Séminaire Landau

Non linear controllability of ODE and PDE with several controls

Théo Gherdaoui
under the supervision of Karine Beauchard and Frédéric Marbach
May 30, 2024

Introduction :

Controllability : ajust a function parameter of an ODE/PDE so that the solution reachs a target at a fixed time.

ODE : affine systems (finite dimension).
PDE : bilinear Schrödinger equation with two controls.

Definition (Affine Systems)

An ODE is an affine system if it is given by :

$$
\begin{equation*}
x^{\prime}=f_{0}(x)+\sum_{i=1}^{m} u_{i} f_{i}(x) \tag{1}
\end{equation*}
$$

where $x(t) \in \mathbb{R}^{d}$ is the stat, and $u(t)=\left(\begin{array}{c}u_{1}(t) \\ \vdots \\ u_{m}(t)\end{array}\right) \in \mathbb{R}^{m}$, the control.
The function f_{0} is the drift.

$$
x^{\prime}=f_{0}(x)+\sum_{i=1}^{m} u_{i} f_{i}(x)
$$

One supposes that f_{0}, \cdots, f_{m} are regular functions, and $f_{0}(0)=0$ (equilibrium). One considers $x(t ; u, p)$ the solution of (1) at time t, with the initial condition $x(0 ; u, p)=p$.
L^{∞}-Small Time Locally Controllable : $\forall T>0, \forall \eta>0, \exists \delta>0$, so that $\forall x^{*} \in \mathbb{R}^{d},\left\|x^{*}\right\| \leq \delta$, then, $\exists u \in L^{\infty}(0, T)$ such that $\|u\|_{\infty} \leq \eta$ and $x(T, u, 0)=x^{*}$.

No SNC
A few NC/SC are known \longrightarrow in term of Lie Brackets.

Definition (Lie Brackets)

Let Ω be a nonempty openset of \mathbb{R}^{d}, and $X, Y: \Omega \rightarrow \mathbb{R}^{d}$ vector fields, \mathcal{C}^{1}. One defines the Lie Bracket of X, and $Y,[X, Y]$ as :

$$
[X, Y]: x \in \Omega \mapsto D Y(x)(X(x))-D X(x)(Y(x)) \in \mathbb{R}^{d} .
$$

$[X, Y] \in \mathcal{C}^{0}\left(\Omega, \mathbb{R}^{d}\right)$.

Definition (Iterated Lie Brackets)

Let Ω be a nonempty openset of \mathbb{R}^{d}, and $X, Y: \Omega \rightarrow \mathbb{R}^{d}$ vector fields, \mathcal{C}^{∞}. One defines, for $k \in \mathbb{N}$, $a d_{X}^{k}(Y)$ by induction as :

$$
\operatorname{ad}_{X}^{0}(Y)=Y \text { and } a d_{X}^{k+1}(Y)=\left[X, a d_{X}^{k}(Y)\right] .
$$

Theorem (Hermann and Nagano, 1963-66)

Let f_{0}, \cdots, f_{m} be analytic vector fields. One supposes that (1) is STLC, then, the (following) LARC is true i.e.

$$
\left\{g(0), g \in \operatorname{Lie}\left(f_{0}, \cdots, f_{m}\right)\right\}=\mathbb{R}^{d}
$$

Theorem (Linear Test)

Let f_{0}, f_{1}, f_{2} be analytic vector fields (and $f_{0}(0)=0$). One supposes that :

$$
\operatorname{Span}\left(a d_{f_{0}}^{k}\left(f_{1}\right)(0), a d_{f_{0}}^{k}\left(f_{2}\right)(0) \quad k \in \mathbb{N}\right)=\mathbb{R}^{d}
$$

Then, the affine system $x^{\prime}=f_{0}(x)+u f_{1}(x)+v f_{2}(x)$ is STLC.

Purpose : establish, with a new proof, a positive result of controllability ($S(\theta)$ condition of Sussmann) (already known) for affine systems. We want to formulate the result in terms of Lie Brackets.
Then, we want to adapt this proof in the framework of PDE (infinite dimension) - bilinear Schrödinger equation.

Strategy : approximate the solution of an ODE by a Lie Brackets series (Magnus formula) :

- solve a moment problems to give the value of the partial sum
- estimate the rest of the sum.

We construct a suitable basis \mathcal{B} of $\mathcal{L}(X)$ (Viennot theorem).

$$
\mathcal{B} \cap \mathcal{S}_{2}=\{\underbrace{\left(X_{1} 0^{j}, X_{1} 0^{j+1}\right) 0^{k},\left(X_{2} 0^{j}, X_{2} 0^{j+1}\right) 0^{k}}_{\text {bad }}, \underbrace{\left(X_{1} 0^{j}, X_{2}\right) 0^{k}}_{\text {good }}, j, k \geqslant 0\}
$$

Theorem

Let $L \in \mathbb{N}, \delta>0, f_{0}, f_{1}, f_{2} \in \mathcal{C}^{\omega}\left(B_{2 \delta}, \mathbb{R}^{d}\right)$. One supposed that $f_{0}(0)=0$,
$\operatorname{Span}\left(f_{b}(0), b \in \mathcal{B} \cap\left(\mathcal{S}_{1} \cup \mathcal{S}_{2, \text { good }}\right), \quad|b| \leqslant L\right)=\mathbb{R}^{d}$.
If, for all $b \in \mathcal{S}_{2, \text { bad }}$ with $|b| \leqslant L+1$,

$$
f_{b}(0) \in \mathcal{S}_{1}(f)(0),
$$

then, $x^{\prime}=f_{0}(x)+u f_{1}(x)+v f_{2}(x)$ is $L^{\infty}-S T L C$.

