L3 Mathématiques 2024–2025

Équations Différentielles

CC n°2, le 10/02/2025. Durée : 1h30.

Questions de cours

- 1 Donner la définition d'une fonction localement lipschitzienne par rapport à la $2^{\text{ème}}$ variable sur $I \times \mathbb{R}^d$ où I est un intervalle de \mathbb{R} .
- 2 Donner la définition de l'exponentielle d'une matrice à partir d'une série en rappelant pourquoi cette dernière converge.
- 3 On considère l'équation différentielle linéaire

$$x'(t) = A(t)x(t) + b(t), \quad t \in \mathbb{R},$$

où $A: \mathbb{R} \to \mathcal{L}(\mathbb{R}^d)$ et $b: \mathbb{R} \to \mathbb{R}^d$ sont continues. Donner la définition d'un système fondamental, d'une matrice fondamentale et de la résolvante.

Exercice 1

On considère les matrices $A=\left(\begin{array}{cc} -4 & -3 \\ 3 & -4 \end{array}\right)$ et $B=\left(\begin{array}{cc} 0 & -3 \\ 3 & 0 \end{array}\right)$.

- 1 Calculer B^n pour $n \in \mathbb{N}$. En déduire e^{tB} pour $t \in \mathbb{R}$.
- **2** Donner l'expression de e^{tA} pour $t \in \mathbb{R}$.
- 3 Montrer que toutes les solutions de l'équation différentielle x' = Ax tendent vers 0 lorsque t tend vers $+\infty$.

Exercice 2

On note $\|\cdot\|$ la norme euclidienne sur \mathbb{R}^d et (\cdot,\cdot) le produit scalaire associé. On note $S_d^+(\mathbb{R})$ l'espace des matrices symétriques positives de taille d (pas nécessairement définie positives). Pour $A \in \mathcal{M}_d(\mathbb{R})$, A^T désigne la transposée de la matrice A. On considère l'équation différentielle

$$Y'(t) = A(t)Y(t), \quad t \in \mathbb{R},\tag{1}$$

où $A: \mathbb{R} \to \mathcal{L}(\mathbb{R}^d)$ est continue. On suppose que, pour tout $t \in \mathbb{R}$,

$$-\left(A(t)^T + A(t)\right) \in S_d^+(\mathbb{R}).$$

- 1 Montrer que, pour toute solution Y de (1), $t \in \mathbb{R} \mapsto ||Y(t)||^2$ est décroissante sur \mathbb{R} . En déduire que ||Y(t)|| converge lorsque t tend vers $+\infty$.
- **2** Soient Y_1 et Y_2 deux solutions de (1). Montrer que $(Y_1(t), Y_2(t))$ admet une limite lorsque t tend vers $+\infty$.

Hint: On pourra écrire (Y_1, Y_2) en terme des normes de $Y_1 + Y_2$ et $Y_1 - Y_2$.

On veut étudier la possibilité que (1) ait une solution non identiquement nulle qui converge vers 0 quand t tend vers $+\infty$. On note R(t) une matrice fondamentale et $M(t) := R(t)^T R(t)$.

- **3** En utilisant la question 2, montrer que M(t) a une limite, notée M, quand t tend vers $+\infty$.
- 4 Soit $X \in \mathbb{R}^d$. Exprimer $||R(t)X||^2$ en fonction de M(t) et de X.
- 5 Montrer que $M \in S_d^+(\mathbb{R})$. Montrer que (1) admet une solution non identiquement nulle qui tend vers 0 quand t tend vers $+\infty$ si et seulement s'il existe $X \in \mathbb{R}^d \setminus \{0\}$ tel que (X, MX) = 0.

- 6 En déduire que (1) admet une solution non identiquement nulle qui tend vers 0 quand t tend vers $+\infty$ si et seulement si $\lim_{t\to +\infty} \det M(t) = 0$.
- 7 En déduire que (1) admet une solution non identiquement nulle qui tend vers 0 quand t tend vers $+\infty$ si et seulement si $\lim_{t\to +\infty} \int_0^t \mathrm{Tr}\left(A(s)\right) \mathrm{d}s = -\infty$.

Exercice 3

1 Donner un système fondamental associé au système

$$\begin{cases} x' = 2x + y \\ y' = 2y + 4z \\ z' = x - z \end{cases}.$$

- $\mathbf{2} \quad \text{ En d\'eduire } e^{tA} \text{ pour } t \in \mathbb{R} \text{, où } A \text{ est la matrice } A := \left(\begin{array}{ccc} 2 & 1 & 0 \\ 0 & 2 & 4 \\ 1 & 0 & -1 \end{array} \right).$
- 3 Donner la solution de

$$\begin{cases} x' = 2x + y + e^t \\ y' = 2y + 4z + e^t \\ z' = x - z + e^t \end{cases}.$$

vérifiant x(0) = y(0) = z(0) = 0.