queries to h; and hj to

find a 2-RSC with a constant probability.
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Lower bound on 2-RSC

Given two random functions hy, hy : X — ) where [N| =), a
quantum algorithm needs to make Q(N3/7) queries to h; and hj to
find a 2-RSC with a constant probability.

Database properties
@ P, as the set of databases that contain a 2-RSC.

° Pé as the set of databases that contain at least ¢ distinct
collisions on hy.

Writing |¢;) the state after the i*" query to H = (hy, hy), our goal
is to bound | Pz |;)].
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Recall that a 2—RSC consist of xg, X1, x> such that:

@ h1(x0) = h1(x1) < There must be a collision in the database

@ hy(xp) = h2(x2) < We need a new collision there

We have three possible ways to get from D that does not have a
2-RSC to D @ (x,y’) that has a 2-RSC:

@ X=X 0rXx=xy
@ X =Xp

If there are ¢ collisions on hy, there are ¢ values of y’ such that
D @& (x,y") has a 2-RSC.
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Sketch of the proof

Recall that a 2—RSC consist of xg, x1, xo such that:

@ hi(xp) = h1(x1) < We need a new collision there
@ hy(xg) = h2(x2) < We need a new collision there

We have three possible ways to get from D that does not have a
2-RSC to D @ (x, y’) that has a 2-RSC:

@ X =X Or X = X1
@ X =Xp
There are (i — 1)2 values of y’ such that D & (x,y’) has a 2-RSC.
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Sketch of the proof

Thus,
V4 , > i—1
|P2cO(1 = Py) |ihi-1)| < 2'ZN\PM¢’:‘—1>\ + 5
>0
Giving:
14 , o Ii—1
P2 [9i)| < |P2|pi1)| + 2ZN}PHIP:'—1>\ +
(>0
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Sketch of the proof

For every i € IN, we have that:

I'7/4

2
I p—
|P2 [9i)| < 4\/5W +4N + O(N"Y/48),

So when i = o(N3/7), we have g; = o(1). Hence if we want g; no
to be constant, i.e. not o(1), we must have i = Q) (N3/7).

Lower bound on 2-RSC

Given two random functions hy, hp : X — ) where [N| = Y, a
quantum algorithm needs to make Q(N3/7) queries to h; and hy to
find a 2-RSC with a constant probability.
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Results on (r, k)-SC

Lower bound on (1, k)-SC

We prove that Q ((k!)~1/5 - Nk/5) quantum queries to the
idealized hash functions are needed to find a (1, k)-SC with
constant probability.
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Results on (r, k)-SC

Lower bound on (1, k)-SC

We prove that Q ((k!)~1/5 - Nk/5) quantum queries to the
idealized hash functions are needed to find a (1, k)-SC with
constant probability.

Upper bound on (r, k)-SC

We design an algorithm that finds a (r, k)-SC with constant
probability by making O (Nk/(2+2’)) queries to the hash functions.

v
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Grover's algorithm

Definition (Search problem)

We are given a function F : X — {0,1}. The search problem
consists of finding an x € X such that F(x) = 1, in the least
amount of queries to F possible.

Theorem

Let F: X — {0,1} be a function, t = |[{x|F(x) = 1}|, and
N = |X|. Then, Grover's algorithm finds an x such that F(x) =1

with constant probability with O <ﬂ> queries to F. Moreover,

this algorithm is optimal.
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Our algorithm

Algorithm for finding a (r, k)-SC

Input: t € N, k' € N.
© Execute the (r — 1, k)-SC algorithm t times to find t distinct
(r—1,k)-SCin hy,..., hyer.
Let T be the set of these (r — 1, k')-SC.
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Our algorithm

Algorithm for finding a (r, k)-SC

Input: t € N, k' € N.

© Execute the (r — 1, k)-SC algorithm t times to find t distinct
(r—1,k)-SCin hy,..., hy.
Let T be the set of these (r — 1, k')-SC.

@ Define F: X — {0,1} as follows:

1, if there exists (xo, X1, ..., X—1) € T such that
F(x) = Vi<m< k—Kk, hn(x) = hoim(xo),

0, otherwise.

© Execute Grover's algorithm to find an x such that F(x) =1

Q Find (x0, x1, ..., Xr—1) in T and output (xo, x1, ..., Xr—1,X).
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Summary of our results

Problem Lower bound Upper bound | Tight?
kRSC | O (szilll) 0 <sz¢111> Yes
(1, k)-SC Q (NK/5) O (NK/4) No
(r, k)-SC ? o) (/vk/ <2+2f>) .
2k _1
(r,k)-TSC | O <N2k’1 1> ? -
2k 1
(r.k)-ITSC | O (/\/zk+1 1) ? -

@ State of the art

@ Our contribution
@ Relationship between the problems
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Conclusion

Open questions

@ Can we close the gap for k-RSC when k is not a constant 7
@ Can we close the gap for (1, k)-SC 7
@ Can we find a lower bound for (r, k)-SC when r > 27

@ Can we have more precise analysis of the problems (r, k)-TSC
and (r, k)-ITSC?

Thank you for your attention!
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