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One considers the affine system:

x ′ = f0(x) + uf1(x) + vf2(x), (1)

with f0, f1, f2 ∈ Cω(Rd). The terms f0 is called the drift.

We assume that f0(0) = 0, i.e. (0, (0, 0)) is an equilibrium trajectory of the
system (1).

We focus on small time and small controls: the solution is well-defined, and we
note it x(·; (u, v), 0).
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Definition (E-STLC)

(1) is E− STLC around the equilibrium if: for all T > 0, ε > 0, there exists
δ > 0 such that, for all target xf ∈ Rd such that ∥xf ∥ ⩽ δ, there exists u, v ∈ E
with ∥(u, v)∥E ⩽ ε such that x(T ; (u, v), 0) = xf .

Historical definition: E = L∞.

δ

xf

0 0

t = Tt = 0

>>

x(t; (u, v), 0)
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Definition (E-STLC)

(1) is E− STLC around the equilibrium if: for all T > 0, ε > 0, there exists
δ > 0 such that, for all target xf ∈ Rd such that ∥xf ∥ ⩽ δ, there exists u, v ∈ E
with ∥(u, v)∥E ⩽ ε such that x(T ; (u, v), 0) = xf .

Let

FT :

[
E 2 → Rd

(u, v) 7→ x(T ; (u, v), 0)

]
.

Then,
E − STLC ⇔ ∀T > 0, FT is locally onto at (0, 0).
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Definition (Lie Brackets)

For f , g , regular vectors fields on Rd , we define the vector field [f , g ] as:

[f , g ] : x ∈ Rd 7→ g ′(x)f (x)− f ′(x)g(x).

By induction, one defines: ad0f g = g and ∀k ∈ N, adk+1
f (g) = [f , adkf (g)].

Example

One supposes f0(x) =

(
x2
2

0

)
and f1(x) =

(
0
1

)
. Then,

[f1, f0](x) =

(
0 2x2
0 0

)(
0
1

)
=

(
2x2
0

)
.

ad2f1(f0)(0) = [f1, ad
1
f1(f0)](0) =

(
0 2
0 0

)(
0
1

)
= 2e1.

We want to prove sufficient conditions of controllability in terms of the evalu-
ation at x = 0 of Lie brackets of f0, f1 and f2.
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Theorem (W.-L. Chow, 1939, P.K. Rashevski, 1938)

If f0 ≡ 0 (no drift), then, the system (1) is L∞ − STLC iff LARC holds, i.e.

Lie(f0, f1, f2)(0) = Rd .

This result is false in general. For example,

{
x ′
1 = x2

2 ⩾ 0
x ′
2 = u

. Then, f0(x) =(
x2
2

0

)
and f1(x) =

(
0
1

)
. Thus, Span(f1(0), ad

2
f1
(f0)(0)) = R2. Nevertheless, the

system is not controllable.

Theorem (R. Hermann 1963, T. Nagano 1966)

If the system (1) is L∞ − STLC , then LARC holds, i.e.

Lie(f0, f1, f2)(0) = Rd .
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Theorem[1]

The solution of (1) is given by

x(T ; (u, v), 0) =
∑

b∈BJ1,2K,

|b|⩽L

ξb(T , (u, v))︸ ︷︷ ︸
explicit functional in (u,v)

× fb︸︷︷︸
∈Lie(f0,f1,f2)

(0) + remainders,

where BJ1,2K is a set of brackets.

The set BJ1,2K is defined as:

BJ1,2K := B1︸︷︷︸
linear terms: brackets
with f1 or f2 one time

∪ B2,good ∪ B2,bad︸ ︷︷ ︸
quadratic terms: brackets
with f1 or f2 two times

.

For b̃ ∈ B2,bad ,

ξb̃(t, (u, v)) ⩾ 0, for example ad2f1(f0) →
∫ t

0

(∫ s

0

u(σ)dσ

)2

ds.

[1] Karine Beauchard, Jérémy Le Borgne, and Frédéric Marbach. “On expansions for nonlinear
systems Error estimates and convergence issues”. In: Comptes Rendus. Mathématique 361 (Jan.
2023), 97–189.
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Theorem[1]

The solution of (1) is given by

x(T ; (u, v), 0) =
∑

b∈BJ1,2K,

|b|⩽L

ξb(T , (u, v))︸ ︷︷ ︸
explicit functional in (u,v)

× fb︸︷︷︸
∈Lie(f0,f1,f2)

(0) + remainders,

where BJ1,2K is a set of brackets.

The set BJ1,2K is defined as:

BJ1,2K := B1︸︷︷︸
linear terms: brackets
with f1 or f2 one time

∪ B2,good ∪ B2,bad︸ ︷︷ ︸
quadratic terms: brackets
with f1 or f2 two times

.

