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Abstract

We introduce Qiana, a logic framework for reasoning on for-
mulas that are true only in specific contexts. In Qiana, it
is possible to quantify over both formulas and contexts to
express, e.g., that “everyone knows everything Alice says”.
Qiana also permits paraconsistent logics within contexts, so
that contexts can contain contradictions. Furthermore, Qiana
is based on first-order logic, and is finitely axiomatizable,
so that Qiana theories are compatible with pre-existing first-
order logic theorem provers.

1 Introduction
In his “Notes on formalizing contexts” John McCarthy
(1987) argued for the importance of context representation
in formal logic. The core idea is that statements can be
tied to specific contexts, which act as modalities on the
statements. This idea is substantiated by the predicate ist:
ist(c, φ) means that the formula φ is true in the context c.
Contexts can represent different things: something can be
true in the context of a newspaper article only, in the context
of a piece of fiction, or in someone’s beliefs. We illustrate
one possible use of contexts with the final scene of the play
“Romeo and Juliet” by William Shakespeare:

Near the end of the play, Juliet wishes to meet with Romeo,
but her parents won’t let her. Her friend, Friar Laurence,
offers her a potion and says it will allow her to fake her
death. Juliet takes the potion, hoping it will allow her to
escape her family. However, the plan backfires: Romeo
sees Juliet before she awakens, seemingly dead, and kills
himself in despair. When Juliet later wakes up, she sees
Romeo dead and kills herself.

The key elements of the ending of the play are: (1) Friar
Laurence is right in what he says (the potion will make Juliet
appear dead), and (2) someone who is madly in love with
someone else will kill themselves if they believe their loved
one to be dead. Thus, leaving out details and overgeneraliz-
ing, we want to represent:
∀ϕ. ist(says(FriarLaurence), ϕ)→ ϕ

∀x, y. madlyLoves(x, y) ∧ ist(believes(x), dead(y))→
willSuicide(x)

Here believes(x) is the context of the beliefs of the agent x.
Our example leads us to the following desiderata for expres-
sivity:

1. Truth Representation: the ability to connect what is
true inside a context to what is true (“ist(c, φ)→φ”)

2. Formula Quantification: the ability to quantify over
formulas (“∀φ. ist(c, φ)”)

3. Context Quantification: the ability to quantify over
contexts (“∀c. ist(c, φ)”), or even certain forms of con-
text (“∀x. ist(believes(x), φ)”)

Moreover, we want to perform automated reasoning, or at
least semi-automated reasoning:

4. Semi-decidability: Logical entailment Γ |= ϕ should
be semi-decidable.

Fulfilling these desiderata simultaneously is not trivial. One
difficulty is that Desideratum 1 invites complications from
the Theorem of Undefinability of Truth of Tarski (1936):
A language cannot fully describe its own truth, assuming
it includes basic arithmetic. This is because it allows self-
referential statements, which leads to contradictions.

One way to do contextual reasoning in logic is through
modal logic. However, modal logic does not consider for-
mulas as objects that one can quantify over. Another classi-
cal way would be to use higher-order logics, but these (typ-
ically) quantify over predicates rather than the syntactic for-
mulas themselves. Furthermore, they are usually not even
semi-decidable. Moore (1981) proposes to quote formulas
as terms within the logic. However, the notion of context
in this approach is very restrictive. For example, it lacks a
dedicated mechanism to express statements as simple as “If
Juliet believes all Capulets are nice, then for any Capulet x,
she believes x is nice”.

It seems that the promising idea of using object-level
counterparts to formulas within first-order logic was never
explored to produce a suitable framework for this form of
general contextual reasoning. Thus, to the best of our knowl-
edge, no logical framework currently satisfies all 4 desider-
ata simultaneously (see Table 1, discussed in the related
work section).

In this paper, we propose to represent formulas within
contexts not as special objects, but as terms that obey a
specific axiomatization. We borrow the ist predicate from



McCarthy (1993). We follow the idea of Moore (1981) to
build terms that are structurally similar to formulas. (This
idea is itself an extension of Gödel’s numbers, see Gödel
(1931).) We use the idea of Tarski (1936) to introduce a
special truth predicate and to make sure that this predicate
cannot be quoted. We then show how these components can
be axiomatized so that Desiderata 1-4 are fulfilled without
falling for the complications of Tarski’s theorem. The re-
sulting framework, Qiana (Quantifying over Agents and As-
sertions), is finitely axiomatizable, and can thus be used with
any First-Order-Logic theorem prover. We also introduce a
special character quote to nest quotations within quotations.
This allows for a larger array of manipulations around con-
texts, which are notably useful for our finite axiomatization
process.

Qiana can model the beliefs of agents (as in our Romeo
and Juliet example), but it can also be used for paraconsis-
tent reasoning (where a context contains contradictory state-
ments), or to describe the differences between two fictional
contexts (e.g., two versions of the same story).

In what follows, Section 2 discusses the related work;
Section 3 introduced notations; Section 4 explains how
Qiana quotes formulas; Section 5 defines Qiana; Section 6
discussed applications of Qiana; Section 7 describes the fi-
nite axiomatization process of Qiana, which is then used
in a theorem prover in Section 8; Section 9 contains addi-
tional discussions; and Section 10 concludes. Supplemen-
tary material, including the proofs of our theorems and the
code of our implementation, is available at https://github.
com/dig-team/Qiana.

2 Related Work

John McCarthy (1987) observed that many statements are
true only in a specific context. Several follow-up works have
elaborated on this idea, but none of them allows for Con-
text Quantification and Formula Quantification. The first of
these elaborations was by McCarthy (1993) himself. He pro-
posed to write ist(c, p) to say that p is a proposition that is
true in the context c. Thus, contexts are treated as objects
representing a state of the universe at a given instant. How-
ever, this work was based on propositional logic. Hence, it
cannot deal with first-order formulas, let alone quantify over
contexts or formulas.

Buvac and Mason (1993) and Buvac, Buvac, and Ma-
son (1994) formalized a propositional modal logic version
of McCarthy’s idea, which is sound, complete, and decid-
able. In their formalism, ist is treated as a binary modality
over propositions. Again, there is no possibility of quantify-
ing over contexts or formulas. Buvac (1996) extended this
work to first-order logic and allowed the description of con-
texts through properties. For instance, ∀c. p(c) → ist(c, ϕ)
means that the formula ϕ is true in every context with the
property p. This logic is sound and complete; the work was
the first to allow quantification over contexts. However, un-
like our approach, all contexts must have perfect knowledge
of each other’s beliefs, i.e., everyone knows what everyone
else thinks. Furthermore, unlike our approach, Buvac (1996)

does not allow for quantification over formulas.1

Moore’s work on reasoning about knowledge (Moore,
1980, 1981) avoids the issues of self-reference in higher-
order logic by representing formulas as terms within the
logic. A special truth predicate connects these terms to their
formula counterparts. This will also be done in Qiana. How-
ever, Moore’s notion of context is quite restrictive: its many-
worlds semantics assumes that contexts are logically om-
niscient (if something is true within a context, then all its
consequences are also true). This is unsuitable to represent
the knowledge of humans, whose reasoning depth is lim-
ited. It also lacks an equivalent to our special escape func-
tion symbol quote, which is used to put any given value into
a quotation. Such a feature is important to present axioms
that connect what is true outside of contexts to what is true
within them, e.g., for statements of the form “If in a context
it is true that a statement holds for all x, then that statement
holds for all x in that context”. Furthermore, there is no fi-
nite axiomatization, and thus, the method does not allow the
use of state-of-the-art theorem provers that Qiana permits.

