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Worshop ANR TRECOS, Control and stabilization of PDEs,
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(∗) : x ′ = f0(x) + uf1(x) + vf2(x), with f0, f1, f2 ∈ Cω(Rd).

We assume that f0(0) = 0, i.e. (0, (0, 0)) is an equilibrium trajectory of the
system (∗).

We focus on small time and small controls : the solution is well-defined, and we
note it x(·; (u, v), 0).

Definition (E-STLC)

(∗) is E− STLC around the equilibrium if : for all T > 0, ε > 0, there exists
δ > 0 such that, for all target xf ∈ Rd such that ∥xf ∥ ⩽ δ, there exists u, v ∈ E
with ∥(u, v)∥E ⩽ ε such that x(T ; (u, v), 0) = xf .

Historical definition : E = L∞.
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Definition (Lie Brackets)

For f , g , regular vectors fields on Rd , we define the vector field [f , g ] as :

[f , g ] : x ∈ Rd 7→ g ′(x)f (x)− f ′(x)g(x).

By induction, one defines :

ad0
f g = g ∀k ∈ N, adk+1

f (g) = [f , adk
f (g)].

We want to prove sufficient conditions of controllability in terms of the evalu-
ation at x = 0 of Lie brackets of f0, f1 and f2
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Theorem (K. Beauchard, F. Marbach)

The solution of (∗) is given by

x(T ; (u, v), 0) =
∑

b∈BJ1,2K,|b|⩽L

ξb(T , (u, v))︸ ︷︷ ︸
explicit functional in (u,v)

× fb︸︷︷︸
∈Lie(f0,f1,f2)

(0) + remainders,

where BJ1,2K is a set of brackets.

The set BJ1,2K is defined as :

B := B1︸︷︷︸
linear terms : brackets
with f1 or f2 one time

∪ B2,good ∪ B2,bad︸ ︷︷ ︸
quadratic terms : brackets
with f1 or f2 two times

.

For B2,bad ,

ξb(t, (u, v)) ⩾ 0, for example [f1, [f1, f0]] →
∫ t

0

u1(s)
2ds.

For B2,good ,
ξb(t, (−u, v)) = −ξb(t, (u, v)).
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Theorem (Nagano (1966))

If the system (∗) is L∞ − STLC , then LARC holds, i.e.

Lie(f0, f1, f2)(0) = Rd .

Theorem (Linear Test)

If {fb(0), b ∈ B1} = Rd , then system (∗) is L∞ − STLC .

B1 is good. With mono-control system, B2 = B2,bad , and B2,good = ∅.

Theorem

Let L > 0. One supposes that :

Span (fb(0), b ∈ B1 ∪ B2,good , |b| ⩽ L) = Rd .

For all b ∈ B2,bad , |b| ⩽ L ⇒ fb(0) ∈ B1(f )(0).

Then, the system (∗) is L∞ − STLC .
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Included in the Sussmann’s S(θ) condition, with θ = 0.

Idea of proof (in the case codim(S1(f )(0)) = 1) One considers a basis of Rd

given by the LARC :

Rd = Span(fb1(0), · · · , fbd−1(0), fb̃(0)),

with b1, · · · , bd−1 ∈ B1 and b̃ ∈ B2,good . One considers P such that P(fbi (0)) = 0
for i ∈ J1, d − 1K and P(fb̃(0)) = 1.

0 T1

(uz , vz) (ũz , ṽz)
The proof is divised in two steps :

T

1. We construct (uz , vz) such that :

P(x(T1; (uz , vz), 0)) = z + O
(
|z |1+δ

)
, with δ > 0,

and x(T1; (uz , vz), 0) = O(|z |s), with s >
1

2
.

2. STLC in Span(fb1(0), · · · , fbd−1(0)) + Brouwer fixed-point theorem.
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Step 1 : Let ū, v̄ ∈ L2((0, 1),R) with enough vanishing moments. Let T1(z) > 0,

ε(z), ε′(z) > 0 and uz , vz : t ∈ (0,T1) 7→ εū
(

t
T1

)
, ε′v̄

(
t
T1

)
. Then, with the

Magnus formula,

P(x(T1; (uz , vz), 0)) = P

∑
b∈B1

+ ξb̃(T1, (uz , vz)) + remainders,

P(x(T1; (uz , vz), 0)) = εε′T
|b̃|
1 ξb̃(1, (ū, v̄)) + O

(
εε′T

|b̃|+1
1 + (ε+ ε′)3T 3

1

)
.

