Quantum security of subset cover problems

Samuel Bouaziz--Ermann Joint work with Alex B. Grilo and Damien Vergnaud

LIP6, Sorbonne Université, CNRS

eprint:2022/1474

arXiv:2210.15396

June 20, 2023

- **5** Lower bounds (sketch of the proof)
- 6 Upper bounds
- Summary of our results
- Open question

Alice

Bob

Alice Bob

m

Alice Bob

Properties

- Make sure that the message comes from Alice
- Verify the integrity of the message

SPHINCS+

Post-quantum signatures

• Finding a lower bound for the subset cover problem gives a lower bounds for the security of SPHINCS(+).

- Finding a lower bound for the subset cover problem gives a lower bounds for the security of SPHINCS(+).
- An algorithm that finds a subset cover **cannot** directly be used to attack SPHINCS(+).

- Finding a lower bound for the subset cover problem gives a lower bounds for the security of SPHINCS(+).
- An algorithm that finds a subset cover **cannot** directly be used to attack SPHINCS(+).
- The subset cover variations (RSC, TSC, and ITSC) are also linked to the security of SPHINCS and SPHINCS+.

Definition

• A hash function is a function $h: \{0, 1\}^* \to \{0, 1\}^n$.

Definition

- A hash function is a function $h: \{0, 1\}^* \to \{0, 1\}^n$.
- In the Random Oracle Model (ROM), a hash function is modelized as a *random* function $\mathcal{H} : \mathcal{X} \to \mathcal{Y}$.

Definition

- A hash function is a function $h: \{0, 1\}^* \to \{0, 1\}^n$.
- In the Random Oracle Model (ROM), a hash function is modelized as a *random* function $\mathcal{H} : \mathcal{X} \to \mathcal{Y}$.
- In the Quantum Random Oracle Model (QROM), the random function ${\cal H}$ can be queried in superposition:

$$O\left(\sum_{x,y} \alpha_{x,y} |x\rangle |y\rangle\right) = \sum_{x,y} \alpha_{x,y} |x\rangle |y + O(x)\rangle$$

Definition

- A hash function is a function $h: \{0, 1\}^* \to \{0, 1\}^n$.
- In the Random Oracle Model (ROM), a hash function is modelized as a *random* function $\mathcal{H} : \mathcal{X} \to \mathcal{Y}$.
- In the Quantum Random Oracle Model (QROM), the random function $\mathcal H$ can be queried in superposition:

$$O\left(\sum_{x,y} \alpha_{x,y} |x\rangle |y\rangle\right) = \sum_{x,y} \alpha_{x,y} |x\rangle |y + O(x)\rangle$$

Our model

In our model, we have quantum access to h_1, \cdots, h_k such that $h_i : \mathcal{X} \to \mathcal{Y}$, and $|\mathcal{Y}| = N$.

Definition

A (r, k)-subset cover ((r, k)-SC) for h_1, \ldots, h_k consist of r + 1 elements x_0, x_1, \ldots, x_r in domain \mathcal{X} such that:

 $x_0 \notin \{x_1, \ldots, x_r\}$, and

$${h_i(x_0)|1 \le i \le k} \subseteq \bigcup_{j=0}^r {h_i(x_j)|1 \le i \le k}.$$

 $h_1(x_1), h_2(x_1), \ldots, h_k(x_1)$ $h_1(x_2), h_2(x_2), \ldots, h_k(x_2)$ $h_1(x_r), h_2(x_r), \ldots, h_k(x_r)$

Definition

A *k*-restricted subset cover (*k*-RSC) for h_1, \ldots, h_k consist of k + 1 elements x_0, x_1, \ldots, x_k in domain \mathcal{X} such that:

 $x_0 \notin \{x_1, \ldots, x_k\}$, and

 $h_1(x_0) = h_1(x_1),$ $h_2(x_0) = h_2(x_2),$: $h_k(x_0) = h_k(x_k),$

Theorem ([YTA22])

There exists an algorithm that find a k-RSC by making $O\left(k \cdot N^{\frac{2^k-1}{2^{k+1}-1}}\right)$ queries to h_1, \ldots, h_k .

