Théorème du point fixe de Brouwer - Applications :

Voici les notes que j'ai réalisées lors de mon année de préparation à l'agrégation. Au delà de la démonstration du théorème, y figurent des applications/compléments.

Table des matières

1		éorème du point fixe de Brouwer
		Un lemme fondamental
	1.2	Démonstration du théorème
2		elques applications
	2.1	Deux remarques importantes
	2.2	Une première application
	2.3	Un théorème preservé par homéomorphisme
	2.4	Une application au théorème de Perron Frobénius
3	Thé	éorème du point fixe de Schauder
	3.1	Un premier théorème de Schauder
	3.2	Quelques rappels topologiques
	3.3	Un deuxième théorème de Schauder

1 Théorème du point fixe de Brouwer

1.1 Un lemme fondamental

Lemme 1 (Lemme de non rétraction)

Soit \overline{B} la boule unité fermée de \mathbb{R}^n , munie de sa structure euclidienne. Alors, il n'existe pas de fonction $f: \overline{B} \to \partial \overline{B}$ de classe \mathcal{C}^1 telle que $f|_{\partial \overline{B}} = I_d$.

Remarque 1. Ce lemme est également vraie avec l'hypothèse f continue uniquement.

Démonstration : On raisonne par l'absurde et on suppose donnée $f \in \mathcal{C}^1(\overline{B}, \partial \overline{B})$ telle que $f|_{\partial \overline{B}} = I_d$. Par régularité de f, et par compacité de \overline{B} en dimension finie, on a :

$$\sup_{x \in \overline{B}} |||df(x)|||_{\mathcal{L}_c(\mathbb{R}^n)} =: M < \infty.$$

Par inégalité des accroissements finis et par connexité de \overline{B} , l'application f est M-lipschitzienne sur \overline{B} .

Pour $t \in [0,1]$, on définit $\phi_t : x \in \overline{B} \mapsto (1-t)x + tf(x) \in \overline{B}$.

Étape 1 : injectivité de ϕ_t : soient $t \in [0,1[$, et $(x,y) \in \overline{B}^2$. Alors,

$$\phi_t(x) = \phi_t(y) \Longrightarrow ||x - y|| = \frac{t}{1 - t} ||f(x) - f(y)|| \le \frac{Mt}{1 - t} ||x - y||.$$

Ainsi,

$$||x - y|| \left(1 - \frac{Mt}{1 - t}\right) \le 0.$$

$$\text{Or, } \left(1-\frac{Mt}{1-t}\right)>0 \text{ ssi } t<\alpha=\frac{1}{1+M}<1. \text{ Ainsi, pour tout } t\in[0,\alpha[,\,\phi_t \text{ est injective.}]$$

Étape 2 : inversibilité de ϕ_t : pour tout $t \in [0, \alpha[$, pour tout $x \in B$, $d\phi_t(x) = (1-t)I_d + tdf(x)$, donc $d\phi_t(x) = (1-t)\left(I_d + \frac{t}{1-t}df(x)\right)$.

Puisque $\left|\left|\left|\frac{t}{1-t}df(x)\right|\right|\right|_{\mathcal{L}_c(\mathbb{R}^n)} < 1$, alors pour tout $x \in B$, $d\phi_t(x)$ est inversible. Ainsi, par théorème d'inversion locale, pour tout $t \in [0, \alpha[$, ϕ_t est un \mathcal{C}^1 difféomorphisme local. Étant injectif, il s'agit d'un difféomorphisme global de B sur $\phi_t(B)$.

Étape 3 : surjectivité de ϕ_t : pour tout $x \in B$, pour tout $t \in [0, \alpha[$, $\|\phi_t(x)\| < 1$, donc $\phi_t(B) \subseteq B$. Montrons l'égalité. On raisonne par connexité. $\phi_t(B)$ est un ouvert. Montrons qu'il est fermé dans B : soit $(y_n) \in \phi_t(B)^{\mathbb{N}}$ telle que $y_n \underset{n \to +\infty}{\longrightarrow} y \in B$. Pour tout $n \in \mathbb{N}$, il existe $x_n \in B$ tel que $y_n = \phi_t(x_n)$. Par compacité, $(x_n)_n$ admet une sous-suite convergente vers $x \in \overline{B}$. Par continuité de ϕ_t et par unicité de la limite, $y_n \underset{n \to +\infty}{\longrightarrow} y = \phi_t(x)$. Si $x \in \partial B$, alors, f(x) = x donc $y = \phi_t(x) = x \in \partial B$. Impossible. Ceci montre que $\phi_t(B) = B$.