Taking ε = sgn(z)|z |σ1 , ε′ = |z |σ2 , and T1 = ε = |z |σ3 , and ū, v̄ such that
ξb̃(1, (ū, v̄)) = 1, one has :

P(x(T1; (uz , vz), 0)) = z + O
(
|z |1+β

)
.

Step 2 : Using the explicit form of B1, one prove that the new step doesn’t
destroy the first step.
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We consider the following PDE :
i∂tψ = −∂2

xxψ − (u(t)µ1(x) + v(t)µ2(x))ψ, (t, x) ∈ (0,T )× (0, 1)
ψ(t, 0) = ψ(t, 1) = 0, t ∈ (0,T )
ψ(0, x) = ψ0(x), x ∈ (0, 1)

Functional analysis : A := − d2

dx2
, D(A) = H2(0, 1) ∩ H1

0 (0, 1).

1 eigenvalues : λj = (jπ)2, j ⩾ 1.

2 eigenvectors : φj :=
√
2 sin(jπ·), j ⩾ 1.

3 (φj)j⩾1 orthonormal basis of L2(0, 1).

Ground state : ψ1(t, x) := φ1(x)e
−iλ1t = ψ(t; (0, 0), φ1).
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Theorem (Linear Test, K. Beauchard, C. Laurent (2010))

Let µ1, µ2 ∈ H3((0, 1),R) such that

∃c > 0, ∀j ∈ N∗,
∥∥∥((µiφ1, φj))1⩽i⩽2

∥∥∥ ⩾
c

j3
.

The bilinear Schrödinger equation is L2−STLC in H3
(0)(0, 1) :

∀T > 0, ∀ε > 0,∃δ > 0, s.t. ∀ψf ∈ S ∩ H3
(0)(0, 1) with ∥ψf − ψ1(T )∥H3 ⩽ δ,

∃(u, v) ∈ L2((0,T )R)2 s.t. ψ(T ; (u, v), φ1) = ψf and ∥(u, v)∥L2 ⩽ ε.

Mégane Bournissou : Quadratic obstructions in the bilinear Schrödinger equation
with single-input system.

Framework of the article : ∃K ⩾ 2 such that ⟨µ1φ1, φK ⟩ = ⟨µ2φ1, φK ⟩ = 0.
→ use quadratic expansion of the solution to recover this direction
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Theorem (T.G. (2024))

One considers µ1, µ2 such that :

1 µ1, µ2 ∈ H3((0, 1),R).
2 ⟨µ1φ1, φK ⟩ = ⟨µ2φ1, φK ⟩ = 0.

3 ∃c > 0, ∀j ∈ N∗ \ {K},
∥∥∥((µiφ1, φj))1⩽i⩽2

∥∥∥ ⩾
c

j3
.

4 A1
1 := ⟨[µ1, [µ1,∆]]φ1, φK ⟩ = 0.

5 A2
1 := ⟨[µ2, [µ2,∆]]φ1, φK ⟩ = 0.

6 γ1 := ⟨[µ2, [µ1,∆]]φ1, φK ⟩ ̸= 0.

The Schrödinger equation is L2−STLC around the ground state in H3
(0)(0, 1).

Point 1 : well-posedness.

Point 3 : related to control in projection.

Point 4 and 5 : prevents the system from a drift.

Point 6 : allows us to use the bracket to recover the direction.
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Idea of proof :

0 T1

(uz , vz) (ũz , ṽz)
The proof is divised in two steps :

T

1. We construct (uz , vz) such that :

P(x(T1; (uz , vz), 0)) = iz + O
(
|z |

13
12

)
and x(T1; (uz , vz), 0) = O(|z |s), with s >

1

2
.

2. STLC in SpanC (φj , j ∈ N∗ \ {K}) + Brouwer fixed-point theorem.

Step 1 : Let ū, v̄ ∈ L2((0, 1),R) be such that,
∫ 1

0
ū(t)dt =

∫ 1

0
v̄(t)dt = 0.

Let T1(z) > 0, ε(z), ε′(z) > 0 and uz , vz : t ∈ (0,T1) 7→ εū′
(

t
T1

)
, ε′v̄ ′

(
t
T1

)
.