Theorem ([YTA22])

There exists an algorithm that find a k-RSC by making $O\left(k \cdot N^{\frac{2^k-1}{2^{k+1}-1}}\right)$ queries to h_1, \ldots, h_k .

No other work!

Lower bound on k-RSC

We prove that $\Omega\left(k^{-\frac{2^k}{2^{k+1}-1}} \cdot N^{\frac{2^k-1}{2^{k+1}-1}}\right)$ quantum queries to the idealized hash functions are needed to find a *k*-RSC with constant probability.

Lower bound on k-RSC

We prove that
$$\Omega\left(k^{-\frac{2^k}{2^{k+1}-1}} \cdot N^{\frac{2^k-1}{2^{k+1}-1}}\right)$$
 quantum queries to the idealized hash functions are needed to find a *k*-RSC with constant probability.

Lower bound on 2-RSC

Given two random functions $h_1, h_2 : \mathcal{X} \to \mathcal{Y}$ where $|N| = \mathcal{Y}$, a quantum algorithm needs to make $\Omega(N^{3/7})$ queries to h_1 and h_2 to find a 2–RSC with a constant probability.

• We consider elements of a Hilbert space \mathcal{H} of dimension 2^n .
- We consider elements of a Hilbert space \mathcal{H} of dimension 2^n .
- ullet We write |0
 angle , |1
 angle , \cdots , $|2^n-1
 angle$ the computational basis.

- We consider elements of a Hilbert space \mathcal{H} of dimension 2^n .
- ullet We write |0
 angle , |1
 angle , \cdots , $|2^n-1
 angle$ the computational basis.
- A quantum state $|\phi\rangle$ is an element of ${\cal H}$ of norm 1, and can be written:

$$|\phi\rangle = \sum_{i=0}^{2^n-1} \alpha_i |i\rangle$$
.

- We consider elements of a Hilbert space \mathcal{H} of dimension 2^n .
- ullet We write $\left|0\right\rangle$, $\left|1\right\rangle$, \cdots , $\left|2^{n}-1\right\rangle$ the computational basis.
- A quantum state $|\phi\rangle$ is an element of ${\cal H}$ of norm 1, and can be written:

$$|\phi\rangle = \sum_{i=0}^{2^n-1} \alpha_i |i\rangle$$
.

• We write $\langle \phi |$ the conjugate transpose of $|\phi \rangle.$

- We consider elements of a Hilbert space \mathcal{H} of dimension 2^n .
- ullet We write $\left|0\right\rangle$, $\left|1\right\rangle$, \cdots , $\left|2^{n}-1\right\rangle$ the computational basis.
- A quantum state $|\phi\rangle$ is an element of ${\cal H}$ of norm 1, and can be written:

$$\left|\phi\right\rangle = \sum_{i=0}^{2^{n}-1} \alpha_{i} \left|i\right\rangle.$$

- We write $\langle \phi |$ the conjugate transpose of $|\phi \rangle$.
- We can apply unitaries U to quantum state, and this corresponds to doing computation.

- We consider elements of a Hilbert space \mathcal{H} of dimension 2^n .
- ullet We write $\left|0\right\rangle$, $\left|1\right\rangle$, \cdots , $\left|2^{n}-1\right\rangle$ the computational basis.
- A quantum state $|\phi\rangle$ is an element of ${\cal H}$ of norm 1, and can be written:

$$\left|\phi\right\rangle = \sum_{i=0}^{2^{n}-1} \alpha_{i} \left|i\right\rangle.$$

- We write $\langle \phi |$ the conjugate transpose of $|\phi \rangle$.
- We can apply unitaries U to quantum state, and this corresponds to doing computation.
- We can measure quantum state, doing so give *i* with probability $|\alpha_i|^2$.

