
Quantum security of subset cover problems

Samuel Bouaziz--Ermann
Joint work with Alex B. Grilo and Damien Vergnaud

LIP6, Sorbonne Université, CNRS

eprint:2022/1474 arXiv:2210.15396

June 20, 2023

1 / 27

https://eprint.iacr.org/2022/1474
https://arxiv.org/abs/2210.15396

1 Motivation

2 Context

3 Definitions

4 State of the art

5 Lower bounds (sketch of the proof)

6 Upper bounds

7 Summary of our results

8 Open question

2 / 27

Motivation

Alice Bob

m Sign

Secret Key

(m,s) Verif

Public Key

:)

Properties
Make sure that the message comes from Alice
Verify the integrity of the message

3 / 27

Motivation

Alice Bob

m

Sign

Secret Key

(m,s) Verif

Public Key

:)

Properties
Make sure that the message comes from Alice
Verify the integrity of the message

3 / 27

Motivation

Alice Bob

m Sign

Secret Key

(m,s) Verif

Public Key

:)

Properties
Make sure that the message comes from Alice
Verify the integrity of the message

3 / 27

Motivation

Alice Bob

m Sign

Secret Key

(m,s)

Verif

Public Key

:)

Properties
Make sure that the message comes from Alice
Verify the integrity of the message

3 / 27

Motivation

Alice Bob

m Sign

Secret Key

(m,s) Verif

Public Key

:)

Properties
Make sure that the message comes from Alice
Verify the integrity of the message

3 / 27

Motivation

Alice Bob

m Sign

Secret Key

(m,s) Verif

Public Key

:)

Properties
Make sure that the message comes from Alice
Verify the integrity of the message

3 / 27

Motivation

Alice Bob

m Sign

Secret Key

(m,s) Verif

Public Key

:)

Properties
Make sure that the message comes from Alice
Verify the integrity of the message

3 / 27

Motivation

Post-quantum
signatures

SPHINCS+

SPHINCS

Few-times signaturesHORSTHORS

Underlying problemsSC RSC TSC ITSC

4 / 27

Motivation

Post-quantum
signatures

SPHINCS+SPHINCS

Few-times signaturesHORSTHORS

Underlying problemsSC RSC TSC ITSC

4 / 27

Motivation

Post-quantum
signatures

SPHINCS+SPHINCS

Few-times signaturesHORST

HORS

Underlying problemsSC RSC TSC ITSC

4 / 27

Motivation

Post-quantum
signatures

SPHINCS+SPHINCS

Few-times signaturesHORSTHORS

Underlying problemsSC RSC TSC ITSC

4 / 27

Motivation

Post-quantum
signatures

SPHINCS+SPHINCS

Few-times signaturesHORSTHORS

Underlying problemsSC RSC TSC ITSC

4 / 27

Motivation

Post-quantum
signatures

SPHINCS+SPHINCS

Few-times signaturesHORSTHORS

Underlying problemsSC RSC TSC ITSC

4 / 27

Motivation

Relation between SPHINCS and the SC problem

Finding a lower bound for the subset cover problem gives a
lower bounds for the security of SPHINCS(+).
An algorithm that finds a subset cover cannot directly be used
to attack SPHINCS(+).
The subset cover variations (RSC, TSC, and ITSC) are also
linked to the security of SPHINCS and SPHINCS+.

5 / 27

Motivation

Relation between SPHINCS and the SC problem
Finding a lower bound for the subset cover problem gives a
lower bounds for the security of SPHINCS(+).

An algorithm that finds a subset cover cannot directly be used
to attack SPHINCS(+).
The subset cover variations (RSC, TSC, and ITSC) are also
linked to the security of SPHINCS and SPHINCS+.

5 / 27

Motivation

Relation between SPHINCS and the SC problem
Finding a lower bound for the subset cover problem gives a
lower bounds for the security of SPHINCS(+).
An algorithm that finds a subset cover cannot directly be used
to attack SPHINCS(+).

The subset cover variations (RSC, TSC, and ITSC) are also
linked to the security of SPHINCS and SPHINCS+.

5 / 27

Motivation

Relation between SPHINCS and the SC problem
Finding a lower bound for the subset cover problem gives a
lower bounds for the security of SPHINCS(+).
An algorithm that finds a subset cover cannot directly be used
to attack SPHINCS(+).
The subset cover variations (RSC, TSC, and ITSC) are also
linked to the security of SPHINCS and SPHINCS+.

5 / 27

Context

Definition
A hash function is a function h : {0, 1}∗ → {0, 1}n.

In the Random Oracle Model (ROM), a hash function is
modelized as a random function H : X → Y .
In the Quantum Random Oracle Model (QROM), the
random function H can be queried in superposition:

O

(
∑
x ,y

αx ,y |x⟩ |y⟩
)

= ∑
x ,y

αx ,y |x⟩ |y +O(x)⟩

Our model
In our model, we have quantum access to h1, · · · , hk such that
hi : X → Y , and |Y| = N.

6 / 27

Context

Definition
A hash function is a function h : {0, 1}∗ → {0, 1}n.
In the Random Oracle Model (ROM), a hash function is
modelized as a random function H : X → Y .