For b̃ ∈ B2,good ,
ξb̃(t, (−u, v)) = −ξb̃(t, (u, v)).

[1] Karine Beauchard, Jérémy Le Borgne, and Frédéric Marbach. “On expansions for nonlinear
systems Error estimates and convergence issues”. In: Comptes Rendus. Mathématique 361 (Jan.
2023), 97–189.
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Theorem (Linear Test, R. Kalman 1960)

If {fb(0), b ∈ B1} = Rd , then system (1) is Wm,∞ − STLC , for every m ∈ N.

Idea of the proof: For all T > 0,

dFT (0, 0)(u, v) = X (T ) is the solution

of the linearized system, starting from 0.

However,

✓

linearized system controllable ⇐⇒
Kalmam
condition

{fb(0), b ∈ B1} = Rd .

✓

linearized system controllable =⇒
inverse mapping

theorem

STLC.

B1 is good.
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Remark: For mono-control system, B2 = B2,bad (B2,good = ∅), [Beauchard,
Marbach].

Theorem

Let L > 0. One supposes that:

Span (fb(0), b ∈ B1 ∪ B2,good , |b| ⩽ L) = Rd .

For all b ∈ B2,bad , |b| ⩽ L ⇒ fb(0) ∈ B1(f )(0).

Then, the system (1) is smooth−STLC , i.e. Wm,∞ − STLC , for every m ∈ N.

Example

A typical example is the following one:
x ′
1 = u
x ′
2 = x1
y ′
1 = v
z ′1 = x1y1 − 7x2y1
z ′2 = x2

1 + x2
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If we want to change the hypothesis as:

For all b ∈ B2,bad , |b| ⩽ L ⇒ fb(0) ∈ B1(f )(0)+B2,good(f )(0).

we can have problems !

Example 
x ′
1 = u
y ′
1 = v

z ′1 = x2
1 + 2y 2

1 +
3

2
x1y1

,

Indeed,

z ′1 =

(
x1 +

3

4
y1

)2

+
23

16
y 2
1 ⩾ 0.

Work in progress..!
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✗ Included in the H. Sussmann’s S(θ) condition (1987), with θ → 0.

One considers a basis of Rd given by the LARC:

Rd = B1(f )(0)⊕ Spn
(
fbr+1(0), · · · , fbd (0)

)
,

with r = dim (B1(f )(0)) and br+1, · · · , bd ∈ B2,good . Let m ∈ N.

Let j ∈ Jr + 1, dK. It is sufficient to prove that we can create a motion
along fbj (0), i.e. there exists a continuous map Ξ : [0,+∞[→ Rd with Ξ(0) =
fbj (0) such that for all T > 0, there exists C , ρ, sj > 0 and a continuous map

z ∈ (−ρ, ρ) 7→ (uz , vz) ∈ Wm,∞(0,T )2 such that,

∀z ∈ (−ρ, ρ), ∥x(T ; (uz , vz), 0)− zΞ(T )∥ ⩽ C |z |1+sj ,

with
∥(uz , vz)∥Wm,∞ ⩽ C |z |sj .

Then, the Brouwer fixed-point theorem gives the STLC result.
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Idea of the proof: Let j ∈ Jr + 1, dK. One considers P, the linear projection on
Span (fbi (0))r+1⩽i⩽d parallel to B1(f )(0).

0 T1

(uz , vz) (ũz , ṽz)
The proof is divised in two steps:

T

1. We construct (uz , vz) such that:

P(x(T1; (uz , vz), 0)) = zfbj (0) +O
(
|z |1+sj

)
, with sj > 0.

2. STLC in B1(f )(0).
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Step 1: Let ū, v̄ ∈ C∞
c ((0, 1),R) s.t.

for every b ∈ B2,good with |b| ⩽ L, ξb(1, (ū, v̄)) = δb,bj .

We need to prove the existence of such functions

Let T1(z) > 0, ε(z), ε′(z) > 0 and uz , vz : t ∈ (0,T1) 7→ εū
(

t
T1

)
, ε′v̄

(
t
T1

)
.

Then, with the Magnus formula,

P(x(T1; (uz , vz), 0)) = P

 ∑
b∈B1,|b|⩽L

+ P

 ∑
b∈B2,bad ,|b|⩽L


+ εε′

∑
b∈B2,good ,

|b|⩽L

T
|b|
1 ξb(1, (u, v))︸ ︷︷ ︸

=δb,bj

P (fb(0)) + remainders.

Then,

P(x(T1; (uz , vz), 0)) = εε′T
|bj |
1 fbj (0) +O

(
εε′T

|bj |+1

1 + (ε+ ε′)3T 3
1

)
.
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Taking ε = sgn(z)|z |σ1 , ε′ = |z |σ2 , and T1 = ε = |z |σ3 , with σ1, σ2, σ3 =
f θ(|bj |,m), well chosen, one has: P(x(T1; (uz , vz), 0)) = zfbj (0) +O

(
|z |1+sj

)
.

Step 2: Thanks linear test, one considers (ũz , ṽz) s.t.

PB1(f )(0) (x(T1; (uz , vz), 0))

PB1(f )(0)

(
x
(
T ; (0, 0), zfbj (0)

))
=: PB1(f )(0) (zΞ(t))

(ũz , ṽz)

>

>

Note that PB1(f )(0) = I − P. Then,

∥x(T ; (Uz ,Vz), 0)− zΞ(t)∥ = ∥P (x(T ; (Uz ,Vz), 0))− zP (zΞ(t))∥ .

Using the explicit form of B1, one proves that the new step doesn’t destroy the
first step.
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We consider the following PDE:
i∂tψ = −∂2

xxψ − (u(t)µ1(x) + v(t)µ2(x))ψ, (t, x) ∈ (0,T )× (0, 1)
ψ(t, 0) = ψ(t, 1) = 0, t ∈ (0,T )
ψ(0, x) = ψ0(x), x ∈ (0, 1)

(2)
i∂tψ = f0(ψ) + uf1(ψ) + vf2(ψ),

with
f0(ψ) = −∂2

xxψ, fi (ψ) = µi × ψ, i ∈ {1, 2}.

Well-posedness

Let T > 0, µ1, µ2 ∈ H3((0,T ),R), u, v ∈ L2((0,T ),R), and ψ0 ∈
H3

(0)(0, 1). There exists a unique weak solution of (2), i.e. a function ψ ∈
C0

(
[0,T ],H3

(0)(0, 1)
)
s.t., in H3

(0) for every t ∈ [0,T ]:

ψ(t) = e−iAtψ0 + i

∫ t

0

e−iA(t−s) ((u(s)µ1 + v(s)µ2)ψ(s))ds.
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Functional analysis: A := − d2

dx2
, D(A) = H2(0, 1) ∩ H1

0 (0, 1).

1 eigenvalues: λj = (jπ)2, j ⩾ 1.

2 eigenvectors: φj :=
√
2 sin(jπ·), j ⩾ 1.

3 (φj)j⩾1 orthonormal basis of L2(0, 1).

Ground state: ψ1(t, x) := φ1(x)e
−iλ1t = ψ(t; (0, 0), φ1).

Definition (L2 − STLC)

(2) is L2 − STLC in H3
(0)(0, 1) around the ground state if: for all T > 0,

ε > 0, there exists δ > 0 such that, for all target ψf ∈ S ∩ H3
(0)(0, 1) such that

∥ψf − ψ1(T )∥H3 ⩽ δ, there exists u, v ∈ L2(0,T ) with ∥(u, v)∥L2 ⩽ ε such that
ψ(T ; (u, v), φ1) = ψf .
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Theorem (Linear Test)[2]

Let µ1, µ2 ∈ H3((0, 1),R) such that

∃c > 0, ∀j ∈ N∗,
∥∥∥(⟨µiφ1, φj⟩)1⩽i⩽2

∥∥∥ ⩾
c

j3
.

Then, the bilinear Schrödinger equation (2) is L2−STLC in H3
(0)(0, 1).

Mégane Bournissou: Quadratic obstructions for the bilinear Schrödinger equation
with single-input system[3].

Framework of the article: ∃K ⩾ 2 such that ⟨µ1φ1, φK ⟩ = ⟨µ2φ1, φK ⟩ = 0.
→ use quadratic expansion of the solution to recover this direction

[2] Karine Beauchard and Camille Laurent. “Local controllability of 1D linear and nonlinear
Schrödinger equations with bilinear control”. In: Journal de Mathématiques Pures et Appliquées
94.5 (2010), pp. 520–554.
[3] Mégane Bournissou. “Quadratic behaviors of the 1D linear Schrödinger equation with bilinear
control”. In: Journal of Differential Equations 351 (2023), pp. 324–360.
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Theorem (T.G., 2024)

One considers µ1, µ2 such that:

1 µ1, µ2 ∈ H3((0, 1),R).
2 ⟨µ1φ1, φK ⟩ = ⟨µ2φ1, φK ⟩ = 0.

3 ∃c > 0, ∀j ∈ N∗ \ {K},
∥∥∥((µiφ1, φj))1⩽i⩽2

∥∥∥ ⩾
c

j3
.

4 A1
1 := ⟨[µ1, [µ1,∆]]φ1, φK ⟩ = 0.

5 A2
1 := ⟨[µ2, [µ2,∆]]φ1, φK ⟩ = 0.

6 γ1 := ⟨[µ2, [µ1,∆]]φ1, φK ⟩ ̸= 0.

The equation (2) is L2−STLC around the ground state in H3
(0).

Point 1: well-posedness.

Point 3: related to control in projection.

Point 4 and 5: prevents the system from a drift.

Point 6: allows us to use the bracket to recover the direction.
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Idea of the proof:

0 T1

(uz , vz) (ũz , ṽz)
The proof is divised in two steps:

T

1. ⟨ψ(T1; (uz , vz), φ1), ψK (T1)⟩ = iz +O
(
|z |

13
12

)
.

2. STLC in projection. We must do it carefully in order not to destroy the
first step (weak norms)

+ Brouwer fixed-point theorem

Step 1: Let ū, v̄ ∈ L2((0, 1),R) be such that,
∫ 1

0
ū(t)dt =

∫ 1

0
v̄(t)dt = 0. Let

T1(z) > 0, ε(z), ε′(z) > 0 and uz , vz : t ∈ (0,T1) 7→ εū′
(

t
T1

)
, ε′v̄ ′

(
t
T1

)
.

Then,

⟨ψ(T1; (uz , vz), φ1), ψK (T1)⟩ = FT1(uz) + GT1(uz , vz) + FT1(vz)

+O
(
∥(uz , vz)∥3L2

)
.
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A direct computation gives:

FT1(uz) = −iε2T 3
1A

1
1

∫ 1

0

ū(t)2dt +O
(
ε2T 4

1

)
= O

(
ε2T 4

1

)
.

Similarly, FT1(vz) = O
(
ε′

2
T 4

1

)
. Moreover,

GT1(uz , vz) = iεε′T 3
1 γ1

∫ 1

0

ū(t)v̄(t)dt +O
(
εε′T 4

1

)
.

Thus,

⟨ψ(T1; (uz , vz), φ1), ψK (T1)⟩ = iεε′T 3
1 γ1

∫ 1

0

ū(t)v̄(t)dt

+O
(
(ε+ ε′)2T 4

1 +
(
ε3 + ε′

3
)
T

3
2
1

)
.

Let ρ > 0 and z ∈ (−ρ, ρ). With ε = sgn(z)|z |
3
8 , ε′ = |z |

3
8 and T1 = |z |

1
12 ,

(ū, v̄) ∈ C∞
c (0, 1)2 such that

∫ 1

0

ū(t)v̄(t)dt =
1

γ1
, one obtains:

⟨ψ(T1; (uz , vz), φ1), ψK (T1)⟩ = izγ1

∫ 1

0

ūv̄ ′ +O
(
|z |

13
12

)
= iz +O

(
|z |

13
12

)
.
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Theorem (T.G., 2024)

Let n ⩾ 1, m, p ⩾ 0, K ⩾ 2 such that ⌊ n
2
⌋ ⩽ p. Let µ1, µ2 such that:

1 µ1, µ2 ∈ H2(p+m)+3((0, 1),R) with µ(2k+1)
∣∣{0,1} = 0, for 0 ⩽ k ⩽ p − 1.

2 ⟨µ1φ1, φK ⟩ = ⟨µ2φ1, φK ⟩ = 0.

3 ∃c > 0, ∀j ∈ N∗ \ {K},
∥∥∥((µiφ1, φj))1⩽i⩽2

∥∥∥ ⩾
c

j2p+3
.

4 ∀k ∈ J1, ⌊ n+1
2
⌋K, A1

k :=
〈
[adk−1

∆ (µ1), ad
k
∆(µ1)]φ1, φK

〉
= 0.

5 ∀k ∈ J1, ⌊ n+1
2
⌋K, A2

k :=
〈
[adk−1

∆ (µ2), ad
k
∆(µ2)]φ1, φK

〉
= 0.

6 γn :=

〈
[ad

⌊ n+1
2

⌋
∆ (µ1), ad

⌊ n
2
⌋

∆ (µ2)]φ1, φK

〉
̸= 0.

The equation (2) is Hm
0 −STLC around the ground state in H

2(p+m)+3
(0) (0, 1): for all

T > 0, ε > 0, there exists δ > 0 such that, for all target ψf ∈ S∩H2(p+m)+3
(0) (0, 1)

such that ∥ψf − ψ1(T )∥H2(p+m)+3 ⩽ δ, there exists u, v ∈ Hm
0 (0,T ) with

∥(u, v)∥Hm
0
⩽ ε such that ψ(T ; (u, v), φ1) = ψf .
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Perspectives:

1 Several lost directions (as in finite dimension) ? An infinite number ?

2 Obstruction for STLC with multi-input systems

3 Other equations ? KdV ?

Théo Gherdaoui. “Small-Time Local Controllability of the multi-input bilinear
Schrödinger equation thanks to a quadratic term”. In: Preprint (2024)

Thank you for your attention !
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