QFT

The **Quantum Fourier Transform** is a unitary that, given an input state $|k\rangle$, outputs:

$$rac{1}{2^{n/2}}\sum_{\ell=0}^{2^n-1}\omega_n^{k\ell}\ket{k}$$
 ,

where $\omega_n = e^{2\pi i/2^n}$.

QFT

The **Quantum Fourier Transform** is a unitary that, given an input state $|k\rangle$, outputs:

$$rac{1}{2^{n/2}}\sum_{\ell=0}^{2^n-1}\omega_n^{k\ell}\ket{k}$$
 ,

where $\omega_n = e^{2\pi i/2^n}$.

• This unitary can be efficiently implemented, and we write it *QFT*.

QFT

The **Quantum Fourier Transform** is a unitary that, given an input state $|k\rangle$, outputs:

$$rac{1}{2^{n/2}}\sum_{\ell=0}^{2^n-1}\omega_n^{k\ell}\ket{k}$$
 ,

where $\omega_n = e^{2\pi i/2^n}$.

- This unitary can be efficiently implemented, and we write it *QFT*.
- Applying the *QFT* to the computational basis $|0\rangle, \ldots, |N\rangle$ yields the *Fourier basis* $|\widehat{0}\rangle, \ldots, |\widehat{N}\rangle$.

QFT

The **Quantum Fourier Transform** is a unitary that, given an input state $|k\rangle$, outputs:

$$rac{1}{2^{n/2}}\sum_{\ell=0}^{2^n-1}\omega_n^{k\ell}\ket{k}$$
 ,

where $\omega_n = e^{2\pi i/2^n}$.

- This unitary can be efficiently implemented, and we write it *QFT*.
- Applying the *QFT* to the computational basis $|0\rangle, \ldots, |N\rangle$ yields the *Fourier basis* $|\widehat{0}\rangle, \ldots, |\widehat{N}\rangle$.
- In particular, we have that:

$$\left|\widehat{0}
ight
angle = rac{1}{2^{n/2}}\sum_{\ell=0}^{2^n-1}\left|\ell
ight
angle.$$

• When making a query in the QROM:

$$\mathsf{StO}\left(\sum_{x,y} \alpha_{x,y} \ket{x} \ket{y}\right) = \sum_{x,y} \alpha_{x,y} \ket{x} \ket{y} + O(x)$$

• When making a query in the QROM:

StO
$$\left(\sum_{x,y} \alpha_{x,y} |x\rangle |y\rangle\right) = \sum_{x,y} \alpha_{x,y} |x\rangle |y + O(x)\rangle$$

• We add a new register, for the database: $|D\rangle$. We write \mathcal{D} the set of all possible database.

• When making a query in the QROM:

StO
$$\left(\sum_{x,y} \alpha_{x,y} |x\rangle |y\rangle\right) = \sum_{x,y} \alpha_{x,y} |x\rangle |y + O(x)\rangle$$

- We add a new register, for the database: $|D\rangle$. We write \mathcal{D} the set of all possible database.
- $|D\rangle$ is initially equal the uniform supersition:

$$\sum_{D\in\mathcal{D}}rac{1}{|\mathcal{D}|}\ket{D}$$

• When making a query in the QROM:

StO
$$\left(\sum_{x,y} \alpha_{x,y} |x\rangle |y\rangle\right) = \sum_{x,y} \alpha_{x,y} |x\rangle |y + O(x)\rangle$$

- We add a new register, for the database: $|D\rangle$. We write \mathcal{D} the set of all possible database.
- $|D\rangle$ is initially equal the uniform supersition:

$$\sum_{D\in\mathcal{D}}rac{1}{\left|\mathcal{D}
ight|}\left|D
ight
angle$$

• When we make a query:

$$O\left(\sum_{x,y,D} \alpha_{x,y,D} \ket{x} \ket{y} \ket{D}\right) = \sum_{x,y,D} \alpha_{x,y,D} \ket{x} \ket{y} \ket{D \oplus (x,y)}$$