Other works fall in the realm of epistemic and doxastic
logics, which deal with the knowledge and beliefs of agents,
respectively. The modal approach has been widely adopted
for both cases (Hintikka, 1962). For instance, Halpern and
Moses (1992) proposed a multi-modal logic to deal with the
knowledge and beliefs of multiple agents, where each agent
has its own operators. For example, Kiϕ means that the
agent i knows ϕ, and Biϕ means that i believes ϕ. Consid-
ering only the knowledge operators, this logic is equivalent
to the formalism of Buvac and Mason (1993), where each
context is equivalent to a specific modality. However, these
modal approaches have no way to quantify over contexts.
Furthermore, these approaches focus on propositional logic
and cannot deal with first-order formulas like Qiana.

Giunchiglia (1993) and Giunchiglia and Bouquet (1997)
treat each context as a logical theory with its own language,
set of axioms, and set of rules. The main goal in this se-
ries of works is the translation of formulas from one context
to another. The works in this series study only the propo-
sitional case and introduce no quantification. Ghidini and
Giunchiglia (2001) propose that contexts need two princi-
ples: locality (what is known by the agent) and compati-
bility (enforcing a kind of coherence in viewpoints). While
this approach can deal with first-order formulas, it does not
allow for quantified formulas or quantified contexts.

The Knowledge Interchange Format KIF (Genesereth,
1991) is a data format for database knowledge exchange.
With the help of a quotation operator, a formula can be rei-
fied and handled as a syntactic element. However, KIF does
not admit any complete proof theory. It is not even semi-
decidable because it goes beyond first-order logic (Väänä-
nen, 2021). KIF’s successor, Common Logic (ISO, 2018)
(CL), is a framework for a family of FOL-based languages.
Unlike KIF, CL has no quotation operator, and it does not
have a built-in mechanism for handling contexts. While

1According to (Guha, McCool, and Fikes, 2004), it is also not
semi-decidable. However, (Buvac, 1996) contains proofs of com-
pleteness and soundness, which entails semi-decidability.

https://github.com/dig-team/Qiana
https://github.com/dig-team/Qiana


Truth Formula Context Semi-
Representation Quantification Quantification decidable

(Moore, 1981) yes yes NA yes
(Genesereth, 1991) yes yes yes no
(Halpern and Moses, 1992) yes no no yes
(McCarthy, 1993) yes no no NA
(Giunchiglia, 1993) NA no no NA
(Buvac and Mason, 1993) NA no no yes
(Buvac, 1996) NA no yes no
(Ghidini and Giunchiglia, 2001) yes no no yes
(Perrussel, 2002) no no yes no
(Ranganathan and Campbell, 2003) NA no no yes
(Carroll et al., 2005) yes no no yes
(Brewka et al., 2011) no no no yes
(ISO, 2018) yes no yes NA
(Aljalbout, Buchs, and Falquet, 2019) yes no no yes
(Väänänen, 2021) NA no NA no
(Hartig et al., 2023) yes no no yes
Qiana yes yes yes yes

Table 1: Semi-decidability and the desiderata of Truth Representation, Formula Quantification, and Context Quantification

some subsets of CL admit a complete proof theory, there
is still no complete proof theory for Common Logic as
a whole (ISO, 2018; Mossakowski et al., 2014; Menzel,
2013). Suchanek (2005) proposes a translation from KIF
to disjunctive logic programs, but also does not offer a com-
plete proof theory. Perrussel (2002) proposes a many-sorted
modal first-order logic. This approach cannot quantify over
formulas, or express formulas such as ist(c, ϕ) → ϕ since
no “super context” represents the real world.

In the work of Ranganathan and Campbell (2003), con-
texts are first-order predicates like Location or Temperature.
Hence, the approach cannot deal with quantified formulas.
Brewka et al. (2011) propose an approach to deal with dif-
ferent sources of knowledge. Each context is a knowledge
base with its language, and bridge rules allow communica-
tion between contexts and handle inconsistencies. Intrinsi-
cally, it is not possible to quantify over formulas or con-
texts. More recently, Aljalbout, Buchs, and Falquet (2019)
proposed a two-dimensional ontology language that allows
defining context-dependent classes, properties, and axioms.
It also allows expressing knowledge about contexts to reason
on contextualized triples. However, it is impossible to quan-
tify over formulas or contexts. Furthermore, the work uses
description logics, which has limited expressiveness w.r.t.
first-order logic.

Other approaches of the Semantic Web, like RDF-
star (Hartig et al., 2023) and named graphs (Carroll et al.,
2005), can handle context but not truth representation. They
can handle neither quantification over contexts nor over for-
mulas. One may think that second-order logic (Väänänen,
2021) could be of help. However, classical higher-order log-
ics allow quantification over predicates, not over formulas.
Taprogge and Steen (2023) extend the prover Leo-III with
a form of higher-order modal logic, but still does not allow
quantification over formulas.

We thus conclude that no semi-decidable framework cur-
rently satisfies the desiderata of Truth Representation, For-
mula Quantification, and Context Quantification.

3 Notations
Our work relies on the usual notions of first-order logic
(FOL) (see, e.g., Enderton (2001) for a primer). We use
standard syntactic sugar notations, writing, e.g., φ → ψ
for ¬φ ∨ ψ. We also use the usual substitution meta-
notation: φ[x ← t] denotes the formula obtained by recur-
sively replacing all occurrences of variable x with t in φ
until a quantification over x is reached.

For our purposes, a signature S is a tuple (F, P, V∞, δ),
where F is a set of function symbols, P is a set of predicate
symbols, V∞ is an infinite set of variables, and δ : P ∪F →
N a function that gives the arity of each symbol. Constant
symbols are function symbols of arity 0. A given signature
defines a set T of terms, and a set L of formulas.

A model is a tuple (D, [[]]) where D is a non-empty set
called the domain of the model, and [[]] is the interpretation
mapping that maps each function symbol f to a function
[[f ]] ∈ Dδ(f)→D, and each predicate symbol p to a func-
tion [[p]] ∈ Dδ(p)→{0, 1}. Given an assignment for the free
variables σ, we recall that terms (e.g., 1 + x) are interpreted
as elements in the domain (e.g., 1 + x is interpreted as the
element [[+]]([[1]], σ(x))), and formulas (e.g., p(x)) are inter-
preted as true/false (e.g., the semantics of p(x) is [[p]](σ(x)),
which is either 0 or 1).

Recall that a theory is a set of formulas, and an axiom
schema is a formula with meta-variables (such as ¬¬φ →
φ, where φ is a meta-variable that stands for a formula).
We will occasionally write the name of the axiom schema to
stand for the set of all its instantiations in a given signature.