Then,

⟨ψ(T1; (uz , vz), φ1), ψK (T1)⟩ = FT1(uz) + GT1(uz , vz) + FT1(vz)

+ O
(
∥(uz , vz)∥3L2

)
.
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A direct computation gives :

FT1(uz) = −iε2T 3
1A

1
1

∫ 1

0

ū(t)2dt + O
(
ε2T 4

1

)
= O

(
ε2T 4

1

)
.

Similarly, FT1(vz) = O
(
ε′

2
T 4

1

)
.Moreover,

GT1(uz , vz) = iεε′T 3
1 γ1

∫ 1

0

ū(t)v̄(t)dt + O
(
εε′T 4

1

)
.

Thus,

⟨ψ(T1; (uz , vz), φ1), ψK (T1)⟩ = iεε′T 3
1 γ1

∫ 1

0

ū(t)v̄(t)dt

+ O

(
(ε+ ε′)2T 4

1 +
(
ε3 + ε′

3
)
T

3
2
1

)
.

Let ρ > 0 and z ∈ (−ρ, ρ). With ε = sgn(z)|z |
3
8 , ε′ = |z |

3
8 and T1 = |z |

1
12 ,

(ū, v̄) ∈ C∞
c (0, 1)2 such that

∫ 1

0

ū(t)v̄(t)dt =
1

γ1
, one obtains :

⟨ψ(T1; (uz , vz), φ1), ψK (T1)⟩ = izγ1

∫ 1

0

ūv̄ ′ + O
(
|z |

13
12

)
= iz + O

(
|z |

13
12

)
.
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Step 2 : let ũz , ṽz , given by control in projection theorem, such that :

PH (ψ(T , (ũz , ṽz), ψ(T1, (uz , vz), φ1))) = ψ1(T ),

with
H := SpanC (φj , j ∈ N∗ \ {K}).

Finally, let Uz = uz♯ũz , and Vz = vz♯ṽz , then

∥ψ(T ; (Uz ,Vz), φ1)− ψ1(T )− izψK (T )∥H3
(0)

=

| ⟨ψ(T ; (Uz ,Vz), φ1), ψK (T )⟩ − iz | ⩽ | ⟨ψ(T1; (uz , vz), φ1), ψK (T1)⟩ − iz |︸ ︷︷ ︸
⩽C |z|

13
12 by first step

+ | ⟨ψ(T ; (Uz ,Vz), φ1), ψK (T )⟩ − ⟨ψ(T1; (uz , vz), φ1), ψK (T1)⟩ |︸ ︷︷ ︸
⩽C |z|

61
60 thanks to weak estimates on the control

.

Finally,

∥ψ(T ; (Uz ,Vz), φ1)− ψ1(T )− izψK (T )∥H3
(0)

= O
(
|z |

61
60

)
.
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Theorem (T.G. (2024))

Let n ⩾ 1, m, p ⩾ 0, K ⩾ 2 such that ⌊ n
2
⌋ ⩽ p. Let µ1, µ2 such that :

1 µ1, µ2 ∈ H2(p+m)+3((0, 1),R) with µ(2k+1)
∣∣{0,1} = 0, for 0 ⩽ k ⩽ p − 1.

2 ⟨µ1φ1, φK ⟩ = ⟨µ2φ1, φK ⟩ = 0.

3 ∃c > 0, ∀j ∈ N∗ \ {K},
∥∥∥((µiφ1, φj))1⩽i⩽2

∥∥∥ ⩾
c

j2p+3
.

4 ∀k ∈ J1, ⌊ n+1
2
⌋K, A1

k :=
〈
[adk−1

∆ (µ1), ad
k
∆(µ1)]φ1, φK

〉
= 0.

5 ∀k ∈ J1, ⌊ n+1
2
⌋K, A2

k :=
〈
[adk−1

∆ (µ2), ad
k
∆(µ2)]φ1, φK

〉
= 0.

6 γn :=

〈
[ad

⌊ n+1
2

⌋
∆ (µ1), ad

⌊ n
2
⌋

∆ (µ2)]φ1, φK

〉
̸= 0.

The equation is Hm
0 −STLC around the ground state in H

2(p+m)+3
(0) (0, 1).
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Perspectives :

1 Several lost directions (as in finite dimension) ? An infinite number ?

2 Obstruction for STLC with multi-input systems

3 Other equations ? KdV ?

Thank you for your attention !
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