Compression part

We apply the compression operator in the Fourier basis

$$\mathsf{Comp} = \bigotimes_{x} \left(\ket{\perp} ig\langle \hat{0} \Big| + \sum_{y: y
eq \hat{0}} \ket{y} ig\langle y |
ight),$$

where \perp is a new symbol and $|\hat{0}\rangle = \sum_{i=0}^{2^n-1} \frac{1}{2^n} |i\rangle$ is the uniform superposition.

Compression part

We apply the compression operator in the Fourier basis

$$\mathsf{Comp} = \bigotimes_{x} \left(\ket{\perp} ig\langle \hat{0} \Big| + \sum_{y: y
eq \hat{0}} \ket{y} ig\langle y |
ight),$$

where \perp is a new symbol and $|\hat{0}\rangle = \sum_{i=0}^{2^n-1} \frac{1}{2^n} |i\rangle$ is the uniform superposition.

The full Oracle

$$\mathsf{cO} = \mathsf{Comp} \circ \mathsf{O} \circ \mathsf{Comp}^\dagger$$

Description

After q queries the state of the database can be described with q vectors.

Lemma (Zhandry)

Let A be an algorithm that makes k queries to a random oracle $H : \mathcal{X} \to \mathcal{Y}$. Then, the compressed random oracle technique simulates H with an error at most $\sqrt{\frac{k}{|\mathcal{Y}|}}$.

This essentially corresponds to on-the-fly simulation of H.

Database properties

- A database property P is a subset of \mathcal{D} .
- For example, $P_{pre-image} = \{D | \exists x \in D, H(x) = 0\}.$
- Any database property P can be seen as a projector on \mathcal{D} , as follows:

$$\sum_{d\in P} \ket{d}ig\langle d
ight|$$

Database properties

- A database property P is a subset of \mathcal{D} .
- For example, $P_{pre-image} = \{D | \exists x \in D, H(x) = 0\}.$
- Any database property P can be seen as a projector on \mathcal{D} , as follows:

$$\sum_{d\in P} \ket{d}ig\langle d
vert$$

Computing lower bounds

If we write $|\phi_i\rangle = cOU_q cOU_{q-1} \dots cOU_1 |0\rangle^{\otimes n}$ the state of an algorithm A after *i* queries to the oracle, we want to bound:

 $|P|\phi_i\rangle| \leq f(i)$

Thus $f^{-1}(i)$ queries to *H* are necessary to find a database that satisfies property *P*.

Given two random functions $h_1, h_2 : \mathcal{X} \to \mathcal{Y}$ where $|N| = \mathcal{Y}$, a quantum algorithm needs to make $\Omega(N^{3/7})$ queries to h_1 and h_2 to find a 2–RSC with a constant probability.

Given two random functions $h_1, h_2 : \mathcal{X} \to \mathcal{Y}$ where $|N| = \mathcal{Y}$, a quantum algorithm needs to make $\Omega(N^{3/7})$ queries to h_1 and h_2 to find a 2–RSC with a constant probability.

Database properties

• P_2 as the set of databases that contain a 2-RSC.

Given two random functions $h_1, h_2 : \mathcal{X} \to \mathcal{Y}$ where $|N| = \mathcal{Y}$, a quantum algorithm needs to make $\Omega(N^{3/7})$ queries to h_1 and h_2 to find a 2–RSC with a constant probability.

Database properties

- P_2 as the set of databases that contain a 2-RSC.
- P'_{ℓ} as the set of databases that contain at least ℓ distinct collisions on h_1 .