Let M be a model, σ an assignment of values in the do-
main of M to free variables, and H a theory. We write



M,σ |= ϕ to say that the formula ϕ is true in model M ,
where all the free variables of ϕ are defined in σ. We omit
σ if there are no free variables. We write H |= ϕ to say
that ϕ is a semantic consequence of H . A closed formula
that is true in at least one model is coherent. A theory for
which there is a model that makes all the formulas true is
also called coherent.

4 Quoting and unquoting formulas
A quoted formula is a term that represents a formula of the
logic; they will be useful to represent what is true or false in
a context. Intuitively speaking, quoting a formula consists of
replacing each logical connective, variable, predicate, and
function symbol with a fresh function symbol. We denote
the quoted counterpart of a symbol z by z:

Example 1. The quotation of formula p(x) ∧ (1 + x = 2)
is the term p (x) ∧ (1 + x = 2) where p,∧, 1,+, x,=, 2 are
“quotation” symbols, counterparts to the original symbols
p, ∧, 1, +, x, =, 2.

We need to quote also formulas that already contain quota-
tions. To this end, we introduce a special function symbol
quote, which acts as an escape character and provides a way
to nest quotations:

Example 2. The quotation of the formula ist(x, happy(y))
is ist(x, quote(happy(y))).

To accommodate all these additional symbols, we extend our
signature. We write ⊔ for the disjoint union and define:

Definition 1 (augmented signature). Given a signature Sb=
(Fb, Pb, V∞, δb) and a finite V ⊆ V∞, the augmented sig-
nature S is the tuple (F, P, V∞, δ) with

• P = Pb ⊔ {T}
• F = Fb ⊔ F ⊔ P ⊔ V ⊔ {∧,¬,∀, quote} where

– F = {f | f ∈ Fb}
– P = {p | p ∈ P}
– V = {x | x ∈ V }

• V∞ remaining the same
• δ specifying that ∧, ∀, ¬, and quote are of arities 2, 2, 1,

and 1, respectively. Furthermore, f has the same arity as
f , and p has the same arity as p. The arity of x is 0 for all
x. The arity of T is 1.

Without loss of generality, we assume that all the new sym-
bols we introduce are not already in Sb. In what follows, we
assume a fixed signature Sb with an augmentation S. This
signature implicitly defines the set T of all terms. We write
a∨b as syntactic sugar for ¬(¬a∧ ¬b), and a→b as syntactic
sugar for ¬(a)∨b.

4.1 Quotation sets
Now that we have a quotation-compatible signature, we
want to define the quotation function µ, which takes a for-
mula and returns its quoted equivalent. For this purpose, we
have to introduce a number of subsets of the set T of all
terms, which can be roughly described as follows:

• T is the subset of all quotations of well-formed terms.
For example, T contains the terms +(1, 1) (which is the
quotation of the term +(1, 1)) and f(quote(1)) (which the
quotation of the term f(1)).

• L is the subset of all quotations of well-formed (possibly
not closed) formulas. For example, L contains the terms
p(x) (which is the quotation of the formula p(x)) and
p(quote(1)) (which the quotation of the formula p(1)).

• Q is the set of all terms made up of quotation symbols.
The subset Q includes both T and L. However, it also
contains ‘quotations’ of non-well-formed terms/formulas:
for example, Q contains the term p(x ∧ 1) (which is the
‘quotation’ of the non-well-formed expression p(x ∧ 1)).

For each of the subsets T , L, Q, we introduce, respectively,
Tv , Lv , Qv , which have similar definitions, except that they
also contain the construction quote(x), where x is a variable
in V . This is necessary to allow variables in quotations.

We start by defining Q and Qv formally by two Backus-
Naur Forms. Our grammars apply to quotations of both
terms and formulas:
Definition 2. The setsQ andQv are defined inductively by:
Q := x | f(t1, . . . , tn) | p(t1, . . . , tn) | ∧(t1, t2)
| ¬(t) | ∀(x, t) | quote(t)

for x ∈ V , f ∈ F , p ∈ P , t, t1, ..., tn ∈ Q
Qv := x | f(t1, . . . , tn) | p(t1, . . . , tn) | ∧(t1, t2)
| ¬(t1) | ∀(x, t) | quote(t) | quote(x)

for x ∈ V , f ∈ F , p ∈ P , t, t1, ..., tn ∈ Qv

The subsets of T , Tv , (resp. L and Lv) are also defined by
Backus-Naur Forms; but this time, we permit only quota-
tions of well-defined terms (resp. formulas) except with a
special quote symbol.
Definition 3.
T := x | f(t1, . . . , tn) | quote(tq)

for x ∈ V , f ∈ F , tq ∈ Q, t1, . . . , tn ∈ T
Tv := x | f(t1, . . . , tn) | quote(tq) | quote(x)

for x ∈ V , f ∈ F , tq ∈ Q, t1, . . . , tn ∈ Tv
L := p(t1, . . . , tn) | φ1

∧φ
2
| ¬φ

1
| ∀(x, φ1)

for x ∈ V , t1, . . . , tn ∈ T , p ∈ P ,φ1, φ2 ∈ L
Lv := p(t1, . . . , tn) | φ1

∧φ
2
| ¬φ

1
| ∀(x, φ1)

for x ∈ V , t1, . . . , tn ∈ Tv, p ∈ P ,φ1, φ2 ∈ Lv

In this definition, T , Tv (resp. L, Lv) contain only quo-
tations of well-formed terms (resp. formulas) – except in
quote(tq) where tq may be a ‘quotation’ of a non-well-
formed expression.

4.2 Quoting
We now define the quotation function µ. This function takes
a quotable formula or term and outputs its quotation, which
is a term representing the initial formula or term. We de-
fine µ jointly with the sets of terms and formulas that can be
quoted.



The set of quotable terms Tq is the set of terms present
in quotable formulas. These terms contain only variables
from V and are recursively formed with non-quotation sym-
bols (the non-underlined symbols) or with the image by µ
of quotable elements. By quotable elements, we mean ele-
ments of Tq or Lq . The set of quotable formulas Lq is the set
of formulas from which we can produce quotations. These
are the formulas we can quantify over. They contain only
variables in V , do not contain the predicate T, and use only
terms from Tq .

We define Tq , Lq , and µ jointly by mutual induction.
Definition 4.
Tq := x | tq | f(t1, . . . , tn)

for x ∈ V, f ∈ Fb, t1, . . . , tn ∈ Tq, tq ∈ µ(Tq ∪ Lq)

Lq := p(t1, . . . , tn) | ∀x. φ | ¬φ | φ1 ∧ φ2

for p ∈ Pb, t1, . . . , tn ∈ Tq, x ∈ V, φ, φ1, φ2 ∈ Lq

Definition 5. µ is inductively defined on Tq ⊔ Lq by:
µ(f(t1, . . . , tn)) := f(µ(t1), . . . , µ(tn))

µ(tq) := quote(tq)
µ(p(t1, . . . , tn)) := p(µ(t1), . . . , µ(tn))

µ(x) := x

µ(ϕ1 ∧ ϕ2) := ∧(µ(ϕ1), µ(ϕ2))
µ(¬ϕ) := ¬(µ(ϕ))

µ(∀x. ϕ) := ∀(x, µ(ϕ))
Range: f ∈ F , x ∈ V , t1, . . . , tn ∈ Tq , tq ∈ Q.

