Compléments de cours 2 - Agrégation externe Équations différentielles ordinaires :

Table des matières

1	Théorème de Hadamard-Levy	1
	Vers la contrôlabilité des EDO 2.1 Un premier critère de contrôlabilité	5
3	3 Vers les distributions	8
4	Autres suggestions	8

1 Théorème de Hadamard-Levy

Définition 1.1 (Fonction propre). Soient $(E, \|\cdot\|_E)$ et $(F, \|\cdot\|_F)$ deux EVN. Une application $f: E \to F$ est dite propre si, pour tout $K \subseteq F$, compact, $f^{-1}(K)$ est un compact de $(E \|\cdot\|_E)$.

Exemple 1.2. La fonction $x : \mathbb{R} \mapsto \begin{cases} \frac{1}{x} & \text{si } x \neq 0 \\ 2 & \text{sinon} \end{cases}$ n'est pas propre puisque $f^{-1}([-1,1]) =]-\infty, -1] \cup [1, +\infty[.$

Proposition 1.3. Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction continue. Alors, f est propre ssi elle vérifie : $\lim_{\|x\| \to +\infty} |f(x)| = +\infty$.

Démonstration. Supposons que f est propre. Si elle ne vérifie pas $\lim_{\|x\|\to +\infty} |f(x)| = +\infty$. : il existe A>0, tel que, pour tout $n\in\mathbb{N}$, il existe $x_n\in\mathbb{R}^n$ tel que $\|x_n\|\geqslant n$ et $|f(x_n)|\leqslant A$. Ainsi,

$$\{x_n, n \in \mathbb{N}\} \subseteq f^{-1}([-A, A]),$$

qui est compact, donc bornée. Contradiction. **Réciproquement**, soit $K \subseteq \mathbb{R}$ un compact. Alors, $f^{-1}(K)$ est fermé, par continuité de f. De plus, c'est un borné : si ce n'est pas le cas, $\forall n \in \mathbb{N}$, il existe $x_n \in f^{-1}(K)$ tel que $||x_n|| \ge n$. Alors, par hypothèse de f, $|f(x_n)| \underset{n \to +\infty}{\longrightarrow} +\infty$. C'est une contradiction, car $f(x_n) \in K$, borné.

Corollary 1.4. Les polynômes non constants sont des fonctions propres.

Voici un prérequis :

Théorème 1.5 (Théorème d'inversion globale). Soient $(E, \|\cdot\|_E)$ et $(F, \|\cdot\|_F)$ deux espaces de Banach et $\Omega_E \subset E$ un ouvert. Soient $f: \Omega_E \to F$ une application injective de classe \mathcal{C}^1 . On suppose que, pour tout point $x \in \Omega_E$, $\mathrm{d}f(x) \in \mathcal{GL}(E,F)$. Alors, $f(\Omega_E)$ est un ouvert et la corestriction $f: \Omega_E \to f(\Omega_E)$ est un \mathcal{C}^1 -difféomorphisme.

Démonstration. Montrons que $f(\Omega_E)$ est ouvert : soit $y := f(x) \in f(\Omega_E)$; avec $x \in \Omega_E$. On sait par le théorème d'inversion locale, qu'il existe \mathcal{V} , voisinage ouvert de Ω_E contenant x, et $\mathcal{W} = f(\mathcal{V})$, voisinage ouvert de F contenant y, tel que, $f|_{\mathcal{V}} \to \mathcal{W}$ est un \mathcal{C}^1 difféomorphisme. Ainsi, $\mathcal{W} = f(\mathcal{V}) \subseteq f(\Omega_E)$ est un voisinage ouvert. La continuité de l'application inverse est évidente. \square

Pour le théorème qui nous intéresse, on relaxe un peu les hypothèses, et on ne suppose plus f injective mais propre.

Théorème 1.6 (Hadamard-Levy). Soit $f: \mathbb{R}^n \to \mathbb{R}^n$ une application de classe C^2 . Alors, les assertions suivantes sont équivalentes :

- 1. f est un C^1 difféomorphisme global de \mathbb{R}^n .
- 2. f est propre et vérifie : pour tout $x \in \mathbb{R}^n$, df(x) est inversible.

