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Motivation

Relation between SPHINCS and the SC problem

Finding a lower bound for the subset cover problem gives a
lower bounds for the security of SPHINCS(+).
An algorithm that finds a subset cover cannot directly be used
to attack SPHINCS(+).
The subset cover variations (RSC, TSC, and ITSC) are also
linked to the security of SPHINCS and SPHINCS+.
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Context

Definition
A hash function is a function h : {0, 1}∗ → {0, 1}n.

In the Random Oracle Model (ROM), a hash function is
modelized as a random function H : X → Y .
In the Quantum Random Oracle Model (QROM), the
random function H can be queried in superposition:

O

(
∑
x ,y

αx ,y |x⟩ |y⟩
)

= ∑
x ,y

αx ,y |x⟩ |y +O(x)⟩

Our model
In our model, we have quantum access to h1, · · · , hk such that
hi : X → Y , and |Y| = N.
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Subset Cover

Definition
A (r , k)-subset cover ((r , k)-SC) for h1, . . . , hk consist of r + 1
elements x0, x1, . . . , xr in domain X such that:

x0 /∈ {x1, . . . , xr}, and

{hi (x0)|1 ≤ i ≤ k} ⊆
r⋃

j=0
{hi (xj )|1 ≤ i ≤ k} .
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Subset Cover

h1(x0)h2(x0)

h3(x0)
. . .

hk(x0)

h1(x1), h2(x1), . . . , hk(x1)
h1(x2), h2(x2), . . . , hk(x2)

...
h1(xr ), h2(xr ), . . . , hk(xr )
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Restricted Subset Cover

Definition
A k-restricted subset cover (k–RSC) for h1, . . . , hk consist of k + 1
elements x0, x1, . . . , xk in domain X such that:

x0 /∈ {x1, . . . , xk}, and

h1(x0) = h1(x1),

h2(x0) = h2(x2),

...
hk(x0) = hk(xk),

9 / 27



Results on subset cover

Theorem ([YTA22])
There exists an algorithm that find a k–RSC by making

O

(
k ·N

2k−1
2k+1−1

)
queries to h1, . . . , hk .

No other work!
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Our results on k–RSC

Lower bound on k–RSC

We prove that Ω
(
k
− 2k

2k+1−1 ·N
2k−1

2k+1−1

)
quantum queries to the

idealized hash functions are needed to find a k–RSC with constant
probability.

Lower bound on 2–RSC
Given two random functions h1, h2 : X → Y where |N | = Y , a
quantum algorithm needs to make Ω(N3/7) queries to h1 and h2 to
find a 2–RSC with a constant probability.
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Quantum information

We consider elements of a Hilbert space H of dimension 2n.

We write |0⟩ , |1⟩ , · · · , |2n − 1⟩ the computational basis.
A quantum state |ϕ⟩ is an element of H of norm 1, and can be
written:

|ϕ⟩ =
2n−1

∑
i=0

αi |i⟩ .

We write ⟨ϕ| the conjugate transpose of |ϕ⟩.
We can apply unitaries U to quantum state, and this
corresponds to doing computation.
We can measure quantum state, doing so give i with
probability |αi |2.
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Quantum Fourier Transform

QFT
The Quantum Fourier Transform is a unitary that, given an input
state |k⟩, outputs:

1
2n/2

2n−1

∑
ℓ=0

ωkℓ
n |k⟩ ,

where ωn = e2πi/2n .

This unitary can be efficiently implemented, and we write it
QFT.
Applying the QFT to the computational basis |0⟩ , . . . , |N⟩
yields the Fourier basis

∣∣0̂〉 , . . . ,
∣∣∣N̂〉.