For ease of reading, whenever µ(φ) is defined, we write it
as φ, underlining the entire argument. For instance, we write
p(x) instead of p (x). Instead of ist(x, quote(happy(y))),
we write ist(x, happy(y)).

Example 3. The term 1 + x with x ∈ V is quotable, i.e.,
1 + x ∈ Tq . 1 + y with y ∈ V∞ \ V is not. The term
1+x is not quotable because it contains the symbol +; but
the term 1+x is, because it is the image by µ of 1+x, which
is quotable.
Example 4. The formula p(x) with x ∈ V is quotable, i.e.,
p(x) ∈ Lq . The formula P (1+x) is not quotable since 1+x
is not a quotable term. The formula p(1) is quotable. The
formula T(1) is not.
Remark that whenever we quote a formula that already con-
tains a quotation, we put said quotation in the quote symbol,
to add a level of quotation:
Example 5. µ(P (1 = 1)) = P (quote(1 = 1)).
The formulas in Lq do not use the predicate T, it can never
be quoted. This is an important restriction that avoids the
complications of Tarski’s Theorem of the undefinability of
Truth.

4.3 Substitution on quotations
In our axiomatization, we also need a substitution function
that substitutes not variables but quoted variables. Its defini-
tion is similar to the standard substitution on first-order logic
formulas:

Definition 6. Given t in T , given x in V , we define z[x ←
t]q on z ∈ Q inductively:
f(t1, . . . , tn)[x← t]q = f(t1[x← t]q, . . . , tn[x← t]q)

x[x← t]q = t

p(t1, . . . , tn)[x← t]q = p(t1[x← t]q, . . . , tn[x← t]q)

y[x← t]q = y

∀(t1, t2)[x← t]q = ∀(t1[x← t]q, t2[x← t]q) if t1 ̸= x

∀(x, t2)[x← t]q = ∀(x, t2)
t1[x← t]q = t1 in all other cases

Range: x, y ∈ V (x ̸= y), t1, . . . , tn ∈ Tq, f ∈ F , p ∈ P

This quoted substitution function works just like the stan-
dard substitution:
Example 6.
p(x)∧∀(y, q(x, y))[x← 1+1]q = p(1+1)∧∀(y, q(1+1, y))

4.4 Unquoting
We are now ready to define the converse of the quoting op-
erator µ:
Definition 7. The unquote operator µ-1 is defined on Qv by
the following recursive definition.

µ-1(f(t1, . . . , tn)) = f(µ-1(t1), . . . , µ-1(tn))

µ-1(p(t1, . . . , tn)) = p(µ-1(t1), ..., µ-1(tn))

µ-1(quote(t)) = t

µ-1(φ
1
∧φ

2
) = µ-1(φ

1
) ∧ µ-1(φ

2
)

µ-1(¬φ) = ¬µ-1(φ)

µ-1(∀(x, φ)) = ∀x. µ-1(φ[x← quote(x)]q)

µ-1(x) = x

µ-1(t) = t in all other cases
Range: f ∈ F , p ∈ P , x ∈ V , t, t1, . . . , tn ∈ Qv

The reason we use the notation µ-1 for our unquote opera-
tor is that it is the inverse of µ on the image of µ. µ-1 is not
limited to the inverse of µ, but it extends it.
Proposition 1. µ is injective on Lq .

Proof. We can prove by induction on (α, β) ∈ (Tq ⊔ Lq)
2

that µ(α) = µ(β) implies α = β.

Proposition 2. ∀x ∈ Lq ∪ Tq, µ-1(µ(x)) = x

Proof. This is proven by induction on x ∈ Lq ∪ Tq .

Intuitively, µ adds a level of underlining on quotable formu-
las and terms, and µ-1 removes it:
Example 7. µ-1(ist(x, happy(y))) = ist(x, happy(y))

5 Defining Qiana
We can now define Qiana and its core axioms. The predicate
T is designed to say that its argument is true in reality, as
given in the following axiom schema (for all φ ∈ Lq):

T(µ(φ))↔ φ (Atruth)



As famously shown by Tarski (1936), this form of predicate
can lead to self-referential formulas and incoherent theories
(see Enderton (2001) for a more modern description). Here,
the fact that we did not allow the quotation of T will protect
us from the pitfalls of Tarski’s theorem. We show this with
Proposition 3:

Proposition 3. Let S−T be the signature equal to S with-
out the symbol T . Let H−T be a coherent theory under
the signature S−T. Let H be the closure of H−T under
schema Atruth. H is coherent.

Proof. Let M−T be a model of H−T. We define M (the
model ofH) as equivalent toM−T on all symbols except T.
For each φ in L we check whether µ-1(φ) is true under
M−T; M |= T(φ) if and only if that is the case.

5.1 Truth axioms
The axiom schema Atruth is not explicitly in a Qiana theory.
It will be subsumed by the following axiom schemas, which
conveniently admit direct counterparts in the finite axioma-
tization process of section (see Section 7.3). x1, ..., xn are
distinct variables.
∀x1, . . . , xn. T(p(t1, . . . , tm))↔ p(µ-1(t1), . . . , µ-1(tm))

(A1)
∀x1, . . . , xn. T(A∧B)↔ (T(A) ∧T(B)) (A2)
∀x1, . . . , xn. T(¬A)↔ (¬T(A)) (A3)
∀x1, . . . , xn. T(∀(x,A))↔ (∀x. T(A[x← quote(x)]q))

(A4)
Range: p ∈ P, t1, . . . , tn ∈ Tv, A,B ∈ Qv, x ∈ V
Axiom schema A1 concerns the truth of the quotation of
an atomic formula. Axiom schemas A2 and A3 are about
the Boolean connectives. Note that, different from Atruth,
Schemas A1-4 apply also to non-well-formed terms.

Example 8. The formula T(¬2) ↔ ¬T(2) is an instance
of A3.

Axiom schema A4 is the treatment of the universal quan-
tification. We substitute the quotation x of a variable x
by quote(x). Indeed, x is a constant symbol, and this
mechanism enables to effectively simulate the quantification
through a quotation. The following example illustrates this
mechanism.

Example 9. We show A1-4|=T(∀(x, P (x)))↔∀x. P (x).
To prove this, let M be a model of A1-4. We have:
M |= T(∀(x, P (x)))
iff M |= ∀x. T(P (x)[x← quote(x)]q) as M |= A4

iff M |= ∀x. T(P (quote(x)))

iff M |= ∀x. P (µ-1(quote(x))) as M |= A1

iff M |= ∀x. P (x) by Definition 7

We are now ready to prove that any instance of Atruth is a
logical consequence of the theory A1-A4.

Proposition 4. A1-4 |= Atruth.

Proof. We prove this via induction on a larger property: Let
A ∈ Lv with no free quoted variables (ie, each x is quanti-

fied by a ∀). Let x1, . . . , xn be the free variables of A. Then
A1-4 |= ∀x1, . . . , xn. T(A)↔ µ-1(A)

We detail the proof in the supplementary material.