In the Quantum Random Oracle Model (QROM), the
random function H can be queried in superposition:

O

(
∑
x ,y

αx ,y |x⟩ |y⟩
)

= ∑
x ,y

αx ,y |x⟩ |y +O(x)⟩

Our model
In our model, we have quantum access to h1, · · · , hk such that
hi : X → Y , and |Y| = N.

6 / 27

Context

Definition
A hash function is a function h : {0, 1}∗ → {0, 1}n.
In the Random Oracle Model (ROM), a hash function is
modelized as a random function H : X → Y .
In the Quantum Random Oracle Model (QROM), the
random function H can be queried in superposition:

O

(
∑
x ,y

αx ,y |x⟩ |y⟩
)

= ∑
x ,y

αx ,y |x⟩ |y +O(x)⟩

Our model
In our model, we have quantum access to h1, · · · , hk such that
hi : X → Y , and |Y| = N.

6 / 27

Context

Definition
A hash function is a function h : {0, 1}∗ → {0, 1}n.
In the Random Oracle Model (ROM), a hash function is
modelized as a random function H : X → Y .
In the Quantum Random Oracle Model (QROM), the
random function H can be queried in superposition:

O

(
∑
x ,y

αx ,y |x⟩ |y⟩
)

= ∑
x ,y

αx ,y |x⟩ |y +O(x)⟩

Our model
In our model, we have quantum access to h1, · · · , hk such that
hi : X → Y , and |Y| = N.

6 / 27

Subset Cover

Definition
A (r , k)-subset cover ((r , k)-SC) for h1, . . . , hk consist of r + 1
elements x0, x1, . . . , xr in domain X such that:

x0 /∈ {x1, . . . , xr}, and

{hi (x0)|1 ≤ i ≤ k} ⊆
r⋃

j=0
{hi (xj)|1 ≤ i ≤ k} .

7 / 27

Subset Cover

h1(x0)h2(x0)

h3(x0)
. . .

hk(x0)

h1(x1), h2(x1), . . . , hk(x1)
h1(x2), h2(x2), . . . , hk(x2)

...
h1(xr), h2(xr), . . . , hk(xr)

8 / 27

Subset Cover

h1(x0)

h2(x0)

h3(x0)
. . .

hk(x0)

h1(x1), h2(x1), . . . , hk(x1)
h1(x2), h2(x2), . . . , hk(x2)

...
h1(xr), h2(xr), . . . , hk(xr)

8 / 27

Subset Cover

h1(x0)h2(x0)

h3(x0)
. . .

hk(x0)

h1(x1), h2(x1), . . . , hk(x1)
h1(x2), h2(x2), . . . , hk(x2)

...
h1(xr), h2(xr), . . . , hk(xr)

8 / 27

Subset Cover

h1(x0)h2(x0)

h3(x0)

. . .
hk(x0)

h1(x1), h2(x1), . . . , hk(x1)
h1(x2), h2(x2), . . . , hk(x2)

...
h1(xr), h2(xr), . . . , hk(xr)

8 / 27

Subset Cover

h1(x0)h2(x0)

h3(x0)
. . .

hk(x0)

h1(x1), h2(x1), . . . , hk(x1)
h1(x2), h2(x2), . . . , hk(x2)

...
h1(xr), h2(xr), . . . , hk(xr)

8 / 27

Subset Cover

h1(x0)h2(x0)

h3(x0)
. . .

hk(x0)

h1(x1), h2(x1), . . . , hk(x1)
h1(x2), h2(x2), . . . , hk(x2)

...
h1(xr), h2(xr), . . . , hk(xr)

8 / 27

Restricted Subset Cover

Definition
A k-restricted subset cover (k–RSC) for h1, . . . , hk consist of k + 1
elements x0, x1, . . . , xk in domain X such that:

x0 /∈ {x1, . . . , xk}, and

h1(x0) = h1(x1),

h2(x0) = h2(x2),

...
hk(x0) = hk(xk),

9 / 27

Results on subset cover

Theorem ([YTA22])
There exists an algorithm that find a k–RSC by making

O

(
k ·N

2k−1
2k+1−1

)
queries to h1, . . . , hk .

No other work!

10 / 27

Results on subset cover

Theorem ([YTA22])
There exists an algorithm that find a k–RSC by making

O

(
k ·N

2k−1
2k+1−1

)
queries to h1, . . . , hk .

No other work!

10 / 27

Our results on k–RSC

Lower bound on k–RSC

We prove that Ω
(
k
− 2k

2k+1−1 ·N
2k−1

2k+1−1

)
quantum queries to the

idealized hash functions are needed to find a k–RSC with constant
probability.

Lower bound on 2–RSC
Given two random functions h1, h2 : X → Y where |N | = Y , a
quantum algorithm needs to make Ω(N3/7) queries to h1 and h2 to
find a 2–RSC with a constant probability.

11 / 27

Our results on k–RSC

Lower bound on k–RSC

We prove that Ω
(
k
− 2k

2k+1−1 ·N
2k−1

2k+1−1

)
quantum queries to the

idealized hash functions are needed to find a k–RSC with constant
probability.

Lower bound on 2–RSC
Given two random functions h1, h2 : X → Y where |N | = Y , a
quantum algorithm needs to make Ω(N3/7) queries to h1 and h2 to
find a 2–RSC with a constant probability.

11 / 27

Quantum information

We consider elements of a Hilbert space H of dimension 2n.

We write |0⟩ , |1⟩ , · · · , |2n − 1⟩ the computational basis.
A quantum state |ϕ⟩ is an element of H of norm 1, and can be
written:

|ϕ⟩ =
2n−1

∑
i=0

αi |i⟩ .

We write ⟨ϕ| the conjugate transpose of |ϕ⟩.
We can apply unitaries U to quantum state, and this
corresponds to doing computation.
We can measure quantum state, doing so give i with
probability |αi |2.

12 / 27

Quantum information

We consider elements of a Hilbert space H of dimension 2n.
We write |0⟩ , |1⟩ , · · · , |2n − 1⟩ the computational basis.

A quantum state |ϕ⟩ is an element of H of norm 1, and can be
written:

|ϕ⟩ =
2n−1

∑
i=0

αi |i⟩ .

We write ⟨ϕ| the conjugate transpose of |ϕ⟩.
We can apply unitaries U to quantum state, and this
corresponds to doing computation.
We can measure quantum state, doing so give i with
probability |αi |2.

12 / 27

Quantum information

We consider elements of a Hilbert space H of dimension 2n.
We write |0⟩ , |1⟩ , · · · , |2n − 1⟩ the computational basis.
A quantum state |ϕ⟩ is an element of H of norm 1, and can be
written:

|ϕ⟩ =
2n−1

∑
i=0

αi |i⟩ .

We write ⟨ϕ| the conjugate transpose of |ϕ⟩.
We can apply unitaries U to quantum state, and this
corresponds to doing computation.
We can measure quantum state, doing so give i with
probability |αi |2.

12 / 27

Quantum information

We consider elements of a Hilbert space H of dimension 2n.
We write |0⟩ , |1⟩ , · · · , |2n − 1⟩ the computational basis.
A quantum state |ϕ⟩ is an element of H of norm 1, and can be
written:

|ϕ⟩ =
2n−1

∑
i=0

αi |i⟩ .

We write ⟨ϕ| the conjugate transpose of |ϕ⟩.

We can apply unitaries U to quantum state, and this
corresponds to doing computation.
We can measure quantum state, doing so give i with
probability |αi |2.

12 / 27

Quantum information

We consider elements of a Hilbert space H of dimension 2n.
We write |0⟩ , |1⟩ , · · · , |2n − 1⟩ the computational basis.
A quantum state |ϕ⟩ is an element of H of norm 1, and can be
written:

|ϕ⟩ =
2n−1

∑
i=0

αi |i⟩ .

We write ⟨ϕ| the conjugate transpose of |ϕ⟩.
We can apply unitaries U to quantum state, and this
corresponds to doing computation.

We can measure quantum state, doing so give i with
probability |αi |2.

12 / 27

Quantum information

We consider elements of a Hilbert space H of dimension 2n.
We write |0⟩ , |1⟩ , · · · , |2n − 1⟩ the computational basis.
A quantum state |ϕ⟩ is an element of H of norm 1, and can be
written:

|ϕ⟩ =
2n−1

∑
i=0

αi |i⟩ .

We write ⟨ϕ| the conjugate transpose of |ϕ⟩.
We can apply unitaries U to quantum state, and this
corresponds to doing computation.
We can measure quantum state, doing so give i with
probability |αi |2.

12 / 27

Quantum Fourier Transform

QFT
The Quantum Fourier Transform is a unitary that, given an input
state |k⟩, outputs:

1
2n/2

2n−1

∑
ℓ=0

ωkℓ
n |k⟩ ,

where ωn = e2πi/2n .

This unitary can be efficiently implemented, and we write it
QFT.
Applying the QFT to the computational basis |0⟩ , . . . , |N⟩
yields the Fourier basis

∣∣0̂〉 , . . . ,
∣∣∣N̂〉.

In particular, we have that:

∣∣0̂〉 = 1
2n/2

2n−1

∑
ℓ=0
|ℓ⟩ .

13 / 27

Quantum Fourier Transform

QFT
The Quantum Fourier Transform is a unitary that, given an input
state |k⟩, outputs:

1
2n/2

2n−1

∑
ℓ=0

ωkℓ
n |k⟩ ,

where ωn = e2πi/2n .
This unitary can be efficiently implemented, and we write it
QFT.

Applying the QFT to the computational basis |0⟩ , . . . , |N⟩
yields the Fourier basis

∣∣0̂〉 , . . . ,
∣∣∣N̂〉.

In particular, we have that:

∣∣0̂〉 = 1
2n/2

2n−1

∑
ℓ=0
|ℓ⟩ .

13 / 27

Quantum Fourier Transform

QFT
The Quantum Fourier Transform is a unitary that, given an input
state |k⟩, outputs:

1
2n/2

2n−1

∑
ℓ=0

ωkℓ
n |k⟩ ,

where ωn = e2πi/2n .
This unitary can be efficiently implemented, and we write it
QFT.
Applying the QFT to the computational basis |0⟩ , . . . , |N⟩
yields the Fourier basis

∣∣0̂〉 , . . . ,
∣∣∣N̂〉.

In particular, we have that:

∣∣0̂〉 = 1
2n/2

2n−1

∑
ℓ=0
|ℓ⟩ .

13 / 27

Quantum Fourier Transform

QFT
The Quantum Fourier Transform is a unitary that, given an input
state |k⟩, outputs:

1
2n/2

2n−1

∑
ℓ=0

ωkℓ
n |k⟩ ,

where ωn = e2πi/2n .
This unitary can be efficiently implemented, and we write it
QFT.
Applying the QFT to the computational basis |0⟩ , . . . , |N⟩
yields the Fourier basis

∣∣0̂〉 , . . . ,
∣∣∣N̂〉.

In particular, we have that:

∣∣0̂〉 = 1
2n/2

2n−1

∑
ℓ=0
|ℓ⟩ .

13 / 27

Compressed Random Oracle

When making a query in the QROM:

StO

(
∑
x ,y

αx ,y |x⟩ |y⟩
)

= ∑
x ,y

αx ,y |x⟩ |y +O(x)⟩

We add a new register, for the database: |D⟩. We write D the
set of all possible database.

|D⟩ is initially equal the uniform supersition:

∑
D∈D

1
|D| |D⟩

When we make a query:

O

(
∑

x ,y ,D

αx ,y ,D |x⟩ |y⟩ |D⟩
)

= ∑
x ,y ,D

αx ,y ,D |x⟩ |y⟩ |D ⊕ (x , y)⟩

14 / 27

Compressed Random Oracle

When making a query in the QROM:

StO

(
∑
x ,y

αx ,y |x⟩ |y⟩
)

= ∑
x ,y

αx ,y |x⟩ |y +O(x)⟩

We add a new register, for the database: |D⟩. We write D the
set of all possible database.

|D⟩ is initially equal the uniform supersition:

∑
D∈D

1
|D| |D⟩

When we make a query:

O

(
∑

x ,y ,D

αx ,y ,D |x⟩ |y⟩ |D⟩
)

= ∑
x ,y ,D

αx ,y ,D |x⟩ |y⟩ |D ⊕ (x , y)⟩

14 / 27

Compressed Random Oracle

When making a query in the QROM:

StO

(
∑
x ,y

αx ,y |x⟩ |y⟩
)

= ∑
x ,y

αx ,y |x⟩ |y +O(x)⟩

We add a new register, for the database: |D⟩. We write D the
set of all possible database.

|D⟩ is initially equal the uniform supersition:

∑
D∈D

1
|D| |D⟩

When we make a query:

O

(
∑

x ,y ,D

αx ,y ,D |x⟩ |y⟩ |D⟩
)

= ∑
x ,y ,D

αx ,y ,D |x⟩ |y⟩ |D ⊕ (x , y)⟩

14 / 27

Compressed Random Oracle

When making a query in the QROM:

StO

(
∑
x ,y

αx ,y |x⟩ |y⟩
)

= ∑
x ,y

αx ,y |x⟩ |y +O(x)⟩

We add a new register, for the database: |D⟩. We write D the
set of all possible database.

|D⟩ is initially equal the uniform supersition:

∑
D∈D

1
|D| |D⟩

When we make a query:

O

(
∑

x ,y ,D

αx ,y ,D |x⟩ |y⟩ |D⟩
)

= ∑
x ,y ,D

αx ,y ,D |x⟩ |y⟩ |D ⊕ (x , y)⟩

14 / 27

Compressed Random Oracle

Compression part
We apply the compression operator in the Fourier basis

Comp =
⊗
x

|⊥⟩ 〈0̂∣∣+ ∑
y :y ̸=0̂

|y⟩ ⟨y |

 ,

where ⊥ is a new symbol and
∣∣0̂〉 = ∑2n−1

i=0
1
2n |i⟩ is the uniform

superposition.

The full Oracle

cO = Comp ◦O ◦ Comp†

15 / 27

Compressed Random Oracle

Compression part
We apply the compression operator in the Fourier basis

Comp =
⊗
x

|⊥⟩ 〈0̂∣∣+ ∑
y :y ̸=0̂

|y⟩ ⟨y |

 ,

where ⊥ is a new symbol and
∣∣0̂〉 = ∑2n−1

i=0
1
2n |i⟩ is the uniform

superposition.

The full Oracle

cO = Comp ◦O ◦ Comp†

15 / 27

Compressed Random Oracle

Description
After q queries the state of the database can be described with q
vectors.

Lemma (Zhandry)

Let A be an algorithm that makes k queries to a random oracle
H : X → Y . Then, the compressed random oracle technique
simulates H with an error at most

√
k
|Y| .

This essentially corresponds to on-the-fly simulation of H.

16 / 27

Using CROM to compute lower bounds

Database properties
A database property P is a subset of D.
For example, Ppre−image = {D |∃x ∈ D,H(x) = 0}.
Any database property P can be seen as a projector on D, as
follows:

∑
d∈P
|d⟩ ⟨d |

Computing lower bounds

If we write |ϕi ⟩ = cOUqcOUq−1 . . . cOU1 |0⟩⊗n the state of an
algorithm A after i queries to the oracle, we want to bound:

|P |ϕi ⟩ | ≤ f (i)

Thus f −1(i) queries to H are necessary to find a database that
satisfies property P .