In particular, we have that:

∣∣0̂〉 = 1
2n/2

2n−1

∑
ℓ=0
|ℓ⟩ .
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Compressed Random Oracle

When making a query in the QROM:

StO

(
∑
x ,y

αx ,y |x⟩ |y⟩
)

= ∑
x ,y

αx ,y |x⟩ |y +O(x)⟩

We add a new register, for the database: |D⟩. We write D the
set of all possible database.

|D⟩ is initially equal the uniform supersition:

∑
D∈D

1
|D| |D⟩

When we make a query:

O

(
∑

x ,y ,D

αx ,y ,D |x⟩ |y⟩ |D⟩
)

= ∑
x ,y ,D

αx ,y ,D |x⟩ |y⟩ |D ⊕ (x , y)⟩
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Compressed Random Oracle

Compression part
We apply the compression operator in the Fourier basis

Comp =
⊗
x

|⊥⟩ 〈0̂∣∣+ ∑
y :y ̸=0̂

|y⟩ ⟨y |

 ,

where ⊥ is a new symbol and
∣∣0̂〉 = ∑2n−1

i=0
1
2n |i⟩ is the uniform

superposition.

The full Oracle

cO = Comp ◦O ◦ Comp†
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Compressed Random Oracle

Description
After q queries the state of the database can be described with q
vectors.

Lemma (Zhandry)

Let A be an algorithm that makes k queries to a random oracle
H : X → Y . Then, the compressed random oracle technique
simulates H with an error at most

√
k
|Y| .

This essentially corresponds to on-the-fly simulation of H.

16 / 27



Using CROM to compute lower bounds

Database properties
A database property P is a subset of D.
For example, Ppre−image = {D |∃x ∈ D,H(x) = 0}.
Any database property P can be seen as a projector on D, as
follows:

∑
d∈P
|d⟩ ⟨d |

Computing lower bounds

If we write |ϕi ⟩ = cOUqcOUq−1 . . . cOU1 |0⟩⊗n the state of an
algorithm A after i queries to the oracle, we want to bound:

|P |ϕi ⟩ | ≤ f (i)

Thus f −1(i) queries to H are necessary to find a database that
satisfies property P .
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Sketch of the proof

Lower bound on 2–RSC
Given two random functions h1, h2 : X → Y where |N | = Y , a
quantum algorithm needs to make Ω(N3/7) queries to h1 and h2 to
find a 2–RSC with a constant probability.

Database properties

P2 as the set of databases that contain a 2-RSC.
P ′ℓ as the set of databases that contain at least ℓ distinct
collisions on h1.

Writing |ψi ⟩ the state after the i th query to H = (h1, h2), our goal
is to bound |P2 |ψi ⟩|.
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Sketch of the proof

Claim
We have that:

|P2 |ψi ⟩| ≤ |P2 |ψi−1⟩|+ |P2cO(I − P2) |ψi−1⟩)| .

|P2cO(I − P2) |ψi−1⟩|

=

∣∣∣∣∣∣P2cO ∑
x ,y

D : no 2–RSC

αx ,y ,D |x , y ,D⟩

∣∣∣∣∣∣

=

∣∣∣∣∣∣P2 ∑
x ,y

D : no 2–RSC

1√
N2 ∑

y ′
ωyy ′

n αx ,y ,D

∣∣x , y ,D ⊕ (x , y ′)
〉∣∣∣∣∣∣

=

∣∣∣∣∣∣∑y ′ ∑
x ,y

D : no 2–RSC
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Sketch of the proof

2-RSC
Recall that a 2–RSC consist of x0, x1, x2 such that:

h1(x0) = h1(x1)

h2(x0) = h2(x2)

We have three possible ways to get from D that does not have a
2–RSC to D ⊕ (x , y ′) that has a 2–RSC:

x = x2 or x = x1

x = x0
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We have three possible ways to get from D that does not have a
2–RSC to D ⊕ (x , y ′) that has a 2–RSC:

x = x2 or x = x1

x = x0

If there are ℓ collisions on h1, there are ℓ values of y ′ such that
D ⊕ (x , y ′) has a 2–RSC.
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Sketch of the proof

Thus,

|P2cO(I − P2) |ψi−1⟩| ≤
√

2 · ∑
ℓ≥0

ℓ

N

∣∣P ′ℓ |ψi−1⟩
∣∣2 + i − 1

N

Giving:

|P2 |ψi ⟩| ≤ |P2 |ψi−1⟩|+
√

2 ∑
ℓ≥0

ℓ

N

∣∣P ′ℓ |ψi−1⟩
∣∣2 + i − 1

N

≤ . . .

