Small Time Local Controllability of the multi-input bilinear Schrödinger equation thanks to a quadratic term

T. Gherdaoui ${ }^{1}$

${ }^{1}$ ENS Rennes - Université de Rennes.

Worshop ANR TRECOS, Control and stabilization of PDEs, Institut Élie Cartan de Lorraine, Nancy, April 03, 2024.

ㄴN/: Université de Rennes
(1) STLC of affine systems of finite dimension

- Definitions: STLC, Lie brackets
- Magnus representation formula
- Theorem and idea of proof
(2) STLC of the bilinear Schrödinger equation
- Presentation
- Main theorem and ideas of proof
- Generalization
- Conclusion and perspectives
$(*): x^{\prime}=f_{0}(x)+u f_{1}(x)+v f_{2}(x)$, with $f_{0}, f_{1}, f_{2} \in \mathcal{C}^{\omega}\left(\mathbb{R}^{d}\right)$.
We assume that $f_{0}(0)=0$, i.e. $(0,(0,0))$ is an equilibrium trajectory of the system (*).

We focus on small time and small controls : the solution is well-defined, and we note it $x(\cdot ;(u, v), 0)$.

Definition (E-STLC)

(*) is \mathbf{E} - STLC around the equilibrium if : for all $T>0, \varepsilon>0$, there exists
$\delta>0$ such that, for all target $x_{f} \in \mathbb{R}^{d}$ such that $\left\|x_{f}\right\| \leqslant \delta$, there exists $u, v \in E$ with $\|(u, v)\|_{E} \leqslant \varepsilon$ such that $x(T ;(u, v), 0)=x_{f}$.

Historical definition : $E=L^{\infty}$.

Definition (Lie Brackets)

For f, g, regular vectors fields on \mathbb{R}^{d}, we define the vector field $[f, g]$ as :

$$
[f, g]: x \in \mathbb{R}^{d} \mapsto g^{\prime}(x) f(x)-f^{\prime}(x) g(x)
$$

By induction, one defines:

$$
a d_{f}^{0} g=g \quad \forall k \in \mathbb{N}, a d_{f}^{k+1}(g)=\left[f, a d_{f}^{k}(g)\right]
$$

We want to prove sufficient conditions of controllability in terms of the evaluation at $x=0$ of Lie brackets of f_{0}, f_{1} and f_{2}

Theorem (K. Beauchard, F. Marbach)

The solution of $(*)$ is given by

$$
x(T ;(u, v), 0)=\sum_{b \in \mathcal{B}_{\llbracket 1,2 \rrbracket},|b| \leqslant L} \underbrace{\xi_{b}(T,(u, v))}_{\text {explicit functional in }(u, v)} \times \underbrace{f_{b}}_{\in L i e\left(f_{0}, f_{1}, f_{2}\right)}(0)+\text { remainders }
$$

where $\mathcal{B}_{\llbracket 1,2 \rrbracket}$ is a set of brackets.
The set $\mathcal{B}_{\llbracket 1,2 \rrbracket}$ is defined as :

For $\mathcal{B}_{2, \text { bad }}$,

$$
\xi_{b}(t,(u, v)) \geqslant 0, \quad \text { for example }\left[f_{1},\left[f_{1}, f_{0}\right]\right] \rightarrow \int_{0}^{t} u_{1}(s)^{2} \mathrm{~d} s
$$

For $\mathcal{B}_{2, \text { good }}$,

$$
\xi_{b}(t,(-u, v))=-\xi_{b}(t,(u, v))
$$

Theorem (Nagano (1966))

If the system $(*)$ is $L^{\infty}-S T L C$, then LARC holds, i.e.

$$
\operatorname{Lie}\left(f_{0}, f_{1}, f_{2}\right)(0)=\mathbb{R}^{d}
$$

Theorem (Linear Test)

If $\left\{f_{b}(0), b \in \mathcal{B}_{1}\right\}=\mathbb{R}^{d}$, then system $(*)$ is $L^{\infty}-S T L C$.
\mathcal{B}_{1} is good. With mono-control system, $\mathcal{B}_{2}=\mathcal{B}_{2, \text { bad }}$, and $\mathcal{B}_{2, \text { good }}=\emptyset$.

Theorem

Let $L>0$. One supposes that :
Span $\left(f_{b}(0), \quad b \in \mathcal{B}_{1} \cup \mathcal{B}_{2, \text { good }}, \quad|b| \leqslant L\right)=\mathbb{R}^{d}$.
For all $b \in \mathcal{B}_{2, \text { bad }},|b| \leqslant L \Rightarrow f_{b}(0) \in \mathcal{B}_{1}(f)(0)$.
Then, the system $(*)$ is $L^{\infty}-S T L C$.