Given two random functions $h_1, h_2 : \mathcal{X} \to \mathcal{Y}$ where $|N| = \mathcal{Y}$, a quantum algorithm needs to make $\Omega(N^{3/7})$ queries to h_1 and h_2 to find a 2–RSC with a constant probability.

Database properties

- P_2 as the set of databases that contain a 2-RSC.
- P'_{ℓ} as the set of databases that contain at least ℓ distinct collisions on h_1 .

Writing $|\psi_i\rangle$ the state after the *i*th query to $H = (h_1, h_2)$, our goal is to bound $|P_2 |\psi_i\rangle|$.

Claim

$$P_{2} |\psi_{i}\rangle| \leq |P_{2} |\psi_{i-1}\rangle| + |P_{2}cO(I - P_{2}) |\psi_{i-1}\rangle)|.$$

Claim

$$P_{2} |\psi_{i}\rangle| \leq |P_{2} |\psi_{i-1}\rangle| + |P_{2}cO(I - P_{2}) |\psi_{i-1}\rangle)|.$$

$$|P_2 cO(I - P_2) |\psi_{i-1}\rangle| = \left| P_2 cO \sum_{\substack{x,y \\ D: \text{ no } 2-\text{RSC}}} \alpha_{x,y,D} |x, y, D\rangle \right|$$

Claim

$$P_{2} |\psi_{i}\rangle| \leq |P_{2} |\psi_{i-1}\rangle| + |P_{2}cO(I - P_{2}) |\psi_{i-1}\rangle)|.$$

$$\begin{aligned} &|P_2 cO(I - P_2) |\psi_{i-1}\rangle| \\ &= \left| P_2 cO \sum_{\substack{x,y \\ D: \text{ no } 2-\text{RSC}}} \alpha_{x,y,D} |x,y,D\rangle \right| \\ &= \left| P_2 \sum_{\substack{x,y \\ D: \text{ no } 2-\text{RSC}}} \frac{1}{\sqrt{N^2}} \sum_{y'} \omega_n^{yy'} \alpha_{x,y,D} |x,y,D \oplus (x,y')\rangle \right| \end{aligned}$$

Claim

$$P_{2} |\psi_{i}\rangle| \leq |P_{2} |\psi_{i-1}\rangle| + |P_{2}cO(I - P_{2}) |\psi_{i-1}\rangle)|.$$

$$\begin{aligned} &|P_2 cO(I - P_2) |\psi_{i-1}\rangle| \\ &= \left| P_2 cO \sum_{\substack{x,y \\ D: \text{ no } 2-\text{RSC}}} \alpha_{x,y,D} |x,y,D\rangle \right| \\ &= \left| P_2 \sum_{\substack{x,y \\ D: \text{ no } 2-\text{RSC}}} \frac{1}{\sqrt{N^2}} \sum_{y'} \omega_n^{yy'} \alpha_{x,y,D} |x,y,D \oplus (x,y')\rangle \right| \\ &= \left| \sum_{y'} \sum_{\substack{x,y \\ D: \text{ no } 2-\text{RSC}}} \frac{\omega_n^{yy'} \alpha_{x,y,D}}{\sqrt{N^2}} \cdot P_2 |x,y,D \oplus (x,y')\rangle \right|. \end{aligned}$$

Recall that a 2–RSC consist of x_0 , x_1 , x_2 such that:

• $h_1(x_0) = h_1(x_1)$

•
$$h_2(x_0) = h_2(x_2)$$

Recall that a 2–RSC consist of x_0 , x_1 , x_2 such that:

• $h_1(x_0) = h_1(x_1)$

•
$$h_2(x_0) = h_2(x_2)$$

We have three possible ways to get from *D* that does not have a 2–RSC to $D \oplus (x, y')$ that has a 2–RSC:

•
$$x = x_2$$
 or $x = x_1$

•
$$x = x_0$$

Recall that a 2–RSC consist of x_0 , x_1 , x_2 such that:

- $h_1(x_0) = h_1(x_1) \leftarrow$ There must be a collision in the database
- $h_2(x_0) = h_2(x_2) \leftarrow$ We need a new collision there

We have three possible ways to get from *D* that does not have a 2–RSC to $D \oplus (x, y')$ that has a 2–RSC:

•
$$x = x_2$$
 or $x = x_1$

•
$$x = x_0$$

Recall that a 2–RSC consist of x_0 , x_1 , x_2 such that:

- $h_1(x_0) = h_1(x_1) \leftarrow$ There must be a collision in the database
- $h_2(x_0) = h_2(x_2) \leftarrow$ We need a new collision there

We have three possible ways to get from *D* that does not have a 2–RSC to $D \oplus (x, y')$ that has a 2–RSC:

•
$$x = x_2$$
 or $x = x_1$

•
$$x = x_0$$

If there are ℓ collisions on h_1 , there are ℓ values of y' such that $D \oplus (x, y')$ has a 2–RSC.

Recall that a 2–RSC consist of x_0 , x_1 , x_2 such that:

- $h_1(x_0) = h_1(x_1) \leftarrow$ We need a new collision there
- $h_2(x_0) = h_2(x_2) \leftarrow$ We need a new collision there

We have three possible ways to get from *D* that does not have a 2–RSC to $D \oplus (x, y')$ that has a 2–RSC:

•
$$x = x_2$$
 or $x = x_1$

• $x = x_0$

Recall that a 2–RSC consist of x_0 , x_1 , x_2 such that:

- $h_1(x_0) = h_1(x_1) \leftarrow$ We need a new collision there
- $h_2(x_0) = h_2(x_2) \leftarrow$ We need a new collision there

We have three possible ways to get from *D* that does not have a 2–RSC to $D \oplus (x, y')$ that has a 2–RSC:

•
$$x = x_2$$
 or $x = x_1$

• $x = x_0$

There are $(i-1)^2$ values of y' such that $D \oplus (x, y')$ has a 2–RSC.

Thus,

$$\left|P_{2}cO(I-P_{2})\left|\psi_{i-1}\right\rangle\right| \leq \sqrt{2 \cdot \sum_{\ell \geq 0} \frac{\ell}{N} \left|P_{\ell}'\left|\psi_{i-1}\right\rangle\right|^{2}} + \frac{i-1}{N}$$

Thus,

$$\left|P_{2}cO(I-P_{2})\left|\psi_{i-1}\right\rangle\right| \leq \sqrt{2 \cdot \sum_{\ell \geq 0} \frac{\ell}{N} \left|P_{\ell}'\left|\psi_{i-1}\right\rangle\right|^{2}} + \frac{i-1}{N}$$

Giving:

$$|P_{2}|\psi_{i}\rangle| \leq |P_{2}|\psi_{i-1}\rangle| + \sqrt{2\sum_{\ell\geq 0}\frac{\ell}{N}|P_{\ell}'|\psi_{i-1}\rangle|^{2}} + \frac{i-1}{N}$$

Thus,

$$\left|P_{2}cO(I-P_{2})\left|\psi_{i-1}\right\rangle\right| \leq \sqrt{2 \cdot \sum_{\ell \geq 0} \frac{\ell}{N} \left|P_{\ell}'\left|\psi_{i-1}\right\rangle\right|^{2}} + \frac{i-1}{N}$$

Giving:

$$\begin{aligned} |P_2|\psi_i\rangle| &\leq |P_2|\psi_{i-1}\rangle| + \sqrt{2\sum_{\ell\geq 0}\frac{\ell}{N}\left|P'_{\ell}|\psi_{i-1}\rangle\right|^2} + \frac{i-1}{N} \\ &\leq \dots \\ &\leq \sum_{s=0}^{i-1}\left(\sqrt{2\sum_{\ell\geq 0}\frac{\ell}{N}\left|P'_{\ell}|\psi_s\rangle\right|^2} + \frac{\ell}{N}\right). \end{aligned}$$