5.2 Reasoning axioms
Reasoning axioms endow contexts with some inference
power. They say that contexts that “know” some things must
also know some direct consequences of said things. We first
introduce a few general schemas to this end, including as-
sociativity, commutativity, and distributivity. For example,
schema A5 tells us that in any context (represented by vari-
able xc) if the conjunction of two formulas is true (repre-
sented by their quotations through variables x1 and x2), then
the first of these formulas is also true.
∀xc, x1, x2. ist(xc, x1∧x2)→ ist(xc, x1) (A5)
∀xc, x1, x2. ist(xc, x1∧x2)↔ ist(xc, x2∧x1) (A6)
∀xc, x1. ist(xc,¬¬x1)↔ ist(xc, x1) (A7)
∀xc, x1, x2, x3. ist(xc, (x1∧x2)∧x3)

↔ ist(xc, x1∧(x2∧x3)) (A8)
∀xc, x1, x2, x3. ist(xc, (x1∧x2)∨x3)

↔ ist(xc, (x1∨x3)∧(x2∨x3)) (A9)
Other properties of associativity, commutativity, and dis-
tributivity can be deduced from the above, also with the help
of the definition of (a∨b) as ¬(¬a∧¬b). Next, we introduce
the disjunctive syllogism (modus ponens), which says that if
an agent knows ϕ and ϕ⇒ ψ, then it also knows ψ:

∀xc, x1, x2. ist(xc, x1∨x2) ∧ ist(xc,¬x1)
→ ist(xc, x2) (A10)

We also introduce an axiom schema that gives a context
some ability to handle ∀: A quoted formula can be replaced
by each of its instantiations.
∀c. ist(c,∀(x, φ))→ ∀x. ist(c, φ[x← quote(x)]q) (A11)

Range: x ∈ V , ∀(x, φ) ∈ L
We illustrate the use of schema A11 with the example from
the introduction:

Example 10.
ist(believes(J),∀x.capulet(x)→ nice(x))→

∀x. ist(believes(J), capulet(quote(x))→ nice(quote(x)))

5.3 Qiana
We can now formally define a Qiana-closure theory:

Definition 8 (Qiana-closure theory). LetH be a theory. The
Qiana-closure of H , denoted by HC , is the theory

HC = H ∪ A1-A11.

As an immediate property, we have semi-decidability:

Proposition 5 (Semi-decidability). If a theory H is recur-
sively enumerable, then the problem of deciding whether its
Qiana closureHC entails some formulaφ is semi-decidable.

Proof. Axiom schemas A1-A11 are recursive. Any recur-
sively enumerable theory Σ leads to semi-decidability of the
entailment problem: given ϕ, decide whether Σ |= ϕ.



6 Applications
6.1 Reasoning in Epistemic Contexts
Let us now reconsider the example of Romeo and Juliet from
the introduction. For simplicity’s sake, we will not consider
time modeling, which is vastly orthogonal to the features of
our formalism. This choice will result in seemingly absurd
simultaneity but should not hamper understanding. We start
with our hypotheses from the introduction. We skip the de-
scription of suicide and consider death a direct consequence
of believing one’s love to be dead.
∀ϕ. ist(says(FriarLaurence), ϕ)→ T(ϕ) (1)
∀x, y. madlyLoves(x, y) ∧ ist(believes(x), dead(y))
→ dead(x) (2)

Next, we state some obvious facts from the tragedy:
madlyLoves(Romeo, Juliet) (3)
madlyLoves(Juliet, Romeo) (4)
ist(says(FriarLaurence),
∀(x, drinkPotion(x)→ appearDead(x))) (5)

drinkPotion(Juliet) (6)
Finally, we need some world knowledge: by definition, peo-
ple can see if someone appears dead. They can also see if
someone is dead.
∀c, x. appearDead(x) → ist(c, appearDead(x)) (7)

∀x, y. dead(y)→ ist(x, dead(y)) (8)
The next hypothesis is perhaps best summed up as “Romeo
does not know how to check someone’s pulse”:
∀x.ist(believes(Romeo), appearDead(x)→ dead(x)) (9)

We can now see the tragedy unfold:
∀x.drinkPotion(x)→ appearDead(x) from 1, 5 (10)
appearDead(Juliet) from 6 and 10 (11)
ist(believes(Romeo), appearDead(Juliet)) from 7, 11

(12)
ist(believes(Romeo), dead(Juliet)) from 12 and 9 (13)
dead(Romeo) from 13, 3, and 2 (14)
ist(believes(Juliet), dead(Romeo)) from 14 and 8 (15)
dead(Juliet) from 15, 2, and 4 (16)

6.2 Paraconsistency
In first-order logic, an inconsistent theory can be used to de-
duce anything: ifH ⊢ (φ∧¬φ) thenH ⊢ alive(Elvis). This
phenomenon is called the principle of explosion. While this
is still true in Qiana theories, it is not true of the beliefs mod-
eled inside contexts: a context can contain both a statement
and its negation, and no axiom schema of Qiana allows de-
ducing arbitrary statements from such beliefs (neither inside
the context nor outside). This can be useful, e.g., to model
contradictory beliefs. In our running example of Romeo and
Juliet, let us assume for a moment that Romeo did notice
that Juliet had a pulse. While this should tell him that Juliet
is alive, he is too desperate to draw this conclusion:
H := {dead(Juliet), hasPulse(Juliet),
∀x. ¬(alive(x) ∧ dead(x)),∀x. hasPulse(x)→ alive(x)}

In normal first-order logic, this is an inconsistent theory, and
it can thus be used to deduce anything: H ⊢ alive(Elvis).
Qiana, in contrast, emulates a paraconsistent logic inside
contexts. Hence, the principle of explosion does not apply
inside contexts:

H ′ := {ist(believes(Romeo), dead(Juliet))
ist(believes(Romeo), hasPulse(Juliet))

ist(believes(Romeo),∀(x,¬(alive(x)∧dead(x))))
ist(believes(Romeo),∀(x, hasPulse(x)→ alive(x)))}

These contradictory thoughts now entail:
H ′ ⊢ ist(believes(Romeo), dead(Juliet))

H ′ ⊢ ist(believes(Romeo),¬dead(Juliet))
However, they do not imply that Romeo believes anything:

H ′ ̸⊢ ist(believes(Romeo), alive(Elvis))
If we want to keep the principle of explosion inside contexts,
we can add the following axiom schema to our theories (for
all φ,ψ ∈ Lq):

∀c. ist(c, φ)→ ist(c, φ∨ψ) (17)
Together with modus ponens, it allows to deduce any-
thing from a contradiction. From ist(c, φ) we deduce
ist(c, φ∨ψ). From ist(c,¬φ) and ist(c, φ∨ψ) we deduce
ist(c, ψ).

6.3 Mixing different types of contexts

Until now, we have shown how to use contexts to model
beliefs, and we have considered the play itself as the truth.
However, contexts can also encapsulate a story. To illustrate
this, let us consider two versions of the story of Romeo and
Juliet: the original and a fanfiction variant. In the fanfiction
variant, Romeo decides to check Juliet’s pulse and notices
that she is alive. He waits for her to come to her senses, and
then they leave together and live happily ever after.

We start by declaring that the fanfiction and the original
are both stories:

story(fanfiction) ∧ story(original)
In the fanfiction, Romeo checks Juliet’s pulse; in the origi-
nal, he does not:

ist(fanfiction, checkPulse(R, J))
ist(original,¬checkPulse(R, J))

In all stories, if Romeo checks Juliet’s pulse, he knows she
is alive. In all stories, for all persons, if Romeo does not feel
their pulse and they appear dead, he thinks they are dead.
∀s. story(s)→

ist(s, checkPulse(R, J)→ ist(believes(R), alive(J)))

∀s. story(s)→ ist(s,∀x. appearDead(x) ∧ ¬checkPulse(R,x)

→ ist(believes(R),¬alive(x)))

In all stories, Juliet appears dead. In all stories, if Romeo
knows Juliet is alive, he does not kill himself, but he does if
he thinks she is dead. In all stories, the protagonists will be
either both dead or both alive:
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∀s. story(s)→ ist(s, appearDead(J))

∀s. story(s)→ ist(s, ist(believes(R), alive(J))

→ alive(R))

∀s. story(s)→ ist(s, ist(believes(R),¬alive(J))

→ ¬alive(R))

∀s. story(s)→ ist(s, alive(R)↔ alive(J))

These formulas – together with the axioms of Qiana – are
enough to deduce that there is the usual ending in the orig-
inal version of the story and a vastly more fortunate one in
the fanfiction story:

ist(original,¬alive(J) ∧ ¬alive(R))

ist(fanfiction, alive(J) ∧ alive(R))

7 Finite axiomatization
7.1 Structure and overview
We will now show how the Qiana closure of any finite theory
can be finitely axiomatized. Let H be a given finite theory
on a quotation-compatible signature S. The Qiana-closure
of H is HC = H ∪ A1-A4 ∪ A5-A10 ∪ A11 (see Defini-
tion 8). Both A1-A4 and A11 are infinite. Hence, HC is
also infinite. In this section, we will present a process to
define another theory Hfin

C that is both finite and equisatisfi-
able with HC . This will allow us to test the satisfiability of
HC by feeding finitely many formulas (the elements ofHfin

C )
to a theorem prover. Subsections 7.2 and 7.3 will introduce
secondary sets of use in this finite axiomatization. Subsec-
tion 7.4 concludes the presentation of this process and gives
the relevant results.

We write Hfin
ist = A5-A10. Fortunately, Hfin

ist is finite.
However, we need to replace the infinite axiom schemas
A1-A4 and A11. To do so, we extend the signature S to
another signature S′, which contains new symbols that we
describe with additional (finite) schemas. Together, these
new schemas form the set Hfin

tools. We present these symbols
and the set Hfin

tools in Subsection 7.2. Resting on these sym-
bols and their definition schemas, we introduce finite coun-
terparts to our infinite schemas in Subsection 7.3. These are
the sets Hfin

T and H∀. Together, these sets allow to define a

new set Hfin
C = H ∪ A5-A10 ∪Hfin

tools ∪H
fin
T ∪H∀, which is

finite and equisatisfiable withHC (see Figure 1). We present
some interesting properties of the process in Subsection 7.4,
the most important being the correctness of the process.

7.2 Additional symbols
We consider a fixed and finite theory H on S. Without loss
of generality, we introduce fresh function symbols Sub, E,
Wft, isTerm, and a 2-ary predicate symbol =. By adding
these symbols to S we obtain a larger signature S′. We
now give the axiom schemas that describe the behavior
of these symbols. The symbol = is the standard equal-
ity predicate defined by the following axioms, in which
x, y, x1, . . . , xn, y1, . . . , yn are distinct variables:

∀x. x = x (A12)
∀x, y. x = y → y = x (A13)
∀x, y, z. x = y ∧ y = z → x = z (A14)
∀x1, .., xn, y1, .., yn. x1 = y1 ∧ .. ∧ xn = yn →

f(x1, .., xn) = f(y1, .., yn) (A15)
∀x1, .., xn, y1, .., yn. x1 = y1 ∧ .. ∧ xn = yn →

p(x1, .., xn)↔ p(y1, .., yn) (A16)
Range: f ∈ F, p ∈ P

The symbol isTerm checks whether its argument can be
expressed as a term. More precisely, isTerm(t) is true if t
is a closed term or has all its open variables behind a quote
statement:

∀x. isTerm(quote(x)) (A17)
∀t1, . . . , tn. (isTerm(t1) ∧ · · · ∧ isTerm(tn))→

isTerm(f(t1, . . . , tn)) (A18)
Range: f ∈ F
The symbol Wft stands for “well-formed term”. Intuitively,
Wft(t) is true iff t represents a quotation of a well-formed
term (i.e., t ∈ Qv):
∀y. Wft(quote(y)) (A19)
Wft(x) (A20)
∀t1, . . . , tn. (Wft(t1) ∧ · · · ∧Wft(tn))→ Wft(f(t1, . . . , tn))

(A21)
Range: x ∈ V , f ∈ F

The symbol E is the counterpart to µ-1 on quoted terms.
More precisely, E(t) is defined to inductively evaluate to the
value that t is a quotation of, when applicable:
∀t. isTerm(t)→ E(quote(t)) = t (A22)
∀t1, .., tn. isTerm(t1) ∧ .. ∧ isTerm(tn)→

E(f(t1, .., tn)) = f(E(t1), .., E(tn)) (A23)

∀t1, .., tn.(isTerm(t1) ∧ .. ∧ isTerm(tn))→
E(p(t1, .., tn)) = p(t1, .., tn) (A24)

∀t1, t2. E(∧(t1, t2)) = ∧(t1, t2) (A25)
∀t1, t2. E(∀(t1, t2)) = ∀(t1, t2) (A26)
∀t. E(¬(t)) = ¬(t) (A27)
E(x) = x (A28)

Range: x ∈ V , f ∈ F, p ∈ P



When no step of this induction can be carried out, we have
E(t) = t (Axiom Schema A24-A28).

The symbol Sub is an in-logic counterpart of the substitu-
tion operator in Definition 6. The term Sub(t1, t2, t3) repre-
sents t1[t2 ← t3]q:

∀t. isTerm(t)→ Sub(x, x, t) = t (A29)
∀t. isTerm(t)→ Sub(x, y, t) = y (A30)

∀t, t1, . . . , tn. (isTerm(t1) ∧ · · · ∧ isTerm(tn))→
Sub(x, f(t1, . . . , tn), t) =

f(Sub(x, t1, t), . . . , Sub(x, tn, t)) (A31)

∀t1, t2. (isTerm(t1) ∧ isTerm(t2))→
Sub(∀(x, t1), x, t2) = ∀(x, t2) (A32)

∀t1, t2. (isTerm(t1) ∧ isTerm(t2))→
Sub(∀(y, t1), x, t2) = ∀(y, Sub(t1, x, t2)) (A33)

∀t1, t2. (isTerm(t1) ∧ isTerm(t2))→
Sub(quote(t1), x, t2) = quote(t1) (A34)

Range: x, y ∈ V (x ̸= y), f ∈ F, p ∈ P
We group all these helper axiom schemas together as a the-
ory Hfin

tools:

Definition 9. Hfin
tools := A12-A34.