Démonstration. Pour le sens direct, il convient de remarquer que, f est nécessairement propre, puisque, pour tout compact $K \subseteq \mathbb{R}^n$, $f^{-1}(K)$ est compact comme image de K par la fonction continue f^{-1} . De plus, le théorème des fonctions composés appliqué à la relation $f^{-1} \circ f = Id_{\mathbb{R}^n}$ donne :

$$\forall x \in \mathbb{R}^n, \quad \mathrm{d} f^{-1}(f(x)) \circ \mathrm{d} f(x) = Id_{\mathbb{R}^n}.$$

Ainsi, $df(x) \in \mathcal{GL}(\mathbb{R}^n)$.

Pour le sens réciproque, il convient de remarquer que le théorème d'inversion locale s'applique, et f est un \mathcal{C}^1 difféomorphisme local. Il faut alors montrer que f est bijective pour conclure. On fixe $y \in \mathbb{R}^n$ et on veut montrer que cet élément possède un unique antécédent par f, *i.e.* $\operatorname{Card}(f^{-1}(\{y\})) = 1$. Quitte à poser g = f - y, qui vérifie les mêmes hypothèses que f, on se ramène à étudier le nombre d'antécédents de f0 par f1.

Étape 1 : Card $(f^{-1}(\{0\})) \ge 1$. On considère :

$$F: \begin{array}{ccc} \mathbb{R}^n & \to & \mathbb{R}^n \\ x & \mapsto & -df(x)^{-1}(f(x)) \end{array}.$$

Il est clair que $F \in \mathcal{C}^1(\mathbb{R}^n, \mathbb{R}^n)$. On considère l'équation différentielle suivante :

$$\begin{cases} y' = F(y) \\ y(0) = q \in \mathbb{R}^n \end{cases}$$
 (1)

Au vu de la régularité de F, l'équation admet une unique solution maximale $y(\cdot,q)$ définie sur un intervalle ouvert dont on note $[0,T^*[$ la restriction aux temps positifs. Montrons que cette solution est globale. On pose $g:t\in[0,T^*[\mapsto f\circ y(t,q)\in\mathbb{R}^n]$. Alors,

$$\forall t \in [0, T^*], \quad g'(t) = df(y(t, q))(y'(t, q)) = -f \circ y(t, q) = -g(t).$$

Alors,

$$\forall t \in [0, T^*], \qquad g(t) = f \circ y(t, q) = f(q)e^{-t}.$$

Ainsi, $\forall t \in [0, T^*[, y(t, q) \in f^{-1}\left(\overline{B(0, \|f(q)\|)}\right)$, qui est compact car f est propre. Par principe de majoration a priori, $T^* = +\infty$. Par compacité, il existe $y^* \in \mathbb{R}^n$ et $(t_k)_{k \in \mathbb{N}} \in (\mathbb{R}^+)^{\mathbb{N}}$ tel que $t_k \underset{k \to +\infty}{\longrightarrow} +\infty$ et $y(t_k, q) \underset{k \to +\infty}{\longrightarrow} y^*$. Alors,

$$f(y(t_k,q)) = g(t_k) \underset{k \to +\infty}{\longrightarrow} 0.$$

Par continuité de f, il vient $f(y^*) = 0$.

Remarque 1.7. Pourquoi avoir introduit une telle équation différentielle? On cherche un 0 de f. Alors, on dimension 1, il convient de remarquer que :

$$y' = -\frac{f(y)}{f'(y)}.$$

Une dérivée discrète de y dang cette équation différentielle donne :

$$y_{n+1} = y_n - \frac{f(y_n)}{f'(y_n)}.$$

2

C'est la méthode de Newton, qui correspond bien à une recherche de 0!

Étape 2 : $\operatorname{Card}(f^{-1}(\{0\})) \leq 1$. Les équilibres de l'équation différentielle sont les zéros de f. Montrons qu'ils sont asymptotiquement stables. On applique le théorème d'inversion locale en y^* : il existe U_{y^*} un ouvert de \mathbb{R}^n contenant y^* , et $\delta_{y^*} > 0$ tel que $f|_{U_{y^*}} : U_{y^*} \to B(0, \delta_{y^*})$ soit un \mathcal{C}^1 difféomorphisme. Supposons qu'il existe $t_0 > 0$ tel que $y(t_0, q) \in U_{y^*}$. Alors, pour tout $t \geq t_0$, $y(t, q) \in U_{y^*}$. En effet,

$$\left\{t \in [t_0, +\infty[, \quad y(t,q) \in U_{y^*}\right\} = \left\{t \in [t_0, +\infty[, \quad y(t,q) = \left(f_{|U_{y^*}}\right)^{-1}\left(e^{-t}f(q)\right)\right\}.$$

(par décroissance de la norme de g). L'ensemble de gauche est ouvert, celui de droite est fermé, et il est non vide. Il est donc égal à $[t_0, +\infty[$ car connexité. Ainsi,

$$y(t,q) \xrightarrow[t \to +\infty]{} y^*,$$

par unicité du zéro de f sur U_{y^*} . Concluons par un nouvel argument de connexité : pour $y^* \in f^{-1}(\{0\})$, on définit :

$$\mathcal{W}_{y^*} = \left\{ q \in \mathbb{R}^n, \quad y(t, q) \underset{t \to +\infty}{\longrightarrow} y^* \right\}.$$

Alors,

$$\mathbb{R}^n = \bigcup_{y^* \in f^{-1}(\{0\})} \mathcal{W}_{y^*}.$$

Il reste à montrer que ce sont des ouverts, non vides, disjoints. Le caractère disjoint est évident, par unicité de la limite. Le fait que $y^* \in \mathcal{W}_{y^*}$ (point d'équilibre) assure que $\mathcal{W}_{y^*} \neq \emptyset$. Montrons qu'ils sont ouverts : on considère $\eta_{y^*} > 0$ tel que $B(y^*, 2\eta_{y^*}) \subseteq U_{y^*}$. Soit $q \in \mathcal{W}_{y^*}$, alors, il existe T > 0, tel que $y(T, q) \in B(y^*, \eta_{y^*})$. La continuité du flot par rapport à la donnée initiale assure qu'il existe $\delta > 0$ tel que :

$$||q - q'|| \leqslant \delta \Rightarrow ||y(T, q) - y(T, q')|| \leqslant \eta_{u^*}.$$

Ainsi, pour tout $q' \in B(y^*, \delta)$, par inégalité triangulaire,

$$||y(T,q')-y^*|| \le ||y(T,q)-y^*|| + ||y(T,q)-y(T,q')|| \le 2\eta_{y^*}.$$

Alors, $y(T, q') \in B(y^*, 2\eta_{y^*}) \subseteq U_{y^*}$. Par ce qui a été fait avant, on a montré que : $y(t, q') \xrightarrow[t \to +\infty]{} y^*$. Ainsi, $q' \in \mathcal{W}_{y^*}$ donc $B(q, \delta) \subseteq \mathcal{W}_{y^*}$. Ceci conclut, par convexité de \mathbb{R}^n .

Remarques 1.8. 1. Ce théorème reste vrai alors l'hypothèse $f \in C^1(\mathbb{R}^n)$, mais, la preuve est différente.

2. Référence : C. Zuily et H. Queffelec, Elements d'analyse, 2ème édition – M. Zavidovique, Un max de maths.

2 Vers la contrôlabilité des EDO..

2.1 Un premier critère de contrôlabilité

Cadre. On considère $n, m \in \mathbb{N}$ deux entiers, $T_0 < T_1$ deux réels, $A \in \mathcal{C}^0([T_0, T_1], \mathcal{M}_n(\mathbb{R}))$, $B \in \mathcal{C}^0([T_0, T_1], \mathcal{M}_{n,m}(\mathbb{R}))$, et on s'intéresse au système suivant :

$$x'(t) = A(t)x(t) + B(t)u(t) \text{ pour } t \in [T_0, T_1],$$
(2)

où x désigne l'état du système et u, le contrôle de ce système.

Nous pouvons maintenant définir la notion de contrôlabilité d'un système linéaire.

Définition 2.1 (Contrôlabilité). Le système (2) est dit contrôlable sur $[T_0, T_1]$ si on a : pour tout $x_0, x_1 \in \mathbb{R}^n$, il existe un contrôle $u \in C^0([T_0, T_1], \mathbb{R}^m)$ telle que l'unique solution x associée au problème de Cauchy (2) avec condition initiale $x(T_0) = x_0$ vérifie $x(T_1) = x_1$

Définition 2.2 (Matrice gramienne). En notant $R(\cdot, \cdot)$ la résolvante associée à A, on appelle matrice gramienne associée au système (2) la matrice

$$\mathfrak{S} = \int_{T_0}^{T_1} R(T_1, s) B(s)^t B(s)^t R(T_1, s) \mathrm{d}s \in \mathcal{M}_n(\mathbb{R}).$$

Proposition 2.3. La matrice gramienne est symétrique positive.

Démonstration. La matrice est clairement symétrique; en effet :

$${}^{t}\mathfrak{S} = {}^{t}\left(\int_{T_{0}}^{T_{1}} R(T_{1}, s)B(s)^{t}B(s)^{t}R(T_{1}, s)\mathrm{d}s\right) = \int_{T_{0}}^{T_{1}} {}^{t}\left(R(T_{1}, s)B(s)^{t}B(s)^{t}R(T_{1}, s)\right)\mathrm{d}s = \mathfrak{S}.$$

De plus, pour tout $x \in \mathbb{R}^n$,

$$(x|\mathfrak{S}x)_{2,\mathbb{R}^n} = {}^t x \mathfrak{S}x = \int_{T_0}^{T_1} {}^t x R(T_1, s) B(s)^t B(s)^t R(T_1, s) x \mathrm{d}s.$$

$$(x|\mathfrak{S}x)_{2,\mathbb{R}^n} = \int_{T_0}^{T_1} \left({}^t B(s)^t R(T_1,s) x |^t B(s)^t R(T_1,s) x \right)_{2,\mathbb{R}^m} \mathrm{d}s = \int_{T_0}^{T_1} \left\| {}^t B(s)^t R(T_1,s) x \right\|_{2,\mathbb{R}^m}^2 \mathrm{d}s \geqslant 0.$$

Théorème 2.4 (Critère de contrôlabilité). Le système (2) est contrôlable sur $[T_0, T_1]$ ssi la matrice gramienne associée au système est inversible.

Démonstration. Supposons que la matrice gramienne est inversible. Montrons que le système (2) est contrôlable sur $[T_0, T_1]$; on considère $(x_0, x_1) \in \mathbb{R}^n \times \mathbb{R}^n$, un état initial et une cible et définissons $\bar{u}: t \in (T_0, T_1) \mapsto {}^tB(t){}^tR(T_1, t)\mathfrak{S}^{-1}(x_1 - R(T_1, T_0)x_0) \in \mathbb{R}^m$. Cette application est clairement $\mathcal{C}^0([T_0, T_1], \mathbb{R}^m)$. Montrons qu'elle permet d'amener la solution de x_0 à x_1 : par la formule de Duhamel, l'unique solution du problème de Cauchy est donnée par :

$$\forall t \in [T_0, T_1], \ x(T_1) = R(T_1, T_0)x_0 + \int_{T_0}^{T_1} R(T_1, s)B(s)^t B(s)^t R(T_1, s)\mathfrak{S}^{-1}\left(x_1 - R(T_1, T_0)x_0\right) ds.$$

Ainsi,

$$\forall t \in [T_0, T_1], \ x(T_1) = R(T_1, T_0)x_0 + \underbrace{\left(\int_{T_0}^{T_1} R(T_1, s)B(s)^t B(s)^t R(T_1, s) \mathrm{d}s\right)}_{=\mathfrak{S}} \mathfrak{S}^{-1} \left(x_1 - R(T_1, T_0)x_0\right).$$

On obtient donc $x(T_1) = x_1$, ce qui conclut.

Réciproquement, on suppose que la matrice gramienne n'est pas inversible. Soit $y \in \ker(\mathfrak{S}) \setminus \{0\}$. Ainsi,

$$^{t}y\mathfrak{S}y = \int_{T_{0}}^{T_{1}} \|^{t}yR(T_{1},s)B(s)\|_{2,\mathbb{R}^{m}}^{2} ds = 0.$$

Par suite, $t \in [T_0, T_1] \mapsto {}^t y R(T_1, t) B(t)$ est nulle. Soit $u \in \mathcal{C}^0([T_0, T_1], \mathbb{R}^m)$ un contrôle quelconque, et x l'unique solution du problème de Cauchy issue de $x_0 = 0$. Alors,

$$x(T_1) = \int_{T_2}^{T_1} R(T_1, s) B(s) u(s) ds.$$

De cette égalité, on obtient :

$$(y, x(T_1))_{2,\mathbb{R}^n} = 0,$$

ceci valant quelque soit le contrôle. On ne peut donc pas trouver de contrôle $u \in \mathcal{C}^0([T_0, T_1], \mathbb{R}^m)$ amenant la solution de $x_0 = 0$ à $x_1 = y$ puisque y est non nul.

2.2Un exemple

Exemple 2.5. On considère le système $\begin{cases} x_1' &= -\sin(t)x_3 \\ x_2' &= \cos(t)x_3 \\ x_3' &= u \end{cases}$ [0, 2\pi] ? Il se met sous la forme (2) avec $A(t) = \begin{pmatrix} 0 & 0 & -\sin(t) \\ 0 & 0 & \cos(t) \\ 0 & 0 & 0 \end{pmatrix}$ et $B(t) = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$. Puisque la

matrice A vérifie pour tout $(t,s) \in \mathbb{R}^2$, A(t)A(s) = A(s)A(t), la résolvante est donnée par :

$$R(2\pi, t) = \exp\left(\int_{t}^{2\pi} A(s) ds\right) = \exp\begin{pmatrix}0 & 0 & 1 - \cos(t) \\ 0 & 0 & -\sin(t) \\ 0 & 0 & 0\end{pmatrix}.$$

Puisque la matrice est nilpotente (d'ordre de nilpotence valant 2), on peut calculer facilement son exponentielle, et pour tout réel t,

$$R(2\pi,t) = \begin{pmatrix} 1 & 0 & 1 - \cos(t) \\ 0 & 1 & -\sin(t) \\ 0 & 0 & 1 \end{pmatrix}.$$

Par suite, la matrice gramienne est donnée par :

$$\mathfrak{S} = \int_0^{2\pi} \begin{pmatrix} (1 - \cos(t))^2 & -\sin(t)(1 - \cos(t)) & 1 - \cos(t) \\ -\sin(t)(1 - \cos(t)) & \sin^2(t) & -\sin(t) \\ 1 - \cos(t) & -\sin(t) & 1 \end{pmatrix} \mathrm{d}t = \begin{pmatrix} 3\pi & 0 & 2\pi \\ 0 & \pi & 0 \\ 2\pi & 0 & 2\pi \end{pmatrix}.$$

Cette matrice est de déterminant $2\pi^3$, qui est donc inversible. Ceci montre la contrôlabilité du système

Exemple 2.6. On considère maintenant le système $\begin{cases} x' = x \\ y' = u \end{cases}$. Ce système est-il contrôlable sur [0,T], avec T > 0? Il se met sous la forme (2) $avec A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ et $B = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Le système étant à coefficients constant, la résolvante est donnée par une exponentielle matricielle. On remarque facilement que pour tout réel t,

$$\exp(tA) = \begin{pmatrix} e^t & 0\\ 0 & 1 \end{pmatrix}.$$

Ainsi, la gramienne du système est donnée par :

$$\mathfrak{S} = \int_0^T \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathrm{d}s = \begin{pmatrix} 0 & 0 \\ 0 & T \end{pmatrix}.$$

Cette matrice est non inversible, ce qui prouve que le système est non contrôlable. Ce calcul est fidèle à l'intuition. En effet, le contrôle n'affecte que la dynamique en y, la coordonnée en x agit selon une dynamique indépendante de u, et ne peