Lecture 5: Generating functions

Siargey Kachanovich

May 20, 2016

1 Modelize objects using variables

Take a set S and define a size to its objects. Let a_{i} be the number of objects in S of size i. We will represent this set as an "infinite" polynomial:

$$
a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4} \ldots=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

This polynomial is also called a generating function, and it is an often-used tool to count objects in sets.

Several simple operations on sets are generalizable to generating functions, to name a few:

- The generating function of the disjoint union of two sets is the sum of their generating functions. It is actually easy to see, if you think it in this way: imagine you have two boxes with objects in them and you dump their content in one big box. It is natural that the number of objects of size i is the sum of numbers of objects of the same size from the previous boxes.
- The generating function of the cartesian product of two sets is the product of their generating functions. This one is a little trickier to see. Instead of taking the objects individually, you make all possible pairs out of them with one object from each set. The size of such a pair is naturally the sum of the sizes of its components. So to count all such pairs of constant size of size n, we just need to try to combine all possible objects from the set 1 of size k and all possible objects from the set 2 of size $n-k$.

The addition and the multiplication operations are defined in the same way as for polynomials: If $A(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ and $B(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$, then:

$$
\begin{gathered}
(A+B)(x)=\sum_{n=0}^{\infty}\left(a_{n}+b_{n}\right) x^{n} \\
(A B)(x)=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} a_{k} b_{n-k}\right) x^{n}
\end{gathered}
$$

We have seen in the previous lectures that the expansion of $(y+x)^{n}$ produces binomial coefficients $\binom{n}{k}$. But why is it so? To form a monomial $x^{k} y^{n-k}$ we are forced in some way to choose k brackets for x 's and the rest will produce y 's. Therefore, the number of ways to produce the same monomial is exactly the number of ways to choose k brackets, which is exactly $\binom{n}{k}$.

We know that the product in generating functions corresponds to take couples of objects. And in the case of the product of n generating functions, it corresponds to a n-tuple. The polynomial $(x+y)$ can be seen as the generating function for a set $S=\{x, y\}$ of two objects. So the n-tuples in S^{n} represent all
possibilities of choosing x or y in each of those sets, and for choosing exactly $k x$'s and $(n-k) y$'s the number of choices is exactly $\binom{n}{k}$.

There are several other classical generating functions. For instance, the set $\{0,1,2,3, \ldots\}=\mathbb{N}$ is easily represented by $1+x+x^{2}+x^{3}+\ldots=\frac{1}{1-x}$.

Problem 1 You possess an infinite number of coins of value 1ç, $2 \dot{c}, 5 \dot{\phi}, 10 \dot{c}, 20 \dot{\phi}, 50 \dot{c}$. Find the generating function, where each coefficient a_{n} is the number of ways to compose $n \dot{c}$ with the aforementioned coins.

Solution. We will construct a generating function of the sets of all compositions of coins.
Every composition can be seen as the 6 -tuple ($k_{1}, k_{2}, k_{5}, k_{10}, k_{20}, k_{50}$), with k_{i} the number of coins of value i in the composition. So, what we are looking for is the cartesian product of 6 natural numbers. We are looking for the value of the sum, so naturally x would signify $1 \grave{c}$.

Each k_{i} counts for $i c$, so the generating function for the set of all $i \grave{c}$ coins is $1+x^{i}+x^{2 i}+x^{3 i}+\ldots=\frac{1}{1-x^{i}}$.
So the cartesian product, that we are looking for is exactly:

$$
\frac{1}{1-x} \frac{1}{1-x^{2}} \frac{1}{1-x^{5}} \frac{1}{1-x^{10}} \frac{1}{1-x^{20}} \frac{1}{1-x^{50}}
$$

2 Solve recurrencies

One of the most popular uses for the generating functions is to count recursive structures. We will see two examples.

Problem 2 What is the number of binary trees of size n ?
Solution. A binary tree can fall in two of the following cases:

1. Either it is empty.
2. Or it has a root and two children, which are binary trees. In other words, it is a triplet $\{$ root, leftchild, rightchild $\}$.