7.3 Finite counterparts to infinite schemas
Let us write HT = A1-4. The set HT defines the behav-
ior of T on well-formed formula quotations. Now that we
have introduced new symbols to act as in-logic counterparts
to the most important meta-operators of these schemas, we
can introduce new finite schemas that mimic the behavior of
A1-4 with finitely many formulas. This is done with Hfin

T :

Definition 10. Hfin
T = A1fin-A4fin.

∀t1, .., tn. (Wft(t1) ∧ .. ∧Wft(tn))→
T(p(t1, .., tn))↔ p(E(t1), .., E(tn)) (A1fin)

∀t1, t2. (isTerm(t1) ∧ isTerm(t2))→
T(t1∧t2)↔ (T(t1) ∧T(t2)) (A2fin)

∀t1. isTerm(t1)→ T(¬t1)↔ (¬T(t1)) (A3fin)

∀t1. isTerm(t1)→ (A4fin)
T(∀(x, t1))↔ (∀x. T(Sub(t1, x, quote(x))))

Range: p ∈ P \ {T}, x ∈ V
Likewise, we define schema A11fin as a finite counterpart to
schema A11.

∀t1, t2. isTerm(t1)→ ist(t2,∀(x, t1))→
∀x. ist(t2, Sub(t1, x, quote(x))) (A11fin)

Range: x ∈ V

7.4 Correctness
We can now formally definite the finite axiomatization of
Qiana on H as the set Hfin

C :

Definition 11.
Hfin

C := H ∪Hfin
ist ∪H

fin
tools ∪H

fin
T ∪A11

fin

Recall that the Qiana-closure of H is HC = H ∪ Hfin
ist ∪

A1-4 ∪ A11. The following theorem and corollary say that
it is equivalent to reason with the theories HC or Hfin

C :

Theorem 1. HC is coherent if and only if Hfin
C is coherent.

Proof. Recall that “HC is coherent” is equivalent to HC ̸|=
⊥. Hence the theorem becomes HC ̸|= ⊥ iff Hfin

C ̸|= ⊥. In
the supplementary material, we prove both directions of this
equivalence in Propositions 8 and 9.

Corollary 1. HC |= φ if and only if Hfin
C |= φ, for all φ

Proof. Apply Theorem 1 to the theory HC ∪ {¬φ}.

The following proposition says that the number of formulas
created by the finite axiomatization process is quadratic in
the total number of symbols, excluding the variables that are
not quotable.

Proposition 6. The cardinal of Hfin
ist ∪ H

fin
tools ∪ H

fin
T is in

O(|S|2), where |S| is the total number of symbols in S, ex-
cluding V∞ \ V .

To make this finite axiomatization process possible, we
had to introduce a finite number of quoted variables. Indeed,
each quoted variable needs to appear at least once within the
finite axiomatization. Since the process uses finitely many
formulas of finite length, it cannot handle an infinite number
of quoted variables. Nevertheless, any reasoning that can be
carried out with an infinite number of variables can also be
done with a finite number of variables:
Proposition 7. Let H be a theory, and let Hn

C be the Qiana
closure of H where V has size n ∈ N, and let H∞

C be the
Qiana closure of H obtained by allowing the set V to be
infinite. Let φ be any well-formed closed formula. Then if
H∞

C |= φ then there is some n ∈ N such that Hn
C |= φ.

Proof. Any proof derivation of φ from H∞
C uses finitely

many formulas, which are all in Hn
C for some n.

Thus, the finiteness of the set V of quotable variables is not a
limitation on the reasoning power. When checking some en-
tailment, we can iteratively increase the size of V to check if
the entailment appears. Considering that our theory is semi-
decidable rather than decidable to begin with, we do not lose
any deductive power.

8 Using Qiana in Theorem Provers
Our finite axiomatization allows us to transform the Qiana
closure of any finite theory into an equisatisfiable finite first-
order logic theory, which can then be fed into a theorem
prover. We have implemented a translator (in Python) that
accepts a set of Qiana formulas, derives their signature, and
outputs a finite set of Qiana axioms in the TPTP syntax (Sut-
cliffe, 2009).

This allows us to run the Romeo and Juliet example
from Section 6 in the Vampire theorem prover Riazanov and
Voronkov (2001). The reasoning takes 0.05 seconds on an
8th-generation Intel CPU laptop. Vampire duly proves that
both Romeo and Juliet die. The code and the example are
available at https://github.com/dig-team/Qiana.

https://github.com/dig-team/Qiana


9 Discussion
Distinguishing contexts. Formulas such as Formula (7)
in Section 6 imply that every object in the domain of dis-
course is a context. This is not a problem for our formalism,
but it is undeniably counter-intuitive. This issue could be ad-
dressed by resorting to many-sorted first-order logic (Ender-
ton, 2001), or to a special dedicated predicate for contexts.

In this paper, we chose to stick to standard (single-sorted)
first-order logic and we did not introduce a predicate for con-
texts. This decision was made to maintain the simplicity of
our presentation and definitions and to minimize restrictions
on compatible theorem provers.

The definition of V . We defined V as a finite subset of
V∞, which is in bijection with V . In formulas such as Ax-
iom A4, we connect x (an element of V ) with x (the corre-
sponding element of V ). This is a convenient way to present
our axioms without a lengthy discussion on fresh variables
and the like. However, in first-order logic, bound variables
can be freely renamed with fresh variables. In some schemes
(like Formula A4), we limited the range of some x to V
rather than V∞. But all the bound variables can be replaced
with elements of V∞ without issue. The only aspect of V
that matters is that is has the same size as V . All that the
notion of “quotable variable” amounts to is a limitation on
the number of distinct variables in a quotable formula; along
with giving us a convenient way to state our axioms.

10 Conclusion
We have introduced Qiana, a formalism based on first-order
logic that allows reasoning on contexts, quantifying over
contexts, and quantifying over formulas. Thanks to our fi-
nite axiomatization process, Qiana theories can be used with
any TPTP compatible theorem prover. We have shown that
Qiana can be used to model beliefs, stories, and paraconsis-
tency.

We expect Qiana to be usable for and adaptable to vari-
ous types of contextual reasoning cases, including reasoning
on hypothetical scenarios, fake news, and different points of
view. Future work can investigate how Qiana can be used
in automated reasoning that integrates data from different
sources that are not deemed trustworthy by default.
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A Proof of truth definition
To prove Property 4 we will instead prove Lemma 1, which
is stronger.