Étape 4: conclusion: on définit pour $t \in [0,1], \ P(t) = \int_B \det(d\phi_t(x)) \mathrm{d}x$. C'est un polynôme comme intégrale d'un polynôme. On applique le changement de variable $y = \phi_t(x)$ pour $t \in [0,\alpha[$. Alors $P(t) = \int_B \mathrm{d}y = Vol(B)$ (en effet, $\det(D\phi_0(x)) = 1$ et l'application est continue et ne s'annule pas). P est donc constant sur $[0,\alpha[$, donc sur [0,1]. Enfin, pour tout $x \in B, \|f(x)\|^2 = 1$, donc, $f(x) \neq 0$ et $\forall x \in B, \forall h \in \mathbb{R}^n, (df(x)(h)|f(x)) = 0$. Ainsi, $f(x) \in \mathrm{Im}(df(x))^\perp$, donc $\mathrm{Im}(df(x))^\perp \neq \{0\}$, et l'application df(x) n'est pas surjective. Par suite, pour tout $x \in B$, $\det(df(x)) = 0$. Enfin, $Vol(B) = P(1) = \int_B \det(d\phi_1(x)) \mathrm{d}x = \int_B \det(df(x)) \mathrm{d}x = 0$. Impossible.

1.2 Démonstration du théorème

Theorème 1 (du point fixe de Brouwer)

Soient \overline{B} la boule unité fermée de \mathbb{R}^n , et $f \in \mathcal{C}^0(\overline{B}, \overline{B})$. Alors, f admet un point fixe.

Démonstration : Étape 1 : régularisation : On peut supposer f de classe \mathcal{C}^1 , en effet : supposons donnée $\tilde{f}:\overline{B}\to\overline{B}$ continue telle que pour tout $x\in\overline{B},\,\tilde{f}(x)\neq x.$ Posons $\varepsilon=\inf_{x\in\overline{B}}\left\|\tilde{f}(x)-x\right\|>0$, par compacité. Par théorème de Weierstrass, il existe $P\in\mathbb{R}[X_1,\cdots,X_n]$ telle que $\left\|\tilde{f}-P\right\|_{\infty,\overline{B}}<\varepsilon/2$. Alors

$$\forall x \in \overline{B}, \|P(x)\| \le 1 + \varepsilon/2.$$

Par suite, on introduit $f=:\frac{P}{1+\varepsilon/2}$. Alors, $f(\overline{B})\subseteq \overline{B},\, f\in\mathcal{C}^{\infty}$. Enfin,

$$\forall x \in \overline{B}, \quad \left\| f(x) - \tilde{f}(x) \right\| \leq \left(1 - \frac{1}{1 + \varepsilon/2} \right) \|P(x)\| + \left\| P(x) - \tilde{f}(x) \right\| < 1 + \varepsilon/2 - 1 + \varepsilon/2 = \varepsilon.$$

Ainsi,

$$\forall x \in \overline{B}, \ \|f(x) - x\| \ge \|\tilde{f}(x) - x\| - \|f(x) - \tilde{f}(x)\| > \varepsilon - \varepsilon = 0.$$

Ainsi, f n'admet pas de point fixe.

Étape 2 : cœur de la preuve : On suppose $f \in C^1(\overline{B}, \overline{B})$ telle que $\forall x \in \overline{B}, f(x) \neq x$. Pour $x \in \overline{B}$, on définit G(x) commme étant l'intersection de la sphére unité et de la droite passant par x et f(x). On sait que :

- $||G(x)||^2 = 1$.
- il existe $\lambda(x) > 0$ tel que $G(x) f(x) = \lambda(x)(x f(x))$.

Alors,

$$\|\lambda(x)\|^2 \|x - f(x)\|^2 + 2\lambda(x)\langle x - f(x), f(x)\rangle + \|f(x)\|^2 - 1 = 0.$$

C'est un polynôme de degré 2 en $\lambda(x)$ (car $f(x) \neq x$), noté P_x . De plus, $P_x(0) = \|f(x)\|^2 - 1 \leq 0$ et $P_x(1) = \|x\|^2 - 1$, et $P_x \underset{\lambda(x) \to \pm \infty}{\longrightarrow} +\infty$, donc P_x admet deux racines distinctes réelles. On note λ_x

la racine supérieure à 1, et $x \mapsto \lambda_x$ est donc donné par les formules classiques, donc est \mathcal{C}^1 . Ainsi, $G(x) = f(x) + \lambda(x)(x - f(x))$ est donc \mathcal{C}^1 . De plus, $G: \overline{B} \to \partial \overline{B} \subseteq \overline{B}$, et G(x) = x sur $\partial \overline{B}$ puisque dans ce cas, $\lambda_x = 1$ car $P_x(1) = 0$. G est donc une rétraction. Impossible.

2 Quelques applications

2.1 Deux remarques importantes

Remarque 2. Le théorème est faux si on travaille avec une fonction continue sur la boule ouverte unité. En effet, $f: x \in]-1, 1[\mapsto \frac{1}{2}(x+1)^2-1 \in]-1, 1[$ est de classe \mathcal{C}^{∞} , envoie bien la boule unité sur elle-même. Enfin, elle n'admet pas de point fixe.