Let $B(x)$ be the generating function for binary trees. Then, the previous remark implies:

$$
B(x)=1+x B(x)^{2}
$$

If we solve this equation in terms of $B(x)$, then we find:

$$
\begin{equation*}
B(x)=\frac{1 \pm \sqrt{1-4 x}}{2 x} \tag{1}
\end{equation*}
$$

The square root generating function can be obtained using the generalized binomial coefficients:

$$
\binom{\alpha}{k}=\frac{\alpha(\alpha-1)(\alpha-2) \ldots(\alpha-k+1)}{k!}
$$

So now we can express $(1-4 x)^{1 / 2}$:

$$
\begin{aligned}
(1-4 x)^{1 / 2} & =\sum_{n=0}^{\infty}\binom{1 / 2}{n}(-4 x)^{n} \\
& =\sum_{n=0}^{\infty} \frac{\frac{1}{2}\left(\frac{1}{2}-1\right) \ldots\left(\frac{1}{2}-n+1\right)}{n!}(-4)^{n} x^{n} \\
& =\sum_{n=0}^{\infty} \frac{1 \cdot(-1) \cdot(-3) \cdot \ldots(-2 n+3)}{2^{n} n!}(-4)^{n} x^{n} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n-1} \cdot 1 \cdot 3 \cdot \ldots(2 n-3)}{n!}(-2)^{n} x^{n} \\
& =-\sum_{n=0}^{\infty} \frac{1 \cdot 3 \cdot \ldots(2 n-3)}{n!} 2^{n} x^{n}
\end{aligned}
$$

One can easily observe that if $n \leq 1$ then:

$$
1 \cdot 3 \cdot \ldots(2 n-3)=\frac{1 \cdot 2 \cdot 3 \cdot \ldots(2 n-2)}{2 \cdot 4 \cdot \ldots \cdot(2 n-2)}=\frac{(2 n-2)!}{2^{n-1}(n-1)!}
$$

So:

$$
\begin{aligned}
(1-4 x)^{1 / 2} & =1-\sum_{n=1}^{\infty} \frac{(2 n-2)!}{2^{n-1} n!(n-1)!} 2^{n} x^{n} \\
& =1-2 x \sum_{n=1}^{\infty} \frac{(2 n-2)!}{n(n-1)!(n-1)!} x^{n-1} \\
& =1-2 x \sum_{n=1}^{\infty} \frac{1}{n}\binom{2 n-2}{n-1} x^{n-1} \\
& =1-2 x \sum_{n=0}^{\infty} \frac{1}{n+1}\binom{2 n}{n} x^{n}
\end{aligned}
$$

The last identity gives us a hint on what sign to choose in Equation 1. If we choose + sign, then the numerator would start with 2 , which can't be divided by $2 x$. So we are forced to choose the $-\operatorname{sign}$.

Therefore:

$$
\begin{aligned}
B(x) & =\frac{1-\left(1-2 x \sum_{n=0}^{\infty} \frac{1}{n+1}\binom{2 n}{n} x^{n}\right)}{2 x} \\
& =\frac{2 x \sum_{n=0}^{\infty} \frac{1}{n+1}\binom{2 n}{n} x^{n}}{2 x} \\
& =\sum_{n=0}^{\infty} \frac{1}{n+1}\binom{2 n}{n} x^{n}
\end{aligned}
$$

So the number of binary trees of size n is $\frac{1}{n+1}\binom{2 n}{n}$.
The number that we just have found is called Catalan number and it is a number that has many interpretations in combinatorics (at least 66 https://en.wikipedia.org/wiki/Catalan_number).

Generating functions can be also used to solve identities that are hard to prove otherwise:

Problem 3 Prove:

$$
\sum_{k=0}^{n}\binom{2 k}{k}\binom{2 n-2 k}{n-k}=4^{n}
$$

Solution. The strategy of the proof is the following:

1. Express a generating function for the sequence (4^{n}) and call it f.
2. Find a generating function $g=\sum_{n=0}^{\infty} g_{n} x^{n}$, such that $\sum_{k=0}^{n} g_{k} g_{n-k}=4^{n}$.
3. Compute g_{n}.

The generating function for $\left(4^{n}\right)$ is of course:

$$
f(x)=\sum_{n=0}^{\infty}(4 x)^{n}=\frac{1}{1-4 x}
$$

Let g be a generating function such that $g(x)^{2}=f(x)$. It means that $g(x)=\frac{1}{\sqrt{1-4 x}}=(1-4 x)^{-1 / 2}$. Use the generalized binomial coefficient formula:

$$
\binom{-1 / 2}{n}=\frac{\left(-\frac{1}{2}\right)\left(-\frac{1}{2}-1\right) \ldots\left(-\frac{1}{2}-n+1\right)}{n!}=\frac{(-1)^{n} 1 \cdot 3 \cdot \ldots \cdot(2 n-1)}{2^{n} n!}=\frac{(-1)^{n}(2 n)!}{2^{n} n!2^{n} n!}=\frac{(-1)^{n}}{4^{n}}\binom{2 n}{n}
$$

So:

$$
g(x)=(1-4 x)^{-1 / 2}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{4^{n}}\binom{2 n}{n}(-4 x)^{n}=\binom{2 n}{n} x^{n}
$$

It is exactly the generating function corresponding to the left hand side of the identity, hence we have proven it.