Included in the Sussmann's $\mathcal{S}(\theta)$ condition, with $\theta=0$.
Idea of proof (in the case $\operatorname{codim}\left(\mathcal{S}_{1}(f)(0)\right)=1$) One considers a basis of \mathbb{R}^{d} given by the LARC :

$$
\mathbb{R}^{d}=\operatorname{Span}\left(f_{b_{1}}(0), \cdots, f_{b_{d-1}}(0), f_{\tilde{b}}(0)\right)
$$

with $b_{1}, \cdots, b_{d-1} \in \mathcal{B}_{1}$ and $\tilde{b} \in \mathcal{B}_{2, \text { good }}$. One considers \mathbb{P} such that $\mathbb{P}\left(f_{b_{i}}(0)\right)=0$ for $i \in \llbracket 1, d-1 \rrbracket$ and $\mathbb{P}\left(f_{\tilde{b}}(0)\right)=1$.

The proof is divised in two steps :

1. We construct $\left(u_{z}, v_{z}\right)$ such that :

$$
\begin{gathered}
\mathbb{P}\left(x\left(T_{1} ;\left(u_{z}, v_{z}\right), 0\right)\right)=z+O\left(|z|^{1+\delta}\right), \text { with } \delta>0 \\
\quad \text { and } x\left(T_{1} ;\left(u_{z}, v_{z}\right), 0\right)=O\left(|z|^{s}\right), \text { with } s>\frac{1}{2}
\end{gathered}
$$

2. STLC in $\operatorname{Span}\left(f_{b_{1}}(0), \cdots, f_{b_{d-1}}(0)\right)+$ Brouwer fixed-point theorem.

Step 1 : Let $\bar{u}, \bar{v} \in L^{2}((0,1), \mathbb{R})$ with enough vanishing moments. Let $T_{1}(z)>0$, $\varepsilon(z), \varepsilon^{\prime}(z)>0$ and $u_{z}, v_{z}: t \in\left(0, T_{1}\right) \mapsto \varepsilon \bar{u}\left(\frac{t}{T_{1}}\right), \varepsilon^{\prime} \bar{v}\left(\frac{t}{T_{1}}\right)$. Then, with the Magnus formula,

$$
\begin{gathered}
\mathbb{P}\left(x\left(T_{1} ;\left(u_{z}, v_{z}\right), 0\right)\right)=\mathbb{P}\left(\sum_{b \in \mathcal{B}_{1}}\right)+\xi_{\tilde{b}}\left(T_{1},\left(u_{z}, v_{z}\right)\right)+\text { remainders }, \\
\mathbb{P}\left(x\left(T_{1} ;\left(u_{z}, v_{z}\right), 0\right)\right)=\varepsilon \varepsilon^{\prime} T_{1}^{|\tilde{\mid}|} \xi_{\tilde{b}}(1,(\bar{u}, \bar{v}))+O\left(\varepsilon \varepsilon^{\prime} T_{1}^{|\tilde{b}|+1}+\left(\varepsilon+\varepsilon^{\prime}\right)^{3} T_{1}^{3}\right) .
\end{gathered}
$$

Taking $\varepsilon=\operatorname{sgn}(z)|z|^{\sigma_{1}}, \varepsilon^{\prime}=|z|^{\sigma_{2}}$, and $T_{1}=\varepsilon=|z|^{\sigma_{3}}$, and \bar{u}, \bar{v} such that $\xi_{\tilde{b}}(1,(\bar{u}, \bar{v}))=1$, one has :

$$
\mathbb{P}\left(x\left(T_{1} ;\left(u_{z}, v_{z}\right), 0\right)\right)=z+O\left(|z|^{1+\beta}\right)
$$

Step 2 : Using the explicit form of \mathcal{B}_{1}, one prove that the new step doesn't destroy the first step.

We consider the following PDE :

$$
\left\{\begin{array}{lr}
i \partial_{t} \psi=-\partial_{x x}^{2} \psi-\left(u(t) \mu_{1}(x)+v(t) \mu_{2}(x)\right) \psi, & (t, x) \in(0, T) \times(0,1) \\
\psi(t, 0)=\psi(t, 1)=0, & t \in(0, T) \\
\psi(0, x)=\psi_{0}(x), & x \in(0,1)
\end{array}\right.
$$

Functional analysis : $A:=-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}, D(A)=H^{2}(0,1) \cap H_{0}^{1}(0,1)$.
(1) eigenvalues : $\lambda_{j}=(j \pi)^{2}, j \geqslant 1$.
(2) eigenvectors : $\varphi_{j}:=\sqrt{2} \sin (j \pi \cdot), j \geqslant 1$.
(3) $\left(\varphi_{j}\right)_{j \geqslant 1}$ orthonormal basis of $L^{2}(0,1)$.