Remarque 3. Le théorème est faux en dimension infinie (dans la preuve, les arguments de compacité tombent en défaut). En effet, considèrons l'espace de Hilbert $H = l^2(\mathbb{Z})$, $(e_n)_{n \in \mathbb{Z}}$ sa base hilbertienne usuelle, et

$$T: \begin{bmatrix} H & \rightarrow & H \\ (x_n)_{n \in \mathbb{Z}} & \mapsto & (1 - ||x||)e_0 + U(x). \end{bmatrix},$$

où U désigne l'opérateur de shift à droite. Elle est clairement bien définie et continue, par continuité de la norme et du shift (isométrie). De plus,

$$\forall x = (x_n)_{n \in \mathbb{Z}} \in \overline{B}_H(0, 1), \quad ||T(x)|| \le |1 - ||x||| + ||x|| = 1.$$

Pourtant, T n'admet pas de point fixe, en effet :

$$\forall x = (x_n)_{n \in \mathbb{Z}} \in \overline{B}_H(0, 1), \quad T(x) = x \Leftrightarrow \begin{cases} x_0 = 1 - ||x|| + x_{-1} \\ x_n = x_{n-1} \text{ si } n \neq 0 \end{cases}.$$

Ainsi,

$$\begin{cases} x_n &= x_0 \ si \ n \ge 0 \\ x_n &= x_{-1} \ sinon \end{cases}.$$

Puisque $x \in H$, $x_0 = x_{-1} = 0$, donc x = 0 mais c'est impossible car $x_0 = 1 - ||x|| + x_{-1}$.

2.2 Une première application

Proposition 1

Soit $v \in \mathcal{C}^0(\overline{B}, \mathbb{R}^n)$ telle que $\forall x \in \partial \overline{B}, \langle v(x), x \rangle < 0$. Alors, v s'annule.

Démonstration : On suppose que v ne s'annule pas sur \overline{B} . On considère $F: \begin{bmatrix} \overline{B} & \to & \overline{B} \\ x & \mapsto & \frac{v(x)}{\|v(x)\|} \end{bmatrix}$.

C'est une application continue, qui envoie \overline{B} sur \overline{B} . Elle admet donc un point fixe par le théorème de Brouwer, il existe $x_0 \in \overline{B}$ tel que $F(x_0) = x_0$, i.e. $x_0 = \frac{v(x_0)}{\|v(x_0)\|}$, donc $x_0 \in \partial \overline{B}$. Ainsi, $\langle v(x_0), x_0 \rangle = \|v(x_0)\| < 0$. Impossible. Ainsi v s'annule.

2.3 Un théorème preservé par homéomorphisme

Theorème 2 (de Brouwer généralisé)

Soit X un espace homéomorphe à \overline{B} , où \overline{B} désigne la boule unité fermée de \mathbb{R}^n pour un entier n quelconque. Alors toute application continue de X dans lui-même admet un point fixe.

Démonstration: Soient $f: X \to X$ une application continue et $\varphi: X \to \overline{B}$ un homéomorphisme. Alors, $\varphi \circ f \circ \varphi^{-1}: \overline{B} \to \overline{B}$ est une application continue. Par le théorème de Brouwer démontré précedemment, elle admet un point fixe, $x_0 \in \overline{B}$, *i.e.* $\varphi \circ f \circ \varphi^{-1}(x_0) = x_0$, donc $f(\varphi^{-1}(x_0)) = \varphi^{-1}(x_0)$, et f admet bien un point fixe.

Définition 1 (Jauge de Minkowski)

Soient $(E, \|\cdot\|_E)$ un espace vectoriel normé, $C \subseteq C$ un convexe contenant 0 en son intérieur. L'application $\rho_C : x \in E \mapsto \inf \left\{ t > 0, \frac{x}{t} \in C \right\}$ est appelée jauge de Minkowski de C.

Proposition 2

Soient $(E, \|\cdot\|_E)$ un espace vectoriel normé, $C \subseteq E$ un convexe contenant 0 dans son intérieur.

- $\forall x \in E, \forall \lambda > 0, \rho_C(\lambda x) = \lambda \rho_C(x).$
- $\forall x, y \in E, \rho_C(x+y) \leq \rho_C(x) + \rho_C(y).$
- $\exists M > 0$ tel que pour tout $x \in E$, $\rho_C(x) \leq M ||x||$.

Démonstration: Remarquons que ρ_C est bien définie puisqu'il existe r > 0 tel que $\overline{B}_E(0,r) \subseteq C$.

Ainsi, pour $t > \frac{\|x\|_E}{r}$, $\left\|\frac{x}{t}\right\|_E < r$, donc $\frac{x}{t} \in C$, et l'ensemble est non vide. Pour le premier point, remarquons que : $\forall x \in E, \, \forall \lambda > 0$,

$$\rho_C(\lambda x) = \inf\left\{t > 0, \frac{\lambda x}{t} \in C\right\} = \inf_{t = \lambda s} \inf\left\{\lambda s > 0, \frac{x}{s} \in C\right\} = \lambda \rho_C(x).$$

De plus, soient $x,y \in E$ et $\varepsilon > 0$. On pose $\bar{x} = \frac{x}{\rho_C(x) + \varepsilon}$ et $\bar{y} = \frac{y}{\rho_C(y) + \varepsilon}$. On a, par ce qui a été fait avant, $\rho_C(\bar{x}) < 1$ donc il existe 0 < t < 1 tel que $\bar{x}/t \in C$. Puisque $0 \in C$, par convexité de C, $\bar{x} \in C$. De la même manière, $\bar{y} \in C$. Ainsi,

$$\frac{x+y}{\rho_C(x)+\rho_C(y)+2\varepsilon} = \frac{\rho_C(x)+\varepsilon}{\rho_C(x)+\rho_C(y)+2\varepsilon}\bar{x} + \frac{\rho_C(y)+\varepsilon}{\rho_C(x)+\rho_C(y)+2\varepsilon}\bar{y} \in C$$

Ainsi, $\rho_C(x+y) < \rho_C(x) + \rho_C(y) + 2\varepsilon$. On conclut en faisant tendre ε vers 0.