17 / 27

Using CROM to compute lower bounds

Database properties
A database property P is a subset of D.
For example, Ppre−image = {D |∃x ∈ D,H(x) = 0}.
Any database property P can be seen as a projector on D, as
follows:

∑
d∈P
|d⟩ ⟨d |

Computing lower bounds

If we write |ϕi ⟩ = cOUqcOUq−1 . . . cOU1 |0⟩⊗n the state of an
algorithm A after i queries to the oracle, we want to bound:

|P |ϕi ⟩ | ≤ f (i)

Thus f −1(i) queries to H are necessary to find a database that
satisfies property P .

17 / 27

Sketch of the proof

Lower bound on 2–RSC
Given two random functions h1, h2 : X → Y where |N | = Y , a
quantum algorithm needs to make Ω(N3/7) queries to h1 and h2 to
find a 2–RSC with a constant probability.

Database properties

P2 as the set of databases that contain a 2-RSC.
P ′ℓ as the set of databases that contain at least ℓ distinct
collisions on h1.

Writing |ψi ⟩ the state after the i th query to H = (h1, h2), our goal
is to bound |P2 |ψi ⟩|.

18 / 27

Sketch of the proof

Lower bound on 2–RSC
Given two random functions h1, h2 : X → Y where |N | = Y , a
quantum algorithm needs to make Ω(N3/7) queries to h1 and h2 to
find a 2–RSC with a constant probability.

Database properties
P2 as the set of databases that contain a 2-RSC.

P ′ℓ as the set of databases that contain at least ℓ distinct
collisions on h1.

Writing |ψi ⟩ the state after the i th query to H = (h1, h2), our goal
is to bound |P2 |ψi ⟩|.

18 / 27

Sketch of the proof

Lower bound on 2–RSC
Given two random functions h1, h2 : X → Y where |N | = Y , a
quantum algorithm needs to make Ω(N3/7) queries to h1 and h2 to
find a 2–RSC with a constant probability.

Database properties
P2 as the set of databases that contain a 2-RSC.
P ′ℓ as the set of databases that contain at least ℓ distinct
collisions on h1.

Writing |ψi ⟩ the state after the i th query to H = (h1, h2), our goal
is to bound |P2 |ψi ⟩|.

18 / 27

Sketch of the proof

Lower bound on 2–RSC
Given two random functions h1, h2 : X → Y where |N | = Y , a
quantum algorithm needs to make Ω(N3/7) queries to h1 and h2 to
find a 2–RSC with a constant probability.

Database properties
P2 as the set of databases that contain a 2-RSC.
P ′ℓ as the set of databases that contain at least ℓ distinct
collisions on h1.

Writing |ψi ⟩ the state after the i th query to H = (h1, h2), our goal
is to bound |P2 |ψi ⟩|.

18 / 27

Sketch of the proof

Claim
We have that:

|P2 |ψi ⟩| ≤ |P2 |ψi−1⟩|+ |P2cO(I − P2) |ψi−1⟩)| .

|P2cO(I − P2) |ψi−1⟩|

=

∣∣∣∣∣∣P2cO ∑
x ,y

D : no 2–RSC

αx ,y ,D |x , y ,D⟩

∣∣∣∣∣∣

=

∣∣∣∣∣∣P2 ∑
x ,y

D : no 2–RSC

1√
N2 ∑

y ′
ωyy ′

n αx ,y ,D

∣∣x , y ,D ⊕ (x , y ′)
〉∣∣∣∣∣∣

=

∣∣∣∣∣∣∑y ′ ∑
x ,y

D : no 2–RSC

ωyy ′
n αx ,y ,D√

N2
· P2

∣∣x , y ,D ⊕ (x , y ′)
〉∣∣∣∣∣∣ .

19 / 27

Sketch of the proof

Claim
We have that:

|P2 |ψi ⟩| ≤ |P2 |ψi−1⟩|+ |P2cO(I − P2) |ψi−1⟩)| .

|P2cO(I − P2) |ψi−1⟩|

=

∣∣∣∣∣∣P2cO ∑
x ,y

D : no 2–RSC

αx ,y ,D |x , y ,D⟩

∣∣∣∣∣∣

=

∣∣∣∣∣∣P2 ∑
x ,y

D : no 2–RSC

1√
N2 ∑

y ′
ωyy ′

n αx ,y ,D

∣∣x , y ,D ⊕ (x , y ′)
〉∣∣∣∣∣∣

=

∣∣∣∣∣∣∑y ′ ∑
x ,y

D : no 2–RSC

ωyy ′
n αx ,y ,D√

N2
· P2

∣∣x , y ,D ⊕ (x , y ′)
〉∣∣∣∣∣∣ .