Ground state : $\psi_{1}(t, x):=\varphi_{1}(x) e^{-i \lambda_{1} t}=\psi\left(t ;(0,0), \varphi_{1}\right)$.

Theorem (Linear Test, K. Beauchard, C. Laurent (2010))

Let $\mu_{1}, \mu_{2} \in H^{3}((0,1), \mathbb{R})$ such that

$$
\exists c>0, \quad \forall j \in \mathbb{N}^{*}, \quad\left\|\left(\left(\mu_{i} \varphi_{1}, \varphi_{j}\right)\right)_{1 \leqslant i \leqslant 2}\right\| \geqslant \frac{c}{j^{3}}
$$

The bilinear Schrödinger equation is $L^{2}-S T L C$ in $H_{(0)}^{3}(0,1)$:

$$
\begin{aligned}
& \forall T>0, \forall \varepsilon>0, \exists \delta>0 \text {, s.t. } \forall \psi_{f} \in \mathcal{S} \cap H_{(0)}^{3}(0,1) \text { with }\left\|\psi_{f}-\psi_{1}(T)\right\|_{H^{3}} \leqslant \delta, \\
& \quad \exists(u, v) \in L^{2}((0, T) \mathbb{R})^{2} \text { s.t. } \psi\left(T ;(u, v), \varphi_{1}\right)=\psi_{f} \text { and }\|(u, v)\|_{L^{2}} \leqslant \varepsilon
\end{aligned}
$$

Mégane Bournissou: Quadratic obstructions in the bilinear Schrödinger equation with single-input system.

Framework of the article : $\exists K \geqslant 2$ such that $\left\langle\mu_{1} \varphi_{1}, \varphi_{K}\right\rangle=\left\langle\mu_{2} \varphi_{1}, \varphi_{K}\right\rangle=0$. \rightarrow use quadratic expansion of the solution to recover this direction

Theorem (T.G. (2024))

One considers μ_{1}, μ_{2} such that:
(1) $\mu_{1}, \mu_{2} \in H^{3}((0,1), \mathbb{R})$.
(2) $\left\langle\mu_{1} \varphi_{1}, \varphi_{K}\right\rangle=\left\langle\mu_{2} \varphi_{1}, \varphi_{K}\right\rangle=0$.
(3) $\exists c>0, \quad \forall j \in \mathbb{N}^{*} \backslash\{K\}, \quad\left\|\left(\left(\mu_{i} \varphi_{1}, \varphi_{j}\right)\right)_{1 \leqslant i \leqslant 2}\right\| \geqslant \frac{c}{j^{3}}$.
(9) $A_{1}^{1}:=\left\langle\left[\mu_{1},\left[\mu_{1}, \Delta\right]\right] \varphi_{1}, \varphi_{K}\right\rangle=0$.
(6) $A_{1}^{2}:=\left\langle\left[\mu_{2},\left[\mu_{2}, \Delta\right]\right] \varphi_{1}, \varphi_{K}\right\rangle=0$.
(0) $\gamma_{1}:=\left\langle\left[\mu_{2},\left[\mu_{1}, \Delta\right]\right] \varphi_{1}, \varphi_{K}\right\rangle \neq 0$.

The Schrödinger equation is $L^{2}-S T L C$ around the ground state in $H_{(0)}^{3}(0,1)$.

- Point 1: well-posedness.
- Point 3 : related to control in projection.
- Point 4 and 5 : prevents the system from a drift.
- Point 6 : allows us to use the bracket to recover the direction.

Idea of proof :

The proof is divised in two steps:

1. We construct $\left(u_{z}, v_{z}\right)$ such that:

$$
\begin{gathered}
\qquad \mathbb{P}\left(x\left(T_{1} ;\left(u_{z}, v_{z}\right), 0\right)\right)=i z+O\left(|z|^{\frac{13}{12}}\right) \\
\text { and } x\left(T_{1} ;\left(u_{z}, v_{z}\right), 0\right)=O\left(|z|^{s}\right), \text { with } s>\frac{1}{2}
\end{gathered}
$$

2. STLC in $\overline{\operatorname{Span}_{\mathbb{C}}\left(\varphi_{j}, j \in \mathbb{N}^{*} \backslash\{K\}\right)}+$ Brouwer fixed-point theorem.