Pour le dernier point, pour tout $x \in E \setminus \{0\}$,

$$\frac{rx}{\|x\|} \in C,$$

donc $\rho_C(x) \leq \frac{\|x\|}{x}$. L'égalité est vraie en 0. Ceci conclut.

Corollaire 1

Soient $(E, \|\cdot\|_E)$ un espace vectoriel normé, $C \subseteq E$ un convexe contenant 0 dans son intérieur. Alors, la jauge de Minkowski est continue sur E.

Démonstration: Soient $x, y \in E$, alors $\rho_C(x) \le \rho_C(x+y) + \rho_C(-y)$ et $\rho_C(x+y) \le \rho_C(x) + \rho_C(y)$.

$$|\rho_C(x+y) - \rho_C(x)| \le \max(\rho_C(y), \rho_C(-y)) \le \frac{\|y\|}{r}.$$

Ainsi, ρ_C est lipschitz, donc continue.

Theorème 3

Soient E un espace vectoriel normé de dimension finie et $C \subseteq E$ un convexe compact d'intérieur non vide. Alors, C est homéomorphe à \overline{B} .

monstration: Puisque la translation est un nomeomorphisme, que généralité que $0 \in \mathring{C}$. De plus, on définit $f: x \in E \mapsto \begin{cases} \frac{\rho_C(x)x}{\|x\|} & \text{si } x \neq 0 \\ 0 & \text{sinon} \end{cases}$. Elle est continue sur $0 \in G$. Démonstration: Puisque la translation est un homéomorphisme, on peut supposer sans perte de $E \setminus \{0\}$, par ce qui a été fait avant. De plus, comme vu avant, il existe M > 0 tel que $\forall x \in E$,

$$\rho_C(x) \le M \|x\|.$$

Alors.

$$||f(x)|| \le M ||x||,$$

ce qui montre la continuité en 0. De plus, f est bijective, et $f^{-1}: x \in E \mapsto \begin{cases} \frac{\|x\| \, x}{\rho_C(x)} & \text{si } x \neq 0 \\ 0 & \text{sinon} \end{cases}$. Montrons que f^{-1} est continue : en effet, C est compact, donc borné; il existe R > 0 tel que $C \subseteq B(0,R)$. Ainsi, pour tout $x \in E$, $(R+1)\frac{x}{\|x\|} \notin C$, donc $\rho_C(x) \ge \frac{\|x\|}{R+1}$. Ceci conclut (on a pour tout $t' \ge t > 0$, si $x/t \in C$, alors $x'/t \in C$). Soit $x \in \overline{B}$, alors puisque C est fermé, $\frac{x}{\rho_C(x)} \in C$. Alors,

- si ||x|| = 1, $f^{-1}(x) \in C$.

- si
$$||x|| < 1$$
, alors $f^{-1}(x) = ||x|| \cdot \frac{x}{\rho_c(x)} \in C$ par convexité de C , et puisque $0 \in C$.

Ainsi, $f^{-1}(\overline{B}) \subseteq C$.

Réciproquement, si $x \in C$, alors, $\frac{x}{1} \in C$, donc $\rho_C(x) \le 1$, donc $||f(x)|| \le 1$. Ainsi, $f(C) \subseteq \overline{B}$, *i.e.* $C \subseteq f^{-1}(\overline{B})$.

Corollaire 2

Toute fonction continue d'un convexe compact non vide de \mathbb{R}^n dans lui-même admet un point fixe.

Démonstration : Soit C un tel convexe compact non vide. On conclut immédiatement avec le théorème 2 et le théorème 3. Il suffit de remarquer que l'on peut lever l'hypothèse C d'intérieur non vide en supposant simplement C non vide : considérons F le sous-espace affine engendré par C, qui est de dimension finie n, muni de la topologie induite. Alors l'intérieur de C est non vide dans F.

2.4 Une application au théorème de Perron Frobénius

Theorème 4

Soit $A \in \mathcal{M}_n(\mathbb{R}^+)$ telle que $\rho(A) \neq 0$. Alors, il existe $v \in (\mathbb{R}^+)^n$ telles que $Ax = \lambda x$, et $\rho(A) = \lambda$.

Démonstration : Soit $C = \{y \in \mathbb{R}^n, \ y \ge 0, \ \|y\|_1 = 1, \ \rho(A)y \le Ay \}$. Montrons que C est un convexe, compact, non vide.

Non vide : soit $v \in \mathbb{R}^n$ tel que $Av = \lambda v$, où $\rho(A) = |\lambda|$, et $||v||_1 = 1$. On note $|v| = (|v_i|)_{1 \le i \le n}$. Montrons que $|v| \in C$. On a imméditemment l'hypothèse de positivité, l'égalité sur la norme. De plus,

$$\rho(A)y = |\lambda| \begin{pmatrix} |v_1| \\ \cdots \\ |v_n| \end{pmatrix} = |\lambda v| = |Av| \le A|v|,$$

par positivité de A. Ceci conclut.