Lemma

For every $i \in \mathbb{N}$, we have that:

$$|P_2|\psi_i\rangle| \le 4\sqrt{e}rac{i^{7/4}}{N^{3/4}} + 4rac{i^2}{N} + O(N^{-1/48})$$
Lemma

For every $i \in \mathbb{N}$, we have that:

$$|P_2|\psi_i\rangle| \leq 4\sqrt{e}rac{i^{7/4}}{N^{3/4}} + 4rac{i^2}{N} + O(N^{-1/48}).$$

So when $i = o(N^{3/7})$, we have $g_i = o(1)$. Hence if we want g_i no to be constant, i.e. not o(1), we must have $i = \Omega(N^{3/7})$.

Lemma

For every $i \in \mathbb{N}$, we have that:

$$|P_2|\psi_i\rangle| \leq 4\sqrt{e}rac{i^{7/4}}{N^{3/4}} + 4rac{i^2}{N} + O(N^{-1/48}).$$

So when $i = o(N^{3/7})$, we have $g_i = o(1)$. Hence if we want g_i no to be constant, i.e. not o(1), we must have $i = \Omega(N^{3/7})$.

Lower bound on 2–RSC

Given two random functions $h_1, h_2 : \mathcal{X} \to \mathcal{Y}$ where $|N| = \mathcal{Y}$, a quantum algorithm needs to make $\Omega(N^{3/7})$ queries to h_1 and h_2 to find a 2–RSC with a constant probability.

Lower bound on (1, k)-SC

We prove that $\Omega((k!)^{-1/5} \cdot N^{k/5})$ quantum queries to the idealized hash functions are needed to find a (1, k)-SC with constant probability.

Lower bound on (1, k)-SC

We prove that $\Omega((k!)^{-1/5} \cdot N^{k/5})$ quantum queries to the idealized hash functions are needed to find a (1, k)-SC with constant probability.

Upper bound on (r, k)-SC

We design an algorithm that finds a (r, k)-SC with constant probability by making $O\left(N^{k/(2+2r)}\right)$ queries to the hash functions.

Definition (Search problem)

We are given a function $F : \mathcal{X} \to \{0, 1\}$. The search problem consists of finding an $x \in \mathcal{X}$ such that F(x) = 1, in the least amount of queries to F possible.

Theorem

Let $F : \mathcal{X} \to \{0, 1\}$ be a function, $t = |\{x|F(x) = 1\}|$, and $N = |\mathcal{X}|$. Then, Grover's algorithm finds an x such that F(x) = 1 with constant probability with $O\left(\sqrt{\frac{N}{t}}\right)$ queries to F. Moreover, this algorithm is optimal.

Input: $t \in \mathbb{N}$, $k' \in \mathbb{N}$.

Execute the (r − 1, k')-SC algorithm t times to find t distinct (r − 1, k')-SC in h₁,..., h_{k'}.
 Let T be the set of these (r − 1, k')-SC.

Input: $t \in \mathbb{N}$, $k' \in \mathbb{N}$.

- Execute the (r − 1, k')-SC algorithm t times to find t distinct (r − 1, k')-SC in h₁,..., h_{k'}. Let T be the set of these (r − 1, k')-SC.
- 2 Define $F : \mathcal{X} \to \{0, 1\}$ as follows:

$$F(x) = \begin{cases} 1, & \text{if there exists } (x_0, x_1, \dots, x_{r-1}) \in T \text{ such that} \\ & \forall 1 \le m \le k - k', h_m(x) = h_{k'+m}(x_0), \\ 0, & \text{otherwise.} \end{cases}$$

Input: $t \in \mathbb{N}$, $k' \in \mathbb{N}$.