Step 1 : Let $\bar{u}, \bar{v} \in L^{2}((0,1), \mathbb{R})$ be such that, $\int_{0}^{1} \bar{u}(t) \mathrm{d} t=\int_{0}^{1} \bar{v}(t) \mathrm{d} t=0$. Let $T_{1}(z)>0, \varepsilon(z), \varepsilon^{\prime}(z)>0$ and $u_{z}, v_{z}: t \in\left(0, T_{1}\right) \mapsto \varepsilon \bar{u}^{\prime}\left(\frac{t}{T_{1}}\right), \varepsilon^{\prime} \bar{v}^{\prime}\left(\frac{t}{T_{1}}\right)$. Then,

$$
\begin{aligned}
\left\langle\psi\left(T_{1} ;\left(u_{z}, v_{z}\right), \varphi_{1}\right), \psi_{K}\left(T_{1}\right)\right\rangle=\mathcal{F}_{T_{1}}\left(u_{z}\right)+\mathcal{G}_{T_{1}}\left(u_{z}, v_{z}\right) & +\mathcal{F}_{T_{1}}\left(v_{z}\right) \\
& +O\left(\left\|\left(u_{z}, v_{z}\right)\right\|_{L^{2}}^{3}\right) .
\end{aligned}
$$

A direct computation gives :

$$
\mathcal{F}_{T_{1}}\left(u_{z}\right)=-i \varepsilon^{2} T_{1}^{3} A_{1}^{1} \int_{0}^{1} \bar{u}(t)^{2} \mathrm{~d} t+O\left(\varepsilon^{2} T_{1}^{4}\right)=O\left(\varepsilon^{2} T_{1}^{4}\right)
$$

Similarly, $\mathcal{F}_{T_{1}}\left(v_{z}\right)=O\left(\varepsilon^{\prime 2} T_{1}^{4}\right)$.Moreover,

$$
\mathcal{G}_{T_{1}}\left(u_{z}, v_{z}\right)=i \varepsilon \varepsilon^{\prime} T_{1}^{3} \gamma_{1} \int_{0}^{1} \bar{u}(t) \bar{v}(t) \mathrm{d} t+O\left(\varepsilon \varepsilon^{\prime} T_{1}^{4}\right) .
$$

Thus,

$$
\begin{aligned}
\left\langle\psi\left(T_{1} ;\left(u_{z}, v_{z}\right), \varphi_{1}\right), \psi_{K}\left(T_{1}\right)\right\rangle=i \varepsilon \varepsilon^{\prime} & T_{1}^{3} \gamma_{1} \int_{0}^{1} \bar{u}(t) \bar{v}(t) \mathrm{d} t \\
& +O\left(\left(\varepsilon+\varepsilon^{\prime}\right)^{2} T_{1}^{4}+\left(\varepsilon^{3}+\varepsilon^{\prime 3}\right) T_{1}^{\frac{3}{2}}\right)
\end{aligned}
$$

Let $\rho>0$ and $z \in(-\rho, \rho)$. With $\varepsilon=\operatorname{sgn}(z)|z|^{\frac{3}{8}}, \varepsilon^{\prime}=|z|^{\frac{3}{8}}$ and $T_{1}=|z|^{\frac{1}{12}}$, $(\bar{u}, \bar{v}) \in \mathcal{C}_{c}^{\infty}(0,1)^{2}$ such that $\int_{0}^{1} \bar{u}(t) \bar{v}(t) \mathrm{d} t=\frac{1}{\gamma_{1}}$, one obtains:

$$
\left\langle\psi\left(T_{1} ;\left(u_{z}, v_{z}\right), \varphi_{1}\right), \psi_{k}\left(T_{1}\right)\right\rangle=i z \gamma_{1} \int_{0}^{1} \bar{u} \bar{v}^{\prime}+O\left(|z|^{\frac{13}{12}}\right)=i z+O\left(|z|^{\frac{13}{12}}\right) .
$$

Step 2 : let $\tilde{u}_{z}, \tilde{v}_{z}$, given by control in projection theorem, such that :

$$
\mathcal{P}_{\mathcal{H}}\left(\psi\left(T,\left(\tilde{u}_{z}, \tilde{v}_{z}\right), \psi\left(T_{1},\left(u_{z}, v_{z}\right), \varphi_{1}\right)\right)\right)=\psi_{1}(T),
$$

with

$$
\mathcal{H}:=\overline{\operatorname{Span}_{\mathbb{C}}\left(\varphi_{j}, j \in \mathbb{N}^{*} \backslash\{K\}\right)} .
$$