Convexe : soient $y, y' \in C$ et $t \in [0, 1]$. Alors, $yt + (1 - t)y' \ge 0$. De plus $||yt + (1 - t)y'||_1 = \sum_{j=1}^{n} |y_j t + (1 - t)y'_j| = t ||y||_1 + (1 - t) ||y'||_1$. L'inégalité est transportée immédiatement.

Compact : on a clairement C fermé. De plus, $C\subseteq [0,1]^n$, donc il est borné. On conclut par argument de dimension finie.

On définit

$$f: \begin{bmatrix} C & \to & \mathbb{R}^n \\ x & \mapsto & \frac{Ax}{\|Ax\|_1} \end{bmatrix}.$$

L'application f est bien définie : en effet, pour $x \in C$, si $\|Ax\|_1 = 0$, alors, $x \in \ker(A)$. Donc $0 \le x \le 0$ (puisque $\rho(A) \ne 0$) donc x = 0 et $\|x\|_1 = 1$. Impossible.

Montrons que $f(C) \subseteq C$: en effet, soit $x \in C$. Alors, on a immédiatement $f(x) = \frac{Ax}{\|Ax\|_1} \ge 0$ puisque $A \ge 0$ et $x \ge 0$. On a aussi $\|f(x)\|_1 = 1$, par définition. Enfin

$$\rho(A)f(x) = \rho(A)\frac{Ax}{\|Ax\|_1} = \frac{A}{\|Ax\|_1} \left(\rho(A)x\right) \le \frac{A^2x}{\|Ax\|_1} = Af(x).$$

Enfin, f est clairement continue. Le théorème de Brouwer s'applique et il existe $x \in C$ tel que f(x) = x, i.e. $Ax = \|Ax\|_1 x$, donc x est un vecteur propre associé à la valeur propre $\|Ax\|_1$. De plus, on a l'inégalité :

$$\rho(A)x \le Ax = ||Ax||_1 x.$$

Puisque $||x||_1 = 1$ et $x \ge 0$, il existe un $i_0 \in [1, n]$ tel que $x_{i_0} > 0$. Alors, on obtient $\rho(A) \le ||Ax||_1$. Puisque $||Ax||_1$ est une valeur propre, on conclut à $||Ax||_1 = \rho(A)$. D'où le résultat.

3 Théorème du point fixe de Schauder

3.1 Un premier théorème de Schauder

Theorème 5 (du point fixe de Schauder)

Soient $(E, \|\cdot\|_E)$ un espace vectoriel normé et $C \subset E$ un convexe compact non vide. Alors toute application continue $f: C \to C$ possède un point fixe.

Démonstration : Soit $f: C \to C$ une application continue. Par théorème de Heine, C étant compact, f est uniformément continue sur C. Soit $\varepsilon > 0$, on considère $\delta > 0$ un module d'uniforme continuité de f. L'ensemble C étant compact, du recouvrement,

$$C \subset \bigcup_{x \in C} \mathring{B}_E(x, \delta),$$

on peut en extraire un recouvrement fini :

$$C \subset \bigcup_{i=1}^{n} \mathring{B}_{E}(x_{i}, \delta),$$

où $n \in \mathbb{N}^*$, et $x_1, \dots, x_n \in C$. Notons $F := Vect(f(x_1), \dots, f(x_n))$, un sous-espace vectoriel de E de dimension finie. L'ensemble $C^* := C \cap F$ est alors un convexe compact de dimension finie. On considère une partition de l'unité associée à ce recouvrement, *i.e.* des fonctions χ_1, \dots, χ_n telles

que pour tout $i \in [1, n]$, $\chi_i \in \mathcal{C}^0(C, \mathbb{R})$, $Supp(\chi_i) \subseteq \mathring{B}_E(x_i, \delta)$, $0 \le \chi_i \le 1$, et $\sum_{i=1} \chi_i = 1$ sur C. On définit l'application :

$$g: x \in C^* \mapsto \sum_{i=1}^n \chi_i(x) f(x_i).$$

Par convexité de C, $g(C^*) \subseteq C^*$. Par le théorème du point fixe de Brouwer appliqué à g, continue, on a l'existence de $x_{\varepsilon} \in C^*$ tel que $g(x_{\varepsilon}) = x_{\varepsilon}$. Ainsi,

$$f(x_{\varepsilon}) - x_{\varepsilon} = f(x_{\varepsilon}) - g(x_{\varepsilon}) = \sum_{i=1}^{n} \chi_i(x_{\varepsilon})(f(x_{\varepsilon}) - f(x_i)).$$

Puisque $Supp(\chi_i) \subset \mathring{B}_E(x_i, \delta)$, soit $\chi_i(x_\varepsilon) = 0$, ou alors $||x_i - x_\varepsilon||_E < \delta$, donc, par uniforme continuité, $||f(x_i) - f(x_\varepsilon)||_E < \varepsilon$. Ainsi,

$$||f(x_{\varepsilon}) - x_{\varepsilon}||_{E} \le \varepsilon.$$

On définit ainsi une suite $(x_{1/n})_{n>0}$ d'éléments de C^* , un compact, dont on peut extraire une soussuite $(x_{1/\varphi(n)})_{n>0}$ convergeant vers $x \in C^*$. La fonction f étant continue, le passage à la limite dans l'inégalité précédente montre que f(x) = x, donc f admet un point fixe sur C.