19 / 27

Sketch of the proof

Claim
We have that:

|P2 |ψi ⟩| ≤ |P2 |ψi−1⟩|+ |P2cO(I − P2) |ψi−1⟩)| .

|P2cO(I − P2) |ψi−1⟩|

=

∣∣∣∣∣∣P2cO ∑
x ,y

D : no 2–RSC

αx ,y ,D |x , y ,D⟩

∣∣∣∣∣∣
=

∣∣∣∣∣∣P2 ∑
x ,y

D : no 2–RSC

1√
N2 ∑

y ′
ωyy ′

n αx ,y ,D

∣∣x , y ,D ⊕ (x , y ′)
〉∣∣∣∣∣∣

=

∣∣∣∣∣∣∑y ′ ∑
x ,y

D : no 2–RSC

ωyy ′
n αx ,y ,D√

N2
· P2

∣∣x , y ,D ⊕ (x , y ′)
〉∣∣∣∣∣∣ .

19 / 27

Sketch of the proof

Claim
We have that:

|P2 |ψi ⟩| ≤ |P2 |ψi−1⟩|+ |P2cO(I − P2) |ψi−1⟩)| .

|P2cO(I − P2) |ψi−1⟩|

=

∣∣∣∣∣∣P2cO ∑
x ,y

D : no 2–RSC

αx ,y ,D |x , y ,D⟩

∣∣∣∣∣∣
=

∣∣∣∣∣∣P2 ∑
x ,y

D : no 2–RSC

1√
N2 ∑

y ′
ωyy ′

n αx ,y ,D

∣∣x , y ,D ⊕ (x , y ′)
〉∣∣∣∣∣∣

=

∣∣∣∣∣∣∑y ′ ∑
x ,y

D : no 2–RSC

ωyy ′
n αx ,y ,D√

N2
· P2

∣∣x , y ,D ⊕ (x , y ′)
〉∣∣∣∣∣∣ .

19 / 27

Sketch of the proof

2-RSC
Recall that a 2–RSC consist of x0, x1, x2 such that:

h1(x0) = h1(x1)

h2(x0) = h2(x2)

We have three possible ways to get from D that does not have a
2–RSC to D ⊕ (x , y ′) that has a 2–RSC:

x = x2 or x = x1

x = x0

20 / 27

Sketch of the proof

2-RSC
Recall that a 2–RSC consist of x0, x1, x2 such that:

h1(x0) = h1(x1)

h2(x0) = h2(x2)

We have three possible ways to get from D that does not have a
2–RSC to D ⊕ (x , y ′) that has a 2–RSC:

x = x2 or x = x1

x = x0

20 / 27

Sketch of the proof

2-RSC
Recall that a 2–RSC consist of x0, x1, x2 such that:

h1(x0) = h1(x1) ← There must be a collision in the database
h2(x0) = h2(x2) ← We need a new collision there

We have three possible ways to get from D that does not have a
2–RSC to D ⊕ (x , y ′) that has a 2–RSC:

x = x2 or x = x1

x = x0

20 / 27

Sketch of the proof

2-RSC
Recall that a 2–RSC consist of x0, x1, x2 such that:

h1(x0) = h1(x1) ← There must be a collision in the database
h2(x0) = h2(x2) ← We need a new collision there

We have three possible ways to get from D that does not have a
2–RSC to D ⊕ (x , y ′) that has a 2–RSC:

x = x2 or x = x1

x = x0

If there are ℓ collisions on h1, there are ℓ values of y ′ such that
D ⊕ (x , y ′) has a 2–RSC.

20 / 27

Sketch of the proof

2-RSC
Recall that a 2–RSC consist of x0, x1, x2 such that:

h1(x0) = h1(x1) ← We need a new collision there
h2(x0) = h2(x2) ← We need a new collision there

We have three possible ways to get from D that does not have a
2–RSC to D ⊕ (x , y ′) that has a 2–RSC:

x = x2 or x = x1

x = x0

20 / 27

Sketch of the proof

2-RSC
Recall that a 2–RSC consist of x0, x1, x2 such that:

h1(x0) = h1(x1) ← We need a new collision there
h2(x0) = h2(x2) ← We need a new collision there

We have three possible ways to get from D that does not have a
2–RSC to D ⊕ (x , y ′) that has a 2–RSC:

x = x2 or x = x1

x = x0

There are (i − 1)2 values of y ′ such that D ⊕ (x , y ′) has a 2–RSC.

20 / 27

Sketch of the proof

Thus,

|P2cO(I − P2) |ψi−1⟩| ≤
√

2 · ∑
ℓ≥0

ℓ

N

∣∣P ′ℓ |ψi−1⟩
∣∣2 + i − 1

N

Giving:

|P2 |ψi ⟩| ≤ |P2 |ψi−1⟩|+
√

2 ∑
ℓ≥0

ℓ

N

∣∣P ′ℓ |ψi−1⟩
∣∣2 + i − 1

N

≤ . . .

≤
i−1

∑
s=0

(√
2 ∑
ℓ≥0

ℓ

N

∣∣P ′ℓ |ψs⟩
∣∣2 + ℓ

N

)
.

21 / 27

Sketch of the proof

Thus,

|P2cO(I − P2) |ψi−1⟩| ≤
√

2 · ∑
ℓ≥0

ℓ

N

∣∣P ′ℓ |ψi−1⟩
∣∣2 + i − 1

N

Giving:

|P2 |ψi ⟩| ≤ |P2 |ψi−1⟩|+
√

2 ∑
ℓ≥0

ℓ

N

∣∣P ′ℓ |ψi−1⟩
∣∣2 + i − 1

N

≤ . . .