Lemma 1. Let A ∈ Lv with no free quoted variables (ie,
each x is quantified by a ∀). Let x1, . . . , xn be the free vari-
albes of A. Then

A1-4 |= ∀x1, . . . , xn. T(A)↔ µ-1(A)

We prove Lemma 1 by induction on A.
Base case Let M be a model of A1-4. Let us

prove that M |= ∀x1, . . . , xn. T(p(t1, . . . , tm)) ↔
µ-1(p(t1, . . . , tm)). For all assignments σ of variables
x1, . . . , xn, we have:
M,σ |= T(p(t1, . . . , tm))

iff M,σ |= p(µ-1(t1), . . . , µ-1(tm)) as M |= A1

iff M,σ |= µ-1(p(t1, . . . , tm)) by definition of µ-1

Negation Let M be a model of A1-4. Let us prove that
M |= ∀x1, . . . , xn.T(¬A)↔ µ-1(¬A). For all assignments
σ of variables x1, . . . , xn, we have:

M,σ |= T(¬A)
iff M,σ ̸|= T(A) as M |= A3

iff M,σ ̸|= µ-1(A) by IH

iff M,σ |= µ-1(¬A) by definition of µ-1

∀ Let M be a model of A1-4. Let us prove that M |=
∀x1, . . . , xn. T(∀(x,A)) ↔ µ-1(∀(x,A)). For all assign-
ments σ of variables x1, . . . , xn, we have:
M,σ |= T(∀(x,A))
iff M,σ |= ∀x. T(A[x← quote(x)]q) as M |= A4

iff M,σ |= ∀x.µ-1(A[x← quote(x)]q) by IH

iff M,σ |= µ-1(∀(x,¬A)) by definition of µ-1

B Proof of finite axiomatization
We will now prove Theorem 1. To simplify the proof,
we will omit the existence of schema A11 and its finite
counterpart schema A11fin. The reason is that they are vastly
orthogonal to the other difficulties of the proof and can be
handled in the same way as we deal with the other axioms
in this proof, except they form a more straightforward case.
Hence, they would only bloat the proof with unnecessary
tedium largely redundant in spirit with the rest of the
reasoning.

Therefore, for the purpose of this proof, we assume:
HC := H ∪Hfin

ist ∪HT

Hfin
C := H ∪Hfin

ist ∪H
fin
T ∪H

fin
tools

We now prove that HC is coherent if and only if Hfin
C is

coherent through Proposition 8 and Proposition 9.

Proposition 8.
Hfin

C ̸|= ⊥ → HC ̸|= ⊥

Proof. We want to prove that if Hfin
C = H ∪Hfin

ist ∪H
fin
tools ∪

Hfin
T has a model, then HC = H ∪Hfin

ist ∪HT also has one.
We will now prove Hfin

C |= HT, which is sufficient.

Lemma 2. Let t1, t2 ∈ Qv with free variables
x1, . . . , xm, all within quotes. Then for all x, Hfin

C |=
∀x1, ..., xm. Sub(t1, x, t2) = t1[x← t2]q .

Proof. Proven by direct recursion on t1.

Lemma 3. Let t ∈ Qv with free variables x1, . . . , xm, all
within quotes. Then Hfin

C |= ∀x1, . . . , xm. isTerm(t).

Proof. Proven by direct recursion on T .

Lemma 4. Let t ∈ Tv with free variables x1, . . . , xm, all
within quotes. Then

Hfin
C |= ∀x1, . . . , xn. E(t) = µ-1(t)

Proof. Proven by direct recursion on T , as E is by con-
struction built on the same recursion as µ-1.

Armed with these lemmas, we can prove all schemas of
HT with their direct counterpart from Hfin

T .

We provide a sketch for the more complicated case of
schema A1, highlighting the most important elements of the
proof.

Let t1, . . . , tk ∈ Tv with free variables x1, . . . , xn.
By construction of Wft we have ∀x1, . . . ,∀xn. Wft(ti) for
all i. Hence by schema A1fin we have ∀x1, . . . ,∀xn.
T (p(t1, . . . , tk)) ↔ p(E(t1), . . . , E(tk)). Lemma 4 allows
us to conclude.

We now prove the other direction of the equivalence.

Proposition 9.
HC ̸|= ⊥ → Hfin

C ̸|= ⊥

Proof. Let M be a model of HC . We will define a model
Mf and prove that it is a model of Hfin

C . We define Mf as
follows:

Let D be the domain of M . Recall that T is the set of
all terms under S. Without loss of generality, we assume
D ∩ T = ∅. We define Df as the set obtained by adding D
and removing variables to and from the recursive definition
of T . We define the M -interpretation of elements of t ∈ Df

as the value in D that we obtain by recursively evaluating T
under M .

• UnderMf , the interpretation of any function symbol from
S is to recursively build the element of Df . Intuitively,
we “only” store the terms as we evaluate them without
performing any other operation.

• Under Mf , the interpretation of any predicate symbol is
to turn all arguments in Df to their M -interpretation and
then interpret the predicate as in M .

• = is true equality on Df .



• Wft is true only on elements ofDf recursively built with
elements of V , F , and quote(y) for y ∈ D. Remark that
Wft is the minimal predicate that satisfies schemas A19 to
A21 and is built with schemas that follow the recursive
construction of Tv .

• isTerm is likewise the minimal predicate to satisfy its def-
inition schemas (schemas A17 to A18). It is only true on
elements recursively built as terms.

• Sub(t2, x, t1) is recursive and localy behaves as t2[x ←
t1]q if the top symbol of t2 is coherent with t2 being in
Qv . Otherwise sub simply returns t2. If the first argu-
ment of sub is not in V , then sub returns t2. The intuition
is that sub is a recursive function defined as “behaves like
t2[x ← t1]q if it makes sense to do so (locally). Other-
wise, return t2.”.

• E likewise behaves like µ-1 where it locally makes sense
to do so and otherwise is identity. Remark that E(t) =
µ-1(t) for t ∈ Tv .

Lemma 5. Let φ be a formula well-defined on S. Then
M |= φ iff Mf |= φ

Proof. (Sketch) At each step of term evaluation, the M -
interpretation of the result is equal to the same operation
applied to the M interpretations of the arguments. Since
every term will have to be interpreted through a predicate
symbol from S, and therefore sent to its M -interpretation
before evaluation, everything happens as though only the
M -interpretation of the values was considered. This is ex-
actly the application ofM itself to the formulas. This proves
Lemma 5.

We recall that M |= HC , which means M |= H ∪
Hfin

ist ∪ HT ∪ HT. Hence and by Lemma 5, Mf |= H and
Mf |= Hfin

ist . By direct application of the definitions, we see
that Mf |= Hfin

tools. Since Hfin
C = H ∪Hfin

ist ∪H
fin
tools ∪H

fin
T , we

now need to prove only that Mf |= Hfin
T . We prove this by

checking that Mf accepts schemas A1fin to A4fin. As they
are quite similar to one another, we only provide explana-
tions for the more complicated case of schema A1fin.

Let p be a predicate symbol of arity n. Further, let
v1, . . . , vn ∈ Df such that Mf |= Wft(vi) for all i.
By definition of Wft, there is some selection of variables
x1, . . . , xm, a valuation σ : x1, . . . , xm → Df , and terms
t1, . . . , tn ∈ Tv such that: ∀i ∈ [1, n], (Mf , σ)(ti) = vi.
By definition of HT and Lemma 5, we have: Mf |=
∀x1, . . . , xm. T (p(t1, . . . , tn)) ↔ p(µ-1(t1), ..., µ-1(tn)).
Hence Mf , σ |= T (p(t1, . . . , tn)) ↔ p(µ-1(t1), ..., µ-1(tn)).
E equals µ-1 on Tv , hence this gives Mf , σ |=
T (p(t1, . . . , tn)) ↔ p(E(t1), ..., E(tn)). Finally, this gives
Mf |= T (p(v1, . . . , vn))↔ p(E(v1), . . . , E(vn)), which is
what we wanted to prove.

Remark that we can handle the case of schema A4fin in
a vastly similar fashion, relying on the similarity of Sub to
_[_← _]q instead of to similarity of E to µ-1.
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