Théorème de Banach-Steinhaus et applications :

Recasages possibles (avec Fourier) : 205-208-246. Référence : GOURDON, *Analyse*.

1 Théorème de Banach-Steinhaus

Theorème 1

Soient $(E, \|\cdot\|_E)$ un Banach, $(F, \|\cdot\|_F)$ un EVN, et $(T_i)_{i \in I} \in \mathcal{L}_c(E, F)^I$ une famille d'opérateurs linéaires continus. Alors, l'alternative suivante a lieu :

- $soit \sup_{i \in I} |||T_i|||_{\mathcal{L}_c(E,F)} < \infty$
- soit il existe un G_{δ} dense dans $(E, \|\cdot\|_{E})$, A, vérifiant : $\forall x \in A$,

$$\sup_{i \in I} ||T_i(x)||_F = +\infty.$$

Remarque. On appelle G_{δ} une intersection dénombrable d'ouverts.

Démonstration : On note, pour $i \in I$ et $n \in \mathbb{N}$, $X_{n,i} = \{x \in E, \|T_i(x)\|_F > n\}$. Par continuité des T_i et de la norme, $X_{n,i}$ est un ouvert de $(E, \|\cdot\|_E)$. On note pour $n \in \mathbb{N}$, $X_n = \bigcup_{i \in I} X_{n,i}$. C'est une suite d'ouverts. Deux situations se présentent :

Première situation : pour tout $n \in \mathbb{N}$, X_n est dense dans $(E, \|\cdot\|_E)$. Alors, le lemme de Baire appliqué dans l'espace $(E, \|\cdot\|_E)$ complet assure que $A := \bigcap_{n \in \mathbb{N}} X_n$ est un G_δ dense dans $(E, \|\cdot\|_E)$.

De plus $\forall x \in A$, on a :

 $\forall n \in \mathbb{N}, \exists i_n \in I \text{ tel que } x \in X_{n,i_n} \text{ i.e. } ||T_{i_n}(x)||_F > n.$

On a donc

$$\sup_{i \in I} ||T_i(x)||_F = +\infty.$$

Deuxième situation : il existe un entier n_0 tel que X_{n_0} n'est pas dense dans $(E, \|\cdot\|_E)$. Alors, il existe r > 0 et $x \in E$ tel que $X_{n_0} \cap B_E^{\circ}(x,r) = \emptyset$, donc $B_E^{\circ}(x,r) \subset X_{n_0}^c = \bigcap_{i \in I} X_{n_0,i}^c$. Ainsi, remarquons que pour $z \in B_E^{\circ}(0,1)$, pour $i \in I$,

$$||T_i(z)||_F = \left\| \frac{T_i(x+rz) - T_i(x)}{r} \right\|_F.$$

Puisque x+rz et x sont des éléments de $B_E^{\circ}(x,r)$, l'inclusion précédente donne pour $z\in B_E^{\circ}(0,1)$, pour $i\in I$,

$$\left\|T_i(z)\right\|_F \le \frac{2n_0}{r}.$$

Ainsi,

$$\sup_{i \in I} |||T_i|||_{\mathcal{L}_c(E,F)} \le \frac{2n_0}{r} < \infty.$$

2 Une première application aux séries de Fourier

On rappelle que pour $N \in \mathbb{N}$, on définit le noyau de Dirichlet par : $\forall t \in \mathbb{R}$,

$$D_N(t) = \sum_{k=-N}^{N} e^{ikt} = \begin{cases} \frac{\sin((N+\frac{1}{2})t)}{\sin(\frac{t}{2})} & \text{si } t \neq 0[2\pi] \\ 2N+1 & sinom \end{cases}.$$

Pour $f \in L^1(\mathbb{T})$, on définit les coefficients de Fourier de f par :

$$\forall n \in \mathbb{Z}, \ c_n(f) = \frac{1}{2\pi} \int_0^{2\pi} f(t)e^{-int}dt.$$

Enfin, la série de Fourier de f est la série de fonctions admettant pour sommes partielles $(S_N(f))_{N\in\mathbb{N}}$,

où :
$$\forall N \in \mathbb{N}, S_N(f) = D_N * f = \sum_{k=-N}^N c_k(f)e^{ik}$$
.

Proposition 1

Soit $x \in \mathbb{R}$. Il existe une fonction $f \in \mathcal{C}^0(\mathbb{T})$ dont la série de Fourier diverge en x.

Démonstration : Pour $x \in \mathbb{R}$, et $N \in \mathbb{N}$, on définit :

$$\Lambda_{N,x}: \begin{bmatrix} (\mathcal{C}^0(\mathbb{T}), \left\|\cdot\right\|_{\infty}) & \to & (\mathbb{R}, \left|\cdot\right|) \\ f & \mapsto & S_N(f)(x). \end{bmatrix}.$$

C'est un opérateur linéaire (clair), continu, en effet

$$\forall f \in \mathcal{C}^{0}(\mathbb{T}), \ |\Lambda_{N,x}(f)| = |D_{N} * f(x)| \leq \frac{1}{2\pi} \int_{0}^{2\pi} |D_{N}(t)f(x-t)| dt \leq ||D_{N}||_{L^{1}} ||f||_{\infty}.$$

De plus, on obtient l'estimation : $|||\Lambda_{N,x}|||_{\mathcal{L}_c(\mathcal{C}^0(\mathbb{T}),\mathbb{R})} \leq ||D_N||_{L^1}$. Montrons que c'est une égalité : on considère $\varepsilon > 0$ et $f_\varepsilon : t \in \mathbb{R} \mapsto \frac{\overline{D_N(x-t)}}{|D_N(x-t)|+\varepsilon}$. On remarque immédiatement que $f_\varepsilon \in \mathcal{C}^0(\mathbb{T})$, et $||f_\varepsilon||_\infty \leq 1$. De plus,

$$|\Lambda_{N,x}(f_{\varepsilon})| = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{|D_{N}(t)|^{2}}{|D_{N}(t)| + \varepsilon} dt \leq |||\Lambda_{N,x}|||_{\mathcal{L}_{c}(\mathcal{C}^{0}(\mathbb{T}),\mathbb{R})} ||f_{\varepsilon}||_{\infty} \leq |||\Lambda_{N,x}|||_{\mathcal{L}_{c}(\mathcal{C}^{0}(\mathbb{T}),\mathbb{R})}.$$

On applique le théorème de convergence dominée : on remarque que l'intégrande converge vers $|D_N|$ lorsque ε tend vers 0. La domination est fournie par la fonction $|D_N|$, intégrable et indépendante de ε . On conclut donc à l'égalité : $|||\Lambda_{N,x}|||_{\mathcal{L}_c(\mathcal{C}^0(\mathbb{T}),\mathbb{R})} = ||D_N||_{L^1}$.

Observons maintenant que $\|D_N\|_{L^1} \xrightarrow[N \to +\infty]{} +\infty$. En effet, par parité, on a :

$$||D_N||_{L^1} = \frac{1}{\pi} \int_0^{\pi} \left| \frac{\sin((N + \frac{1}{2})t)}{\sin(t/2)} \right| dt \ge \frac{2}{\pi} \int_0^{\pi} \left| \frac{\sin((N + \frac{1}{2})t)}{t} \right| dt,$$

$$||D_N||_{L^1} \ge \frac{2}{\pi} \int_0^{N\pi} \frac{|\sin(u)|}{u} du = \frac{2}{\pi} \sum_{k=0}^{N-1} \int_{k\pi}^{(k+1)\pi} \frac{|\sin(u)|}{u} du.$$

$$||D_N||_{L^1} \ge \sum_{v=u-k\pi} \frac{2}{\pi} \sum_{k=0}^{N-1} \int_0^{\pi} \frac{\sin(v)}{v + k\pi} dv \ge \frac{2}{\pi} \sum_{k=0}^{N-1} \frac{\int_0^{\pi} \sin(v) dv}{(k+1)\pi} = \frac{4}{\pi^2} \sum_{k=1}^{N} \frac{1}{k} \sum_{N \to +\infty}^{\infty} \frac{4}{\pi^2} \ln(N).$$

On applique ainsi le théorème de Banach-Steinhaus à la suite d'opérateurs linéaires continus $(\Lambda_{N,x})_{N\in\mathbb{N}}$, définie sur l'espace de Banach $(\mathcal{C}^0(\mathbb{T}),\|\cdot\|_{\infty})$. Puisque

$$\sup_{N\in\mathbb{N}}|||\Lambda_{N,x}|||_{\mathcal{C}^0(\mathbb{T})'}=\sup_{N\in\mathbb{N}}||D_N||_{L^1}=+\infty,$$

on déduit l'existence d'un G_{δ} , A(x), dense dans $(\mathcal{C}^0(\mathbb{T}), \|\cdot\|_{\infty})$ tel que : pour tout $f \in A(x)$,

$$\sup_{N \in \mathbb{N}} |\Lambda_{N,x}(f)| = \sup_{N \in \mathbb{N}} |S_N(f)(x)| = +\infty.$$

Ceci montre en particulier l'existence d'une fonction continue dont la série de Fourier diverge en x.

Remarque. On a en fait démontré beaucoup mieux que ça! Avec les notations introduites dans la preuve, puisque \mathbb{R} est sépérable, on considère $(x_n)_{n\in\mathbb{N}}$ une suite dénombrable dense (par exemple les rationnels). On note $A=\bigcap_{n\in\mathbb{N}}A(x_n)$. En écrivant $A(x_n)=\bigcap_{k\in\mathbb{N}}O_k^n$ avec O_k^n , un ouvert de

 $(\mathcal{C}^0(\mathbb{T}), \|\cdot\|_{\infty})$ (puisque c'est un G_{δ} , c'est possible), on obtient $A = \bigcap_{n \in \mathbb{N}} \bigcap_{k \in \mathbb{N}} O_k^n$. Comme \mathbb{N}^2 est

dénombrable, le lemme de Baire affirme que A est dense dans $(C^0(\mathbb{T}), \|\cdot\|_{\infty})$. On a donc contruit un monstre mathématique : un ensemble dense dans $(C^0(\mathbb{T}), \|\cdot\|_{\infty})$, dont les éléments sont des fonctions continues ayant leur série de Fourier qui diverge sur une partie dense de \mathbb{R} ! Ce résultat est néanmoins à relativiser : exhiber un exemple de fonction dont la série de Fourier diverge en un point n'est pas du tout facile (voir Hauchecorne). De plus, il est à mettre en parallèle avec le résultat de Carleson : le série de Fourier d'une fonction L^p converge (ponctuellement) presque partout (pour $p \in]1, +\infty[$).

3 Une application similaire en analyse numérique

On introduit, pour une fonction f définie sur un intervalle [a,b] de \mathbb{R} , la famille de polynômes de Lagrange associée à f, $(\Pi_n(f))_{n\in\mathbb{N}^*}$, où, à $n\in\mathbb{N}^*$ fixé, $\Pi_n(f)$ désigne le polynôme interpolateur de Lagrange de f associé à la subdivision régulière de [a,b] comportant n+1 points, i.e.

$$\forall x \in \mathbb{R}, \ \Pi_n(f)(x) = \sum_{k=0}^n f(x_k^n) \underbrace{\prod_{\substack{j=0,\\j\neq k}}^n \frac{x - x_j^n}{x_k^n - x_j^n}}_{:=L_i^n(x)},$$

et $x_i^n = a + i \frac{b-a}{n}$, et $h = \frac{b-a}{n}$ est le pas de la subdivision.

Theorème 2

Il existe $f \in \mathcal{C}^0([a,b],\mathbb{R})$ telle que $\|\Pi_n(f) - f\|_{\infty}^{[a,b]}$ diverge quand n tend vers $+\infty$.

Démonstration : Pour $n \in \mathbb{N}^*$, on introduit :

$$\varphi_n: \begin{bmatrix} (\mathcal{C}^0([a,b],\mathbb{R}), \|\cdot\|_\infty^{[a,b]}) & \to & (\mathcal{C}^0([a,b],\mathbb{R}), \|\cdot\|_\infty^{[a,b]}) \\ f & \mapsto & \Pi_n(f) \end{bmatrix}.$$

Cet opérateur est bien défini (tout polynôme est continu), et est linéaire (clair). Montrons en la continuité et estimons sa norme d'opérateur :

$$\forall f \in \mathcal{C}^{0}([a,b],\mathbb{R}), \ \forall x \in [a,b], \ |\varphi_{n}(f)(x)| \leq \sum_{k=0}^{n} \|f\|_{\infty}^{[a,b]} |L_{k}^{n}(x)| \leq \sup_{x \in [a,b]} \left(\sum_{k=0}^{n} |L_{k}^{n}(x)|\right) \|f\|_{\infty}^{[a,b]}.$$

Ainsi, φ_n est continue, et

$$|||\varphi_n|||_{\mathcal{L}_c(\mathcal{C}^0([a,b]))} \le \sup_{x \in [a,b]} \left(\sum_{k=0}^n |L_k^n(x)| \right).$$

Montrons l'égalité : on considère $x_0 \in [a,b]$ tel que $\sup_{x \in [a,b]} \left(\sum_{k=0}^n |L_k^n(x)| \right) = \sum_{k=0}^n |L_k^n(x_0)|$. Soit

 $f_0 \in \mathcal{C}^0([a,b])$ telle que $||f_0||_{\infty}^{[a,b]} = 1$ et pour tout $k \in [0,n]$, $f_0(x_k^n) = \text{sign}(L_k^n(x_0))$ (c'est possible, affine par morceaux par exemple). Alors :

$$\varphi_n(f_0)(x_0) = \Pi_n(f_0)(x_0) = \sum_{k=0}^n f_0(x_k^n) L_k^n(x_0) = \sum_{k=0}^n |L_k^n(x_0)| = \sup_{x \in [a,b]} \left(\sum_{k=0}^n |L_k^n(x)| \right).$$

Par conséquent,

$$\sup_{x \in [a,b]} \left(\sum_{k=0}^{n} |L_k^n(x)| \right) = \varphi_n(f)(x_0) \le \|\varphi_n(f_0)\|_{\infty}^{[a,b]} \le \||\varphi_n||_{\mathcal{L}_c(\mathcal{C}^0([a,b]))} \|f_0\|_{\infty}^{[a,b]} = \||\varphi_n||_{\mathcal{L}_c(\mathcal{C}^0([a,b]))}.$$

Ceci conclut.

Montrons maintenant que $\sup_{x \in [a,b]} \left(\sum_{k=0}^{n} |L_k^n(x)| \right) \xrightarrow[n \to +\infty]{} +\infty$. On a, pour $k \in [0,n]$,

$$\left| L_k^n \left(a + \frac{h}{2} \right) \right| = \left| \prod_{\substack{j=0, \\ j \neq k}}^n \frac{a + \frac{h}{2} - a - jh}{a + kh - a - jh} \right| = \prod_{\substack{j=0, \\ j \neq k}}^n \left| \frac{j - \frac{1}{2}}{k - j} \right| = \frac{\prod_{j=0}^n \left| j - \frac{1}{2} \right|}{4|k - 1/2|k!(n - k)!} \ge \frac{(n - 1)!}{4nk!(n - k)!}.$$

Ainsi,

$$\sum_{k=0}^{n} \left| L_{k}^{n} \left(a + \frac{h}{2} \right) \right| \ge \frac{1}{4n^{2}} \sum_{k=0}^{n} \binom{n}{k} = \frac{2^{n}}{4n^{2}}.$$

Enfin,
$$\sup_{x \in [a,b]} \left(\sum_{k=0}^{n} |L_k^n(x)| \right) \ge \frac{2^n}{4n^2}$$
 conclut.

On peut alors appliquer le théorème de Banach-Steinhaus à la suite d'opérateurs linéaires continus $(\varphi_n)_{n\geq 1}$ dans l'espace de Banach $(\mathcal{C}^0([a,b],\mathbb{R}),\|\cdot\|_{\infty}^{[a,b]})$. On obtient l'existence d'une fonction continue sur [a,b], f, (en fait, d'un G_δ dense dans $(\mathcal{C}^0([a,b],\mathbb{R}),\|\cdot\|_{\infty}^{[a,b]}))$, pour laquelle :

$$\sup_{n \in \mathbb{N}^*} \|\varphi_n(f)\|_{\infty}^{[a,b]} = \sup_{n \in \mathbb{N}^*} \|\Pi_n(f)\|_{\infty}^{[a,b]} = +\infty.$$

(Voir phénomène de Runge).

Un corollaire immédiat

Soient $(E, \|\cdot\|_E)$ un Banach, $(F, \|\cdot\|_F)$ un EVN, et $(T_n)_{n\in\mathbb{N}} \in \mathcal{L}_c(E, F)^{\mathbb{N}}$ une suite d'opérateurs linéaires continus vérifiant : pour tout $x \in E$, $(T_n(x))_{n \in \mathbb{N}}$ converge dans $(F, \|\cdot\|_F)$ vers T(x).

- $\sup_{n \in \mathbb{N}} |||T_n|||_{\mathcal{L}_c(E,F)} < \infty.$ $T \in \mathcal{L}_c(E,F).$
- $|||T|||_{\mathcal{L}_c(E,F)} \le \liminf_{n \to +\infty} |||T_n|||_{\mathcal{L}_c(E,F)}$.

Démonstration: Remarquons que $(E, \|\cdot\|_E)$ est un Banach, et on a : $\forall x \in E, \sup_{n \in \mathbb{N}} \|T_n(x)\|_F < \infty$, car la suite $(T_n(x))_n$ est convergente dans $(F, \|\cdot\|_F)$, donc bornée. Ainsi, le théorème de Banach-Steinhaus assure que $M:=\sup_{n\in\mathbb{N}}|||T_n|||_{\mathcal{L}_c(E,F)}<\infty$, ce qui donne le premier point. La linéarité est évidente (par linéarité de la limite). Pour la continuité, remarquons que :

$$\forall x \in E, \ \forall n \in \mathbb{N}, \ \|T_n(x)\|_F \le \||T_n||_{\mathcal{L}_c(E,F)} \|x\|_E \le M \|x\|_E.$$

En passant à la limite en n à gauche, on obtient $T \in \mathcal{L}_c(E,F)$. Pour le dernier point, on a :

$$\forall x \in E, \ \|T(x)\|_F = \lim_{n \to +\infty} \|T_n(x)\|_F = \liminf_{n \to +\infty} \|T_n(x)\|_F \le \liminf_{n \to +\infty} \left(|||T_n|||_{\mathcal{L}_c(E,F)} \right) \|x\|_E.$$

5 Quelques applications aux notions faibles/fortes

Rappel. On rappelle que si $(E, \|\cdot\|_E)$ est un EVN, alors l'application

$$J: \begin{bmatrix} (E, \|\cdot\|_E) & \to & (E'', \|\cdot\|_{E''}) \\ x & \mapsto & J(x) : \begin{bmatrix} (E', \|\cdot\|_{E'}) & \to & (\mathbb{K}, |\cdot|) \\ f & \mapsto & J(x)(f) = f(x) \end{bmatrix}.$$

est une application linéaire continue isométrique (donc injective). On dit que E est réflexif si elle est bijective.

Proposition 3

Soit $(E, \|\cdot\|_E)$ un EVN. Une partie $\mathcal{B} \subseteq E$ est bornée ssi elle est faiblement bornée (i.e. pour tout $f \in E'$, $f(\mathcal{B})$ est bornée dans \mathbb{K}).

Démonstration : Si \mathcal{B} est bornée, alors $\forall f \in E'$, on a :

$$\forall x \in \mathcal{B}, \ |f(x)| \le \|f\|_{E'} \|x\|_{E} \le \|f\|_{E'} \sup_{x \in \mathcal{B}} \|x\|_{E}.$$

Réciproquement, on a :

$$\forall f \in E', \sup_{x \in \mathcal{B}} |f(x)| = \sup_{x \in \mathcal{B}} |J(x)(f)| < \infty.$$

On applique le théorème de Banach-Steinhaus à la famille d'opérateurs linéaires continus $(J(x))_{x\in\mathcal{B}}\in E''=\mathcal{L}_c(E',\mathbb{K})$ (E' est complet puisque \mathbb{K} l'est). On obtient alors :

$$\sup_{x \in \mathcal{B}} \|J(x)\|_{E^{\prime\prime}} \underset{J \text{ isométrie}}{=} \sup_{x \in \mathcal{B}} \|x\|_{E} < \infty.$$

Ceci montre que \mathcal{B} est borné dans $(E, \|\cdot\|_E)$.

L'identifiation isométrique avec le bidual permet de se passer de l'hypothèse de complétude.

5.1 Une application à la continuité

Définition 1

Soient $(E, \|\cdot\|_E)$ et $(F, \|\cdot\|_F)$ deux EVN, et $T \in L(E, F)$ une application linéaire, alors, T est dite faiblement continue si pour tout $f \in F'$, $f \circ T \in E'$.

Proposition 4

Soient $(E, \|\cdot\|_E)$ et $(F, \|\cdot\|_F)$ deux EVN, et $T \in L(E, F)$ une application linéaire, alors, T est continue ssi~T est faiblement continue.

Démonstration: On a les équivalences suivantes :

```
 T \text{ est continue sur } (E, \|\cdot\|_E) \quad \Leftrightarrow \quad T(B_E(0,1)) \text{ est bornée dans } (F, \|\cdot\|_F) \\ \Leftrightarrow \quad T(B_E(0,1)) \text{ est faiblement bornée dans } (F, \|\cdot\|_F) \\ \Leftrightarrow \quad \forall f \in F', \ f \left(T\left(B_E(0,1)\right)\right) \text{ est bornée dans } (\mathbb{K}, \|\cdot\|_F) \\ \Leftrightarrow \quad \forall f \in F', \ f \circ T\left(B_E(0,1)\right) \text{ est bornée dans } (\mathbb{K}, \|\cdot\|_F) \\ \Leftrightarrow \quad \forall f \in F', \ f \circ T \text{ est continue sur } (E, \|\cdot\|_E) \\ \Leftrightarrow \quad T \text{ est faiblement continue sur } (E, \|\cdot\|_E).
```

5.2 Une application à l'holomorphie

Définition 2

Soit Ω un ouvert de \mathbb{C} , $(E, \|\cdot\|_E)$ un Banach et $f: \Omega \to E$. On dit que f est holomorphe sur Ω si pour tout $z_0 \in \Omega$, $z \mapsto \frac{f(z) - f(z_0)}{z - z_0}$ définie sur un voisinage ouvert épointé de z_0 , admet une limite quand z tend vers z_0 .

Remarque. Tout fonctionne exactement de la même manière que pour les fonctions à valeurs dans C. On travaille avec des fonctions à valeurs dans un espace de Banach afin de donner un sens à l'intégrale d'une fonction (limite des sommes de Riemann). Afin de se ramener à des fonctions à valeurs dans \mathbb{C} , on introduit la notion de fonction faiblement holomorphe :

Définition 3

Soit Ω un ouvert de \mathbb{C} , $(E, \|\cdot\|_E)$ un Banach et $f: \Omega \to E$. On dit que f est faiblement holomorphe sur Ω si pour tout $\varphi \in E'$, $\varphi \circ f : \Omega \to \mathbb{C}$ est holomorphe (au sens classique) sur Ω .

Proposition 5

Soit Ω un ouvert de \mathbb{C} , $(E, \|\cdot\|_E)$ un Banach et $f: \Omega \to E$. Alors, f est holomophe sur Ω ssi fest faiblement holomorphe sur Ω .

Démonstration: Supposons que f est holomorphe sur Ω . Soit $z_0 \in \Omega$, et \mathcal{V}_{z_0} un voisinage ouvert de z_0 dans Ω . Soit $\varphi \in E'$. Alors,

$$\forall z \in \mathcal{V}_{z_0}^{\times}, \ \frac{\varphi \circ f(z) - \varphi \circ f(z_0)}{z - z_0} = \varphi\left(\frac{f(z) - f(z_0)}{z - z_0}\right) \underset{z \to z_0}{\longrightarrow} \varphi(f'(z_0)).$$

Ceci montre la faible holomorphie de f sur Ω .

Réciproquement, on sait que f est faiblement holomorphe sur Ω . Ainsi, pour tout disque $\overline{D} \subseteq \Omega$, $\forall a \in D, \forall \varphi \in E'$

$$\varphi \circ f(a) = \frac{1}{2i\pi} \int_{\partial D} \frac{\varphi \circ f(\xi)}{\xi - a} d\xi.$$

La linéarité, la continuité et la définition de l'intégrale par les sommes de Riemann donne : $\forall \varphi \in E'$,

$$\varphi\left(f(a) - \frac{1}{2i\pi} \int_{\partial D} \frac{f(\xi)}{\xi - a} d\xi\right) = 0.$$

La séparation du dual (corollaire du théorème de Hahn-Banach) fournit donc : pour tout disque $\overline{D} \subseteq \Omega, \, \forall a \in D,$

$$f(a) = \frac{1}{2i\pi} \int_{\partial D} \frac{f(\xi)}{\xi - a} d\xi.$$

Ainsi, f vérifie la formule de Cauchy. Il suffit de démontrer qu'elle est continue afin de conclure

à l'holomorphie de
$$f$$
 sur Ω . C'est là qu'on utilise le corollaire de Banach-Steinhaus. Soit $z_0 \in \Omega$, pour tout $\varphi \in E'$, $\varphi \circ f$ est holomorphe en z_0 , ainsi, $\left\{\frac{\varphi \circ f(z) - \varphi \circ f(z_0)}{z - z_0}, \ z \in \mathcal{V}_{z_0}^{\times}\right\} = \varphi(A_{z_0})$

est bornée, avec $A_{z_0} = \left\{ \frac{f(z) - f(z_0)}{z - z_0}, \ z \in \mathcal{V}_{z_0}^{\times} \right\} \subseteq \mathbb{K}$. Ainsi, $A_{z_0} \subseteq \mathbb{C}$ est faiblement bornée, donc bornée. Ainsi, $\exists M_{z_0} > 0$ tel qu

$$\forall z \in \mathcal{V}_{z_0}^{\times}, |f(z) - f(z_0)| \le M_{z_0}|z - z_0|.$$

Par suite, f est continue en z_0 . Ceci conclut.

Ce théorème à des applications en analyse fonctionnelle.

Cas des parties de E'5.3

Proposition 6

Soit $(E, \|\cdot\|_E)$ un espace de Banach et $\mathcal{B} \subseteq E'$. Alors, \mathcal{B} est bornée dans $(E', \|\cdot\|_{E'})$ ssi $\forall x \in E$, $\mathcal{B}(x) := \{f(x), f \in \mathcal{B}\}\ \text{est born\'ee dans } \mathbb{K}.$

Démonstration : Pour le sens direct, on a : $\forall x \in E, \ \forall f \in \mathcal{B}, \ |f(x)| \leq \sup_{x \in \mathcal{B}} \|f\|_{E'} \|x\|_{E} < \infty$. Réciproquement, on applique le théorème de Banach-Steinhaus à la famille d'opérateurs linéaires continus $(f)_{f \in \mathcal{B}}$, défini sur l'espace de Banach $(E, ||\cdot||_E)$. Puisque par hypothèse, pour tout $x \in E$, $\sup_{f\in\mathcal{B}} |f(x)| < \infty \text{ on obtient } : \sup_{f\in\mathcal{B}} \|f\|_{E'} < \infty, \ i.e. \ \mathcal{B} \text{ est bornée dans } E'.$

6 Un de mes exercices d'oraux d'agrégation

Voici pour finir un des deux exercices que l'on m'a posé au vrai oral de l'épreuve d'analyse de l'agrégation sur la leçon 208.

Exercice. Soit V un sous-espace vectoriel fermé de $(\mathcal{C}^0([0,1],\mathbb{R}),\|\cdot\|_{\infty})$ dont les fonctions sont lipschitziennes. Montrer que V est de dimension finie.

Démonstration : On applique le théorème de compacité de Riesz ; il suffit de montrer que $B_V(0,1)$ est relativement compacte dans $(\mathcal{C}^0([0,1],\mathbb{R}),\|\cdot\|_{\infty})$. On applique le théorème d'Ascoli. La partie [0,1] est bien compacte. Afin de montrer l'uniforme équicontinuité, il faut une borne uniforme sur les constantes de lipschitziannité des fonctions ; pour cela, on utilise le théorème de Banach-Steinhaus. On peut supposer que les constantes de lipchitziannité sont optimales, dans le sens où celle associée

à
$$f$$
 est $L_f := \sup_{\substack{x,y \in [0,1], \\ x \neq y}} \left| \frac{f(x) - f(y)}{x - y} \right|$. Montrons que $\sup_{f \in V, \|f\|_{\infty} \le 1} L_f < \infty$.

Soit $(x,y) \in [0,1]^2$, tels que $x \neq y$. On considère $\varphi_{x,y} : f \in (V, \|\cdot\|_{\infty}) \mapsto \frac{f(x) - f(y)}{x - y} \in \mathbb{R}$.

C'est une application linéaire, continue, en effet : $\forall f \in V, \quad |\varphi_{x,y}(f)| \leq \frac{2 \|f\|_{\infty}}{|x-y|}$. On remarque de plus, que, V est un sous-espace vectoriel fermé de $\mathcal{C}^0([0,1],\mathbb{R})$, donc $(V,\|\cdot\|_{\infty})$ est un Banach. On applique alors le théorème de Banach-Steinhaus à $(\varphi_{x,y})_{\substack{x,y \in [0,1], \\ x \neq y}}$. Par lipschitziannité, $\forall f \in V$,

$$\sup_{\substack{x,y\in[0,1],\\x\neq y}}|\varphi_{x,y}(f)|=L_f<\infty.$$

On obtient alors, par définition de la norme d'opérateur

$$\sup_{\substack{x,y\in[0,1],\\x\neq y}}|||\varphi_{x,y}|||_{\mathcal{L}_c(V,\mathbb{R})}=\sup_{\substack{x,y\in[0,1],\\x\neq y}}\left(\sup_{f\in V,\|f\|_\infty\leq 1}|\varphi_{x,y}(f)|\right)<\infty.$$

Ceci montre que $M:=\sup_{f\in V, \|f\|_{\infty}\leq 1} L_f < \infty$

Uniforme équicontinuité : soit $\varepsilon > 0$, $\forall f \in V$, $||f||_{\infty} \le 1$, $\forall (x,y) \in [0,1]^2$, $|x-y| \le \delta := \frac{\varepsilon}{M}$, $|f(x) - f(y)| \le L_f |x-y| \le M\delta = \varepsilon$.

Compacité ponctuelle : il faut montrer que $\forall x \in [0,1], \ \mathcal{A}(x) := \{f(x), f \in V, \|f\|_{\infty} \leq 1\}$ est relativement compacte dans \mathbb{R} , *i.e.* bornée. C'est immédiat $(\mathcal{A}(x) \subseteq [-1,1])$. Le théorème d'Ascoli s'applique et conclut.

Remarque. Un exercice similaire est le suivant : soit V un sous-espace vectoriel fermé de l'espace $(C^0([0,1],\mathbb{R}),\|\cdot\|_{\infty})$ dont les fonctions sont dérivables. Montrer que V est de dimension finie.

7 Un contre-exemple sans complétude

On considère l'ensemble $(c_0(\mathbb{N}, \mathbb{R}), \|\cdot\|_{\infty})$ des suites nulles à partir d'un certain rang. Il n'est pas complet. On définit pour $n \in \mathbb{N}$,

$$L_n: \begin{bmatrix} (c_0(\mathbb{N}, \mathbb{R}), \|\cdot\|_{\infty}) & \to & (\mathbb{R}, |\cdot|) \\ (u_n)_{n \in \mathbb{N}} & \mapsto & \sum_{k=0}^n u_k \end{bmatrix}.$$

C'est un opérateur linéaire. De plus, $\forall u \in c_0(\mathbb{N}, \mathbb{R}), |L_n(u)| \leq (n+1) ||u||_{\infty}$. Ainsi, $L_n \in c_0(\mathbb{N}, \mathbb{R})'$ et $|||L_n|||_{c_0(\mathbb{N}, \mathbb{R})'} \leq n+1$. La suite $(\underbrace{1, \cdots, 1}_{n+1 \text{ fois}}, 0, \cdots, 0, \cdots) \in c_0(\mathbb{N}, \mathbb{R})$ fournit un cas d'égalité. Ainsi,

$$\sup_{n\in\mathbb{N}}|||L_n|||_{c_0(\mathbb{N},\mathbb{R})'}=+\infty.$$

Néanmoins, $\forall u \in c_0(\mathbb{N}, \mathbb{R})$, $(L_n(u))_{n \in \mathbb{N}}$ est stationnaire, donc convergente, donc bornée dans \mathbb{R} et le théorème de Banach-Steinhaus est mis en défaut.