≤
i−1

∑
s=0

(√
2 ∑
ℓ≥0

ℓ

N

∣∣P ′ℓ |ψs⟩
∣∣2 + ℓ

N

)
.

21 / 27

Sketch of the proof

Thus,

|P2cO(I − P2) |ψi−1⟩| ≤
√

2 · ∑
ℓ≥0

ℓ

N

∣∣P ′ℓ |ψi−1⟩
∣∣2 + i − 1

N

Giving:

|P2 |ψi ⟩| ≤ |P2 |ψi−1⟩|+
√

2 ∑
ℓ≥0

ℓ

N

∣∣P ′ℓ |ψi−1⟩
∣∣2 + i − 1

N

≤ . . .

≤
i−1

∑
s=0

(√
2 ∑
ℓ≥0

ℓ

N

∣∣P ′ℓ |ψs⟩
∣∣2 + ℓ

N

)
.

21 / 27

Sketch of the proof

Lemma
For every i ∈N, we have that:

|P2 |ψi ⟩| ≤ 4
√
e
i7/4

N3/4 + 4
i2

N
+O(N−1/48).

So when i = o(N3/7), we have gi = o(1). Hence if we want gi no
to be constant, i.e. not o(1), we must have i = Ω

(
N3/7).

Lower bound on 2–RSC
Given two random functions h1, h2 : X → Y where |N | = Y , a
quantum algorithm needs to make Ω(N3/7) queries to h1 and h2 to
find a 2–RSC with a constant probability.

22 / 27

Sketch of the proof

Lemma
For every i ∈N, we have that:

|P2 |ψi ⟩| ≤ 4
√
e
i7/4

N3/4 + 4
i2

N
+O(N−1/48).

So when i = o(N3/7), we have gi = o(1). Hence if we want gi no
to be constant, i.e. not o(1), we must have i = Ω

(
N3/7).

Lower bound on 2–RSC
Given two random functions h1, h2 : X → Y where |N | = Y , a
quantum algorithm needs to make Ω(N3/7) queries to h1 and h2 to
find a 2–RSC with a constant probability.

22 / 27

Sketch of the proof

Lemma
For every i ∈N, we have that:

|P2 |ψi ⟩| ≤ 4
√
e
i7/4

N3/4 + 4
i2

N
+O(N−1/48).

So when i = o(N3/7), we have gi = o(1). Hence if we want gi no
to be constant, i.e. not o(1), we must have i = Ω

(
N3/7).

Lower bound on 2–RSC
Given two random functions h1, h2 : X → Y where |N | = Y , a
quantum algorithm needs to make Ω(N3/7) queries to h1 and h2 to
find a 2–RSC with a constant probability.

22 / 27

Results on (r , k)–SC

Lower bound on (1, k)–SC

We prove that Ω
(
(k !)−1/5 ·Nk/5) quantum queries to the

idealized hash functions are needed to find a (1, k)–SC with
constant probability.

Upper bound on (r , k)–SC
We design an algorithm that finds a (r , k)–SC with constant
probability by making O

(
Nk/(2+2r)

)
queries to the hash functions.

23 / 27

Results on (r , k)–SC

Lower bound on (1, k)–SC

We prove that Ω
(
(k !)−1/5 ·Nk/5) quantum queries to the

idealized hash functions are needed to find a (1, k)–SC with
constant probability.

Upper bound on (r , k)–SC
We design an algorithm that finds a (r , k)–SC with constant
probability by making O

(
Nk/(2+2r)

)
queries to the hash functions.

23 / 27

Grover’s algorithm

Definition (Search problem)
We are given a function F : X → {0, 1}. The search problem
consists of finding an x ∈ X such that F (x) = 1, in the least
amount of queries to F possible.

Theorem

Let F : X → {0, 1} be a function, t = |{x |F (x) = 1}|, and
N = |X |. Then, Grover’s algorithm finds an x such that F (x) = 1

with constant probability with O

(√
N
t

)
queries to F. Moreover,

this algorithm is optimal.

24 / 27

Our algorithm

Algorithm for finding a (r , k)–SC

Input: t ∈N, k ′ ∈N.
1 Execute the (r − 1, k ′)–SC algorithm t times to find t distinct

(r − 1, k ′)–SC in h1, . . . , hk ′ .
Let T be the set of these (r − 1, k ′)–SC.

2 Define F : X → {0, 1} as follows:

F (x) =


1, if there exists (x0, x1, . . . , xr−1) ∈ T such that
∀1 ≤ m ≤ k − k ′, hm(x) = hk ′+m(x0),

0, otherwise.

3 Execute Grover’s algorithm to find an x such that F (x) = 1
4 Find (x0, x1, . . . , xr−1) in T and output (x0, x1, . . . , xr−1, x).

25 / 27

Our algorithm

Algorithm for finding a (r , k)–SC

Input: t ∈N, k ′ ∈N.
1 Execute the (r − 1, k ′)–SC algorithm t times to find t distinct

(r − 1, k ′)–SC in h1, . . . , hk ′ .
Let T be the set of these (r − 1, k ′)–SC.

