Feuille 2

Exercice 1 [Problèmes de Cauchy]

Etudier l'existence et l'unicité de solutions maximales et l'expression éventuelle de ces solutions pour les problèmes de Cauchy suivants :

1.
$$y' = y^2$$
 avec $y(2) = -\frac{1}{2}$,

2.
$$y' = \frac{1}{y}$$
 avec $y(0) = 1$,

3.
$$y' = 1 + y^2$$
 avec $y(1) = 1$.

Exercice 2 [Comparaison de quasi-solutions]

Soit I un intervalle de \mathbb{R} , $f: I \times \mathbb{R}^n \to \mathbb{R}^n$ une fonction continue k-lipschitzienne par rapport à y. On s'intéresse à l'équation différentielle x'(t) = f(t, x(t)), et on considère deux quasi-solutions x_1 et x_2 , i.e. $x_1, x_2: [0, T] \subseteq I \to \mathbb{R}^n \in \mathcal{C}^1([0, T])$, telles qu'il existe $\varepsilon_1, \varepsilon_2 \geq 0$ telles que

$$\forall t \in [0, T], \quad ||x_i'(t) - f(t, x_i(t))|| \le \varepsilon_i, \quad i = 1, 2.$$

On pose $x_i^0 = x_i(0)$ pour i = 1, 2.

1. Montrer que :

$$\forall t \in [0, T], \quad \|x_1(t) - x_2(t)\| \le \|x_1^0 - x_2^0\|e^{kt} + (\varepsilon_1 + \varepsilon_2)\frac{e^{kt} - 1}{k}.$$

2. Discuter le résultat dans le cas $\varepsilon_1 = \varepsilon_2 = 0$.

EXERCICE 3 [Périodicité] Soit $f: \mathbb{R}^N \to \mathbb{R}^N$ une fonction localement lipschitzienne. Soit x une solution maximale du problème de Cauchy

$$\begin{cases} x'(t) = f(x(t)), \\ x(0) = x_0, \end{cases}$$

définie sur un intervalle I. Supposons qu'il existe $\tau_1 \neq \tau_2 \in I$ tels que $x(\tau_1) = x(\tau_2)$. Montrer que $I = \mathbb{R}$ et que x est périodique.

EXERCICE 4 [Approximation de solutions] Soit $q \in \mathcal{C}(\mathbb{R})$ une fonction bornée. Le but de cet exercice est d'approximer la solution de l'équation différentielle

$$\begin{cases} x''(t) - q(t)x(t) = 0, \\ x(0) = 0, \ x'(0) = 1. \end{cases}$$
 (1)

1. Mettre l'équation (1) sous la forme suivante :

$$\begin{cases} X'(t) = F(t, X(t)), \\ X(0) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}. \end{cases}$$
 (2)

- 2. Appliquer le théorème de Cauchy-Lipschitz au problème (2).
- 3. On définit la suite X_n par récurrence

$$\begin{cases} X_0(t) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \\ X_{n+1}(t) = \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \int_0^t F(s, X_n(s)) \, \mathrm{d}s. \end{cases}$$

Montrer que pour $\alpha > 0$ suffisamment petit, la suite $(X_n)_n$ converge dans $\mathcal{C}([-\alpha, \alpha]; \mathbb{R}^2)$ vers la solution de (2).

EXERCICE 5 [Le théorème d'unicité de Osgood]

Soit $f: \mathbb{R}^n \to \mathbb{R}^n$ une fonction continue. Soit Ω un ouvert de \mathbb{R}^n muni de la norme euclidienne et $x_0 \in \Omega$. On suppose que :

$$\forall (x_1, x_2) \in \Omega \times \Omega, \quad ||f(x_1) - f(x_2)|| \le \omega(||x_1 - x_2||),$$

où $\omega \in \mathcal{C}(\mathbb{R}_+, \mathbb{R}_+)$ vérifie :

$$\forall \sigma > 0, \quad \omega(\sigma) > 0, \quad \text{et} \quad \forall \alpha > 0, \quad \int_0^\alpha \frac{d\sigma}{\omega(\sigma)} = +\infty.$$

Soient $x_1, x_2: I \to \Omega$ deux solutions du problème de Cauchy :

$$\begin{cases} x'(t) = f(x(t)), \\ x(t_0) = x_0. \end{cases}$$

Montrer que $x_1 = x_2$.

Exercice 6 [Cauchy-Peano]

1. Montrer que les fonctions $t \to \{(t-\alpha)^+\}^2/4$, $\alpha > 0$ sont solutions sur \mathbb{R} du problème de Cauchy

$$\begin{cases} x'(t) = \sqrt{|x(t)|}, \\ x(0) = 0. \end{cases}$$

2. Montrer que si $f: \mathbb{R} \to \mathbb{R}$ est continue et vérifie $f(x_0) \neq 0$ au point $x_0 \in \mathbb{R}$, alors le problème de Cauchy

$$\begin{cases} x'(t) = f(x(t)), \\ x(0) = x_0, \end{cases}$$

admet une solution locale unique.

3. On note $c_0(\mathbb{N})$ l'espace de Banach des suites réelles $u=(u_n)_n$ convergeant vers 0 quand $n\to +\infty$, muni de la norme $||u||_{\infty}=\max_{n\in\mathbb{N}}|u_n|$.

(a) Montrer que l'application $f: u \mapsto \left(\sqrt{|u_n|} + \frac{1}{n+1}\right)$ est continue de $c_0(\mathbb{N})$ dans $c_0(\mathbb{N})$.

(b) Montrer que la solution du problème de Cauchy ci-dessous ne prend pas ses valeurs dans $c_0(\mathbb{N})$:

$$\begin{cases} u'(t) = f(u(t)), \\ u(0) = 0. \end{cases}$$

EXERCICE 7 Soient $a, b : \mathbb{R} \to \mathbb{R}$ des fonctions continues avec a impaire et b paire. Montrer que l'équation différentielle

$$y'(t) + a(t)y(t) = b(t)$$

admet une unique solution impaire.

EXERCICE 8 [Zéros isolés] Soient $a_1, \dots, a_n : I \to \mathbb{R}$ des fonctions continues. Montrer que toute solution non-nulle de l'équation $y^{(n)} + a_{n-1}(t)y^{(n-1)} + \dots + a_0(t)y = 0$ a ses zéros isolés.

EXERCICE 9 [Inégalités] Soit $F: \mathbb{R}^2 \to \mathbb{R}$ une fonction \mathcal{C}^1 et $f, g: \mathbb{R} \to \mathbb{R}$ deux solutions globales de l'équation dfférentielle y' = F(t, y). On suppose qu'il existe $t_0 \in \mathbb{R}$ tel que $f(t_0) < g(t_0)$. Montrer que pour tout $t \in \mathbb{R}$, f(t) < g(t).