3.2 Quelques rappels topologiques

Définition 2

Soit (X, d) un espace métrique. Il est dit précompact si : pour tout $\varepsilon > 0$, on peut recouvrir X par un nombre fini de boules de rayon ε . On dit qu'une partie A de X est précompacte si c'est le cas pour l'espace métrique (A, d) (muni de la distance induite).

Proposition 3

Soit (X,d) un espace métrique et A une partie de X. Alors, A est précompact ssi \bar{A} est

précompact.

Démonstration: Le sens réciproque est évident puisque $A \subseteq \overline{A}$. Réciproquement, si on suppose que A est précompact, alors, $\forall \varepsilon > 0$, il existe $n \in \mathbb{N}$ et $x_1, \dots, x_n \in E$ tels que

$$A \subseteq \bigcup_{i=1}^{n} \mathring{B}(x_i, \varepsilon/2) \subseteq \bigcup_{i=1}^{n} \overline{B(x_i, \varepsilon/2)}.$$

Puisque l'espace de droite est fermé (comme une union finie de boules fermées), on obtient par passage à l'adhérence :

$$\bar{A}\subseteq\bigcup_{i=1}^n\overline{B(x_i,\varepsilon/2)}\subseteq\bigcup_{i=1}^n\mathring{B}(x_i,\varepsilon).$$

Ainsi, \bar{A} est précompact. Ceci conclut.

Proposition 4

Soit (X, d) un espace métrique. Alors X est compact ssi X est complet et précompact.

Démonstration : Un espace métrique compact est bien évidemment complet. Il est également précompact, par propriété de Borel Lebesgue.

Réciproquement, supposons X complet et précompact. On considère $(x_n)_n$ une suite de X. Montrons qu'elle admet une sous-suite convergente. Il suffit de montrer qu'elle est de Cauchy, puisque X est supposé complet. Par hypothèse, pour tout $n \in \mathbb{N}^*$, il existe une famille finie \mathcal{H}_n de boules de rayon $\frac{1}{n}$ qui recouvre X. On construit par récurrence une application strictement croissante $\varphi_n : \mathbb{N} \to \mathbb{N}$ telles que, pour tout $n \in \mathbb{N}^*$, il existe une boule $B_n \in \mathcal{H}_n$ qui contient la sous-suite $(x_{\varphi_0 \circ \cdots \circ \varphi_n(k)})_{k \in \mathbb{N}}$.

- 1. Puisque \mathcal{H}_0 est finie, et que tous les x_n sont dans une boule de \mathcal{H}_0 , il existe par principe des tiroirs, une boule $B_0 \in \mathcal{H}_0$ qui contient une infinité de x_n , donc une sous-suite $(x_{\varphi_0(k)})_{k \in \mathbb{N}}$.
- 2. Supposons $\varphi_0, \dots, \varphi_n$ et B_0, \dots, B_n construites. Comme \mathcal{H}_{n+1} est finie, et que les $x_{\varphi_0 \circ \cdots \circ \varphi_n(k)}$ sont dans une boule de \mathcal{H}_{n+1} , il existe une boule $B_{n+1} \in \mathcal{H}_{n+1}$ qui contient la sous-suite $(x_{\varphi_0 \circ \cdots \circ \varphi_{n+1}(k)})_{k \in \mathbb{N}}$.

Ainsi, la sous-suite obtenue par extraction diagonale $(y_n) = (x_{\varphi_0 \circ \cdots \circ \varphi_n(n)})_{n \in \mathbb{N}}$ vérifie pour tout n, $y_n \in B_n$, donc $d(y_n, y_m) < \frac{1}{n}$ si m > n, donc la suite est de Cauchy.

Proposition 5

Soient $(E, \|\cdot\|_E)$ un espace de Banach et A une partie relativement compacte de E. Alors, $\overline{conv}(A)$ est compacte dans $(E, \|\cdot\|_E)$.

Démonstration: Puisque A est relativement compacte, alors \bar{A} est compacte donc précompacte, donc, A est précompacte, donc pour tout $\varepsilon >$, il existe $n \in \mathbb{N}^*$ et $x_1, \dots, x_n \in A$ tels que :

$$A \subseteq \bigcup_{i=1}^{n} B(x_i, \varepsilon/2).$$

Posons $C = conv(x_1, \dots, x_n) \subseteq conv(A)$. C'est un convexe, borné, en dimension finie, donc relativement compacte. Par suite, il existe un nombre fini de points $y_1, \dots, y_m \in C$ tels que :

$$C \subseteq \bigcup_{j=1}^m B(y_j, \varepsilon/2).$$

Soit $z \in conv(A)$, alors il existe $\lambda_1, \dots, \lambda_l \in [0, 1]$ et $z_1, \dots, z_l \in A$ avec $z = \sum_{j=1}^l \lambda_j z_j$ et $\sum_{j=1}^l \lambda_j z_j = 1$.

Par la première propriété de recouvrement, pour tout $j \in [\![1,l]\!]$, il existe $k_j \in [\![1,n]\!]$ tels que $z_j = x_{k_j} + r_{k_j}$ avec $\|r_{k_j}\|_E < \varepsilon/2$. On obtient alors :

$$z = \underbrace{\sum_{j=1}^{l} \lambda_j x_{k_j}}_{CC} + \underbrace{\sum_{j=1}^{l} \lambda_j r_{k_j}}_{CC}.$$

Par la seconde propriété, il existe $i \in [1, m]$ tel que $\sum_{i=1}^{l} \lambda_j x_{k_j} = y_i + s_i$ où $\|s_i\|_E < \varepsilon/2$. Ainsi,

$$z = y_i + \left(s_i + \sum_{j=1}^l \lambda_j r_{k_j}\right)$$
, et $\left\|s_i + \sum_{j=1}^l \lambda_j r_{k_j}\right\|_E < \varepsilon$. Ainsi,

$$conv(A) \subseteq \bigcup_{j=1}^{m} B(y_i, \varepsilon);$$

Ainsi, conv(A) est précompacte, donc $\overline{conv}(A)$ est précompacte. Étant une partie fermée d'un Banach, elle est complète. La caractérisation précédente conclut à la compacité de $\overline{conv}(A)$.

Remarque 4. Si K est compact alors, conv(K) est compact est vrai en dimension finie. C'est un corollaire du théorème de Carathéodory. Ce résultat est faux en dimension infinie.

3.3 Un deuxième théorème de Schauder

Theorème 6 (du point fixe de Schauder)

Soit $(E, \|\cdot\|_E)$ un Banach, C un convexe fermé non vide de E, et $T: C \to C$ une application continue telle que T(C) est relativement compacte dans E. Alors, T admet un point fixe.

Démonstration : Soit $C' = \overline{conv}(T(C))$. Il s'agit d'un convexe compact non vide (par la proposition précédente). Par convexité de C, et puisque C est fermé, $C' \subseteq C$. On peut alors appliquer le premier théorème du point fixe de Schauder à $T|_{C'}$, continue, puisque $T(C') \subseteq T(C) \subseteq C'$.

Application (théorème de Cauchy-Arzela-Peano). Soit I un intervalle ouvert de \mathbb{R} , Ω un ouvert de \mathbb{R}^d et $f: I \times \Omega \to \mathbb{R}^d$, une application continue. Alors pour tout $t_0 \in I$, $x_0 \in \Omega$, il existe une solution (J, x) du problème de Cauchy:

$$\begin{cases} x'(t) &= f(t, x(t)) \\ x(t_0) &= x_0 \end{cases}.$$

En effet, soit $T_0 > 0$ tel que $[t_0 - T_0, t_0 + T_0] \subseteq I$ (possible car I est ouvert). Soit $r_0 > 0$ tel que $\overline{B}(x_0, r_0) \subseteq \Omega$. La fonction f est continue sur le compact $C_0 = [t_0 - T_0, t_0 + T_0] \times \overline{B}(x_0, r_0)$, donc elle est bornée par M. Soit $T = \min(T_0, r_0/M)$. Toute solution du problème de Cauchy sur $[t_0 - T, t_0 + T]$ est à valeurs dans $\overline{B}(x_0, r_0)$. En effet : soit $x \in C^1([t_0 - T, t_0 + T])$, une solution du problème de Cauchy, et $\tau = \sup\{t \in [t_0, t_0 + T], \forall s \in [0, t], \|x(s) - x_0\| \le r_0\}$. Supposons $\tau < T + t_0$. Alors,

$$r_0 = ||x(\tau) - x_0|| = \left\| \int_{t_0}^{\tau} f(s, x(s)) ds \right\| \le M(\tau - t_0) < MT \le r_0.$$

Ainsi, $\tau = T + t_0$, ceci conclut à l'existence du cyclindre de sécurité.

On introduit $E = (C^0([t_0 - T, t_0 + T], \overline{B}(x_0, r_0)), ||\cdot||_{\infty})$, espace de Banach. On considère :

$$\Phi: \begin{bmatrix} E & \to & E \\ x & \mapsto & \left(t \mapsto x_0 + \int_{t_0}^t f(s, x(s)) \mathrm{d}s \right) \end{bmatrix}.$$

L'application est bien définie, par théorème de continuité sous le signe intégral, et est bien à valeurs dans la boule $\overline{B}(x_0, r_0)$ puisque $MT \leq r_0$. On applique le théorème du point fixe de Schauder à C = E. C'est bien un convexe fermé et non vide de E. On a déjà vu que $\phi(E) \subset E$. Montrons que Φ est continue. L'application f est continue sur C_0 , compact donc uniformément

continue par Heine: $\forall \varepsilon > 0$, $\exists \delta > 0$ tel que pour tout $(t,x)(t',x') \in C_0$, $\|(t,x) - (t',x')\| \leq \delta$, $\|f(t,x) - f(t',x')\| \leq \frac{\varepsilon}{T}$. Ainsi, pour tout $x,y \in E$, $\|x-y\|_{\infty} \leq \delta$, pour tout $t \in [t_0 - T, t_0 + T]$,

$$\|\Phi(x)(t) - \Phi(y)(t)\| = \left\| \int_{t_0}^t (f(s, x(s)) - f(s, y(s))) \, \mathrm{d}s \right\| \le \varepsilon,$$

 $donc \|\Phi(x) - \Phi(y)\|_{\infty} \le \varepsilon.$

Montrons que $\overline{\Phi(E)}$ est compacte dans E. On utilise le théorème d'Ascoli : $[t_0 - T, t_0 + T]$ est une partie compacte, $\overline{B}(x_0, r_0)$ est complet, $\Phi(E) \subseteq E$.

1. $\Phi(E)$ est équicontinue : soit $\varepsilon > 0$, soient $t_1, t_2 \in [t_0 - T, t_0 + T]$, tels que $|t_1 - t_2| \le \delta := \frac{\varepsilon}{M}$. Alors, pour tout $x \in E$,

$$\|\Phi(x)(t) - \Phi(x)(t')\| = \left\| \int_t^{t'} f(s, x(s)) \mathrm{d}s \right\| \le M|t - t'| \le \varepsilon.$$

2. Pour tout $t \in [t_0 - T, t_0 + T]$, $\Phi(E)(t) = \{\Phi(x)(t), x \in E\}$ est bien relativement compact, car bornée et de dimension finie, puisqu'à valeurs dans $\overline{B}(x_0, r_0)$.

Le théorème du point fixe de Schauder conclut à l'existence d'un point fixe. Le théorème fondamental de l'intégration donne donc la régularité C^1 au point fixe, puis la formulation intégrale est équivalente au problème de Cauchy.

Remarques. 1. On n'a pas unicité : $y' = 3|y|^{2/3}$, y(0) = 0 admet sur \mathbb{R} deux solutions : $y \equiv 0$ et $y : t \in \mathbb{R} \mapsto t^3$.

2. On utilise fortement la compacité du cylindre C_0 et des segments, c'est pourquoi la preuve est profondément basée sur la dimension finie. Le théorème est d'ailleurs faux en dimension infinie : considérons l'espace de Banach $(c_0(\mathbb{N}), \|\cdot\|_{\infty})$ (il est bien complet car fermé de $(l^{\infty}(\mathbb{N}), \|\cdot\|_{\infty})$; soit $(u_n)_{n\in\mathbb{N}} \in c_0(\mathbb{N})^{\mathbb{N}}$ qui converge vers $u \in l^{\infty}(\mathbb{N})$, alors, $\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}$ tel que pour tout $n \geq n_0, \|u_n - u\|_{\infty} \leq \varepsilon/2$. De plus $u_{n_0} = (u_{n_0}^k)_{k\in\mathbb{N}}$ tend vers 0, donc il existe $k_0 \in \mathbb{N}$ tel que pour tout $k \geq k_0, |u_{n_0}^k| \leq \varepsilon/2$. Alors, pour tout $k \geq k_0, |u^k| \leq \|u - u_{n_0}\|_{\infty} + |u_{n_0}^k| \leq \varepsilon$). De plus, on définit :

$$f: (u_n)_{n\geq 0} \in c_0(\mathbb{N}) \mapsto \left(\sqrt{|u_n|} + \frac{1}{n+1}\right)_{n>0} \in c_0(\mathbb{N}).$$

Elle est bien définie et continue : soient $\varepsilon > 0$, $(u, v) \in c_0(\mathbb{N})^2$ telles que $||u - v||_{\infty} \le \delta := \varepsilon^2$. Alors, pour tout $n \in \mathbb{N}$,

 $Si\sqrt{|u_n|} + \sqrt{|v_n|} \le \varepsilon$, alors, $|f(u_n) - f(v_n)| \le \varepsilon$ par inégalité triangulaire. Sinon,

$$|f(u_n) - f(v_n)| \le \frac{||u_n| - |v_n||}{\sqrt{|u_n|} + \sqrt{|v_n|}} \le \frac{||u - v||_{\infty}}{\sqrt{|u_n|} + \sqrt{|v_n|}} \le \varepsilon.$$

Néanmoins, le problème de Cauchy $\begin{cases} u'(t) &= f(u(t)) \\ u(0) &= 0 \end{cases}$ n'admet pas de solution. Si (I,y) est solution, alors :

$$\forall t \in I, \forall n \in \mathbb{N}, \ y'_n(t) = \sqrt{|y_n(t)|} + \frac{1}{n+1} > 0.$$

Donc, pour tout $t \in I \cap \mathbb{R}_+^*$, $y_n(t) > y_n(0) = 0$. Ainsi,

 $\forall n \in \mathbb{N}, \forall t \in I \cap \mathbb{R}_+^*, \ y_n'(t) \ge \sqrt{|y_n(t)|} = \sqrt{y_n(t)} \ i.e. \ \forall n \in \mathbb{N}, \forall t \in I \cap \mathbb{R}_+^*, \ y_n(t) \ge 4t^2 > 0.$ Ainsi, $y_n(t) \notin c_0(\mathbb{N})$. Impossible.