PDE : generalise the result of affine systems in the framework of infinite dimension.

Bilinear Schrödinger equation with two controls: for $T>0$,

$$
\left\{\begin{align*}
i \partial_{t} \psi(t, x) & =-\partial_{x x}^{2} \psi(t, x)-u(t) \mu_{1}(x) \psi-v(t) \mu_{2}(x) \psi(t, x), \tag{2}\\
\psi(0, x) & =\varphi_{1}(x)
\end{align*}\right.
$$

We consider $\left(\varphi_{j}\right)_{j \geqslant 1}$, the orthonormal basis of $L^{2}(0,1)$, given by the engeinvectors of the Laplacian with Dirichlet boundary conditions, with $\lambda_{j}=(j \pi)^{2}$.

We linearise this equation (in terms of (ψ, u)) around the trajectory $\left(\psi_{1}, u, v \equiv 0\right)$ (where ψ_{1} is the ground state) $\longrightarrow \Psi(T)$.
K. Beauchard and C. Laurent proved an equivalent of the linear test for (2). We want to generalise this result, with the quadratic term $\longrightarrow \xi(T)$.

We obtain :

$$
\psi(T) \simeq \psi_{1}(T)+\psi(T)+\xi(T)
$$

One supposes $\left(\Psi(T), \varphi_{K}\right)_{L^{2}(0,1)}=0$ (lost direction). Moreover,

$$
\begin{gathered}
\left(\xi(T), \varphi_{K} e^{-i \lambda_{1} T}\right)_{L^{2}(0,1)}=\int_{0}^{T}\left(\int_{0}^{t} h_{1}(t, s) u(s) \mathrm{d} s\right) u(t) \mathrm{d} t+ \\
\int_{0}^{T}\left(\int_{0}^{t} h_{2}(t, s) v(s) \mathrm{d} s\right) u(t) \mathrm{d} t+\int_{0}^{T}\left(\int_{0}^{t} h_{3}(t, s) u(s) \mathrm{d} s\right) v(t) \mathrm{d} t+ \\
\int_{0}^{T}\left(\int_{0}^{t} h_{4}(t, s) v(s) \mathrm{d} s\right) v(t) \mathrm{d} t
\end{gathered}
$$

where

$$
h_{1}=h_{\mu_{1}, \mu_{1}}, \quad h_{2}=h_{\mu_{2}, \mu_{1}}, \quad h_{3}=h_{\mu_{1}, \mu_{2}}, \quad h_{4}=h_{\mu_{2}, \mu_{2}},
$$

and, for $1 \leqslant i, j \leqslant 2$,

$$
h_{\mu_{i}, \mu_{j}}(t, s)=-\sum_{k=1}^{+\infty}\left(\mu_{i} \varphi_{1}, \varphi_{k}\right)_{L^{2}}\left(\varphi_{k}, \mu_{j} \varphi_{K}\right)_{L^{2}} e^{i\left(\lambda_{k}(s-t)+\lambda_{K}(t-T)+\lambda_{1}(T-s)\right)} .
$$

Under good hypotheses, we obtain :

$$
\left(\xi(T), \varphi_{K} e^{-i \lambda_{1} T}\right)_{L^{2}(0,1)}=(-i)^{n} T^{n+2} \gamma_{K}^{n} \int_{0}^{1} \bar{u}_{n+2}(t) \bar{v}(t) \mathrm{d} t+\mathcal{O}\left(T^{n+3}\right)
$$

with

$$
\left.\gamma_{K}^{n}=\left(a d_{\Delta}^{n}\left(\mu_{1}\right), \mu_{2}\right) \varphi_{1}, \varphi_{K}\right)_{L^{2}(0,1)} .
$$

$0 \quad \mathrm{~T} \quad T+T_{1}$

The proof is divised in two steps :

1. In the first step, on $(0, T)$: we use moment problems to fix the value of $\left(\xi(T), \varphi_{K}\right)_{L^{2}(0,1)}$. The linear can evolve freely.
2. We use the result about small-time exact controllability in projection to force the value under :

$$
\overline{\operatorname{Span}\left(\varphi_{j}, j \in \mathbb{N}^{*} \backslash\{K\}\right)}
$$

We must do carfully in order not to destroy the first step. Then, we conclude by the Brouwer fixed-point theorem

This work is in progress...

Thank you for your attention!