Finally, let $U_{z}=u_{z} \sharp \tilde{u}_{z}$, and $V_{z}=v_{z} \sharp \tilde{v}_{z}$, then

$$
\begin{gathered}
\left\|\psi\left(T ;\left(U_{z}, V_{z}\right), \varphi_{1}\right)-\psi_{1}(T)-i z \psi_{K}(T)\right\|_{H_{(0)}^{3}}= \\
\left|\left\langle\psi\left(T ;\left(U_{z}, V_{z}\right), \varphi_{1}\right), \psi_{K}(T)\right\rangle-i z\right| \leqslant \underbrace{\left|\left\langle\psi\left(T_{1} ;\left(u_{z}, v_{z}\right), \varphi_{1}\right), \psi_{K}\left(T_{1}\right)\right\rangle-i z\right|}_{\leqslant C|z|^{\frac{13}{12}} \text { by first step }} \\
+\underbrace{\left|\left\langle\psi\left(T ;\left(U_{z}, V_{z}\right), \varphi_{1}\right), \psi_{K}(T)\right\rangle-\left\langle\psi\left(T_{1} ;\left(u_{z}, v_{z}\right), \varphi_{1}\right), \psi_{K}\left(T_{1}\right)\right\rangle\right|}_{\leqslant C|z| \frac{61}{60}} .
\end{gathered}
$$

Finally,

$$
\left\|\psi\left(T ;\left(U_{z}, V_{z}\right), \varphi_{1}\right)-\psi_{1}(T)-i z \psi_{K}(T)\right\|_{H_{(0)}^{3}}=O\left(|z|^{\frac{61}{60}}\right)
$$

Theorem (T.G. (2024))

Let $n \geqslant 1, m, p \geqslant 0, K \geqslant 2$ such that $\left\lfloor\frac{n}{2}\right\rfloor \leqslant p$. Let μ_{1}, μ_{2} such that :
(1) $\mu_{1}, \mu_{2} \in H^{2(p+m)+3}((0,1), \mathbb{R})$ with $\left.\mu^{(2 k+1)}\right|_{\{0,1\}}=0$, for $0 \leqslant k \leqslant p-1$.
(2) $\left\langle\mu_{1} \varphi_{1}, \varphi_{K}\right\rangle=\left\langle\mu_{2} \varphi_{1}, \varphi_{K}\right\rangle=0$.
(3) $\exists c>0, \quad \forall j \in \mathbb{N}^{*} \backslash\{K\}, \quad\left\|\left(\left(\mu_{i} \varphi_{1}, \varphi_{j}\right)\right)_{1 \leqslant i \leqslant 2}\right\| \geqslant \frac{c}{j^{2 p+3}}$.
(9) $\forall k \in \llbracket 1,\left\lfloor\frac{n+1}{2}\right\rfloor \rrbracket, A_{k}^{1}:=\left\langle\left[a d_{\Delta}^{k-1}\left(\mu_{1}\right), a d_{\Delta}^{k}\left(\mu_{1}\right)\right] \varphi_{1}, \varphi_{K}\right\rangle=0$.
(6) $\forall k \in \llbracket 1,\left\lfloor\frac{n+1}{2}\right\rfloor \rrbracket, A_{k}^{2}:=\left\langle\left[\operatorname{ad}_{\Delta}^{k-1}\left(\mu_{2}\right), a d_{\Delta}^{k}\left(\mu_{2}\right)\right] \varphi_{1}, \varphi_{K}\right\rangle=0$.
(0) $\gamma_{n}:=\left\langle\left[a d_{\Delta}^{\left\lfloor\frac{n+1}{2}\right\rfloor}\left(\mu_{1}\right), a d_{\Delta}^{\left\lfloor\frac{n}{2}\right\rfloor}\left(\mu_{2}\right)\right] \varphi_{1}, \varphi_{K}\right\rangle \neq 0$.

The equation is $H_{0}^{m}-S T L C$ around the ground state in $H_{(0)}^{2(p+m)+3}(0,1)$.

Perspectives:

(1) Several lost directions (as in finite dimension) ? An infinite number ?
(2) Obstruction for STLC with multi-input systems
(3) Other equations? KdV ?

Thank you for your attention!