- Execute the (r − 1, k')-SC algorithm t times to find t distinct (r − 1, k')-SC in h₁,..., h_{k'}.
 Let T be the set of these (r − 1, k')-SC.
- **2** Define $F : \mathcal{X} \to \{0, 1\}$ as follows:

$$F(x) = \begin{cases} 1, & \text{if there exists } (x_0, x_1, \dots, x_{r-1}) \in T \text{ such that} \\ & \forall 1 \le m \le k - k', h_m(x) = h_{k'+m}(x_0), \\ 0, & \text{otherwise.} \end{cases}$$

③ Execute Grover's algorithm to find an x such that F(x) = 1

Input: $t \in \mathbb{N}$, $k' \in \mathbb{N}$.

- Execute the (r − 1, k')-SC algorithm t times to find t distinct (r − 1, k')-SC in h₁,..., h_{k'}.
 Let T be the set of these (r − 1, k')-SC.
- **2** Define $F : \mathcal{X} \to \{0, 1\}$ as follows:

$$F(x) = \begin{cases} 1, & \text{if there exists } (x_0, x_1, \dots, x_{r-1}) \in T \text{ such that} \\ & \forall 1 \le m \le k - k', h_m(x) = h_{k'+m}(x_0), \\ 0, & \text{otherwise.} \end{cases}$$

Secure Grover's algorithm to find an x such that F(x) = 1
Find (x₀, x₁,..., x_{r-1}) in T and output (x₀, x₁,..., x_{r-1}, x).

Summary of our results

Problem	Lower bound	Upper bound	Tight?
<i>k</i> -RSC	$\Omega\left(\textit{N}^{\frac{2^{k}-1}{2^{k+1}-1}}\right)$	$O\left(N^{\frac{2^{k}-1}{2^{k+1}-1}}\right)$	Yes
(1, <i>k</i>)-SC	$\Omega\left(\textit{N}^{k/5} ight)$	$O\left(N^{k/4} ight)$	No
(<i>r</i> , <i>k</i>)-SC	?	$O\left(N^{k/(2+2r)} ight)$	-
(<i>r</i> , <i>k</i>)-TSC	$\Omega\left(N^{\frac{2^{k}-1}{2^{k+1}-1}}\right)$?	-
(r, k)-ITSC	$\Omega\left(N^{\frac{2^{k}-1}{2^{k+1}-1}}\right)$?	_

- State of the art
- Our contribution
- Relationship between the problems

• Can we close the gap for k-RSC when k is not a constant ?

- Can we close the gap for k-RSC when k is not a constant ?
- Can we close the gap for (1, k)-SC ?

- Can we close the gap for k-RSC when k is not a constant ?
- Can we close the gap for (1, k)-SC ?
- Can we find a lower bound for (r, k)-SC when $r \ge 2$?

- Can we close the gap for k-RSC when k is not a constant ?
- Can we close the gap for (1, k)-SC ?
- Can we find a lower bound for (r, k)-SC when $r \ge 2$?
- Can we have more precise analysis of the problems (*r*, *k*)-TSC and (*r*, *k*)-ITSC ?

- Can we close the gap for k-RSC when k is not a constant ?
- Can we close the gap for (1, k)-SC ?
- Can we find a lower bound for (r, k)-SC when $r \ge 2$?
- Can we have more precise analysis of the problems (*r*, *k*)-TSC and (*r*, *k*)-ITSC ?

Thank you for your attention!

Bibliography

Samuel Bouaziz-Ermann, Alex B. Grilo, and Damien Vergnaud. Quantum security of subset cover problems. Cryptology ePrint Archive, Paper 2022/1474, 2022. https://eprint.iacr.org/2022/1474. Qipeng Liu and Mark Zhandry. On finding quantum multi-collisions. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part III, volume 11478 of LNCS, pages 189-218. Springer, Heidelberg, May 2019.

Quan Yuan, Mehdi Tibouchi, and Masayuki Abe. On subset-resilient hash function families.

Designs, Codes and Cryptography, 90, 03 2022.