≤
i−1

∑
s=0

(√
2 ∑
ℓ≥0

ℓ

N

∣∣P ′ℓ |ψs⟩
∣∣2 + ℓ

N

)
.
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Sketch of the proof

Lemma
For every i ∈N, we have that:

|P2 |ψi ⟩| ≤ 4
√
e
i7/4

N3/4 + 4
i2

N
+O(N−1/48).

So when i = o(N3/7), we have gi = o(1). Hence if we want gi no
to be constant, i.e. not o(1), we must have i = Ω

(
N3/7).

Lower bound on 2–RSC
Given two random functions h1, h2 : X → Y where |N | = Y , a
quantum algorithm needs to make Ω(N3/7) queries to h1 and h2 to
find a 2–RSC with a constant probability.
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Results on (r , k)–SC

Lower bound on (1, k)–SC

We prove that Ω
(
(k !)−1/5 ·Nk/5) quantum queries to the

idealized hash functions are needed to find a (1, k)–SC with
constant probability.

Upper bound on (r , k)–SC
We design an algorithm that finds a (r , k)–SC with constant
probability by making O

(
Nk/(2+2r )

)
queries to the hash functions.

23 / 27



Results on (r , k)–SC

Lower bound on (1, k)–SC

We prove that Ω
(
(k !)−1/5 ·Nk/5) quantum queries to the

idealized hash functions are needed to find a (1, k)–SC with
constant probability.

Upper bound on (r , k)–SC
We design an algorithm that finds a (r , k)–SC with constant
probability by making O

(
Nk/(2+2r )

)
queries to the hash functions.

23 / 27



Grover’s algorithm

Definition (Search problem)
We are given a function F : X → {0, 1}. The search problem
consists of finding an x ∈ X such that F (x) = 1, in the least
amount of queries to F possible.

Theorem

Let F : X → {0, 1} be a function, t = |{x |F (x) = 1}|, and
N = |X |. Then, Grover’s algorithm finds an x such that F (x) = 1

with constant probability with O

(√
N
t

)
queries to F. Moreover,

this algorithm is optimal.
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Our algorithm

Algorithm for finding a (r , k)–SC

Input: t ∈N, k ′ ∈N.
1 Execute the (r − 1, k ′)–SC algorithm t times to find t distinct

(r − 1, k ′)–SC in h1, . . . , hk ′ .
Let T be the set of these (r − 1, k ′)–SC.

2 Define F : X → {0, 1} as follows:

F (x) =


1, if there exists (x0, x1, . . . , xr−1) ∈ T such that
∀1 ≤ m ≤ k − k ′, hm(x) = hk ′+m(x0),

0, otherwise.

3 Execute Grover’s algorithm to find an x such that F (x) = 1
4 Find (x0, x1, . . . , xr−1) in T and output (x0, x1, . . . , xr−1, x).
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Summary of our results

Problem Lower bound Upper bound Tight?

k-RSC Ω
(
N

2k−1
2k+1−1

)
O

(
N

2k−1
2k+1−1

)
Yes

(1, k)-SC Ω
(
Nk/5) O

(
Nk/4) No

(r , k)-SC ? O
(
Nk/(2+2r )

)
-

(r , k)-TSC Ω
(
N

2k−1
2k+1−1

)
? -

(r , k)-ITSC Ω
(
N

2k−1
2k+1−1

)
? -

State of the art
Our contribution
Relationship between the problems
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Conclusion

Open questions
Can we close the gap for k-RSC when k is not a constant ?

Can we close the gap for (1, k)-SC ?
Can we find a lower bound for (r , k)-SC when r ≥ 2 ?
Can we have more precise analysis of the problems (r , k)-TSC
and (r , k)-ITSC ?

Thank you for your attention!
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