2 Define F : X → {0, 1} as follows:

F (x) =


1, if there exists (x0, x1, . . . , xr−1) ∈ T such that
∀1 ≤ m ≤ k − k ′, hm(x) = hk ′+m(x0),

0, otherwise.

3 Execute Grover’s algorithm to find an x such that F (x) = 1
4 Find (x0, x1, . . . , xr−1) in T and output (x0, x1, . . . , xr−1, x).

25 / 27

Our algorithm

Algorithm for finding a (r , k)–SC

Input: t ∈N, k ′ ∈N.
1 Execute the (r − 1, k ′)–SC algorithm t times to find t distinct

(r − 1, k ′)–SC in h1, . . . , hk ′ .
Let T be the set of these (r − 1, k ′)–SC.

2 Define F : X → {0, 1} as follows:

F (x) =


1, if there exists (x0, x1, . . . , xr−1) ∈ T such that
∀1 ≤ m ≤ k − k ′, hm(x) = hk ′+m(x0),

0, otherwise.

3 Execute Grover’s algorithm to find an x such that F (x) = 1

4 Find (x0, x1, . . . , xr−1) in T and output (x0, x1, . . . , xr−1, x).

25 / 27

Our algorithm

Algorithm for finding a (r , k)–SC

Input: t ∈N, k ′ ∈N.
1 Execute the (r − 1, k ′)–SC algorithm t times to find t distinct

(r − 1, k ′)–SC in h1, . . . , hk ′ .
Let T be the set of these (r − 1, k ′)–SC.

2 Define F : X → {0, 1} as follows:

F (x) =


1, if there exists (x0, x1, . . . , xr−1) ∈ T such that
∀1 ≤ m ≤ k − k ′, hm(x) = hk ′+m(x0),

0, otherwise.

3 Execute Grover’s algorithm to find an x such that F (x) = 1
4 Find (x0, x1, . . . , xr−1) in T and output (x0, x1, . . . , xr−1, x).

25 / 27

Summary of our results

Problem Lower bound Upper bound Tight?

k-RSC Ω
(
N

2k−1
2k+1−1

)
O

(
N

2k−1
2k+1−1

)
Yes

(1, k)-SC Ω
(
Nk/5) O

(
Nk/4) No

(r , k)-SC ? O
(
Nk/(2+2r)

)
-

(r , k)-TSC Ω
(
N

2k−1
2k+1−1

)
? -

(r , k)-ITSC Ω
(
N

2k−1
2k+1−1

)
? -

State of the art
Our contribution
Relationship between the problems

26 / 27

Conclusion

Open questions
Can we close the gap for k-RSC when k is not a constant ?

Can we close the gap for (1, k)-SC ?
Can we find a lower bound for (r , k)-SC when r ≥ 2 ?
Can we have more precise analysis of the problems (r , k)-TSC
and (r , k)-ITSC ?

Thank you for your attention!

27 / 27

Conclusion

Open questions
Can we close the gap for k-RSC when k is not a constant ?
Can we close the gap for (1, k)-SC ?

Can we find a lower bound for (r , k)-SC when r ≥ 2 ?
Can we have more precise analysis of the problems (r , k)-TSC
and (r , k)-ITSC ?

Thank you for your attention!

27 / 27

Conclusion

Open questions
Can we close the gap for k-RSC when k is not a constant ?
Can we close the gap for (1, k)-SC ?
Can we find a lower bound for (r , k)-SC when r ≥ 2 ?

Can we have more precise analysis of the problems (r , k)-TSC
and (r , k)-ITSC ?

Thank you for your attention!

27 / 27

Conclusion

Open questions
Can we close the gap for k-RSC when k is not a constant ?
Can we close the gap for (1, k)-SC ?
Can we find a lower bound for (r , k)-SC when r ≥ 2 ?
Can we have more precise analysis of the problems (r , k)-TSC
and (r , k)-ITSC ?

Thank you for your attention!

27 / 27

Conclusion

Open questions
Can we close the gap for k-RSC when k is not a constant ?
Can we close the gap for (1, k)-SC ?
Can we find a lower bound for (r , k)-SC when r ≥ 2 ?
Can we have more precise analysis of the problems (r , k)-TSC
and (r , k)-ITSC ?

Thank you for your attention!

27 / 27

Bibliography

Samuel Bouaziz-Ermann, Alex B. Grilo, and Damien Vergnaud.
Quantum security of subset cover problems.
Cryptology ePrint Archive, Paper 2022/1474, 2022.
https://eprint.iacr.org/2022/1474.

Qipeng Liu and Mark Zhandry.
On finding quantum multi-collisions.
In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part III,
volume 11478 of LNCS, pages 189–218. Springer, Heidelberg, May 2019.

Quan Yuan, Mehdi Tibouchi, and Masayuki Abe.
On subset-resilient hash function families.
Designs, Codes and Cryptography, 90, 03 2022.

27 / 27

https://eprint.iacr.org/2022/1474

	Motivation
	Context
	Definitions
	State of the art
	Lower bounds (sketch of the proof)
	Upper bounds
	Summary of our results
	Open question
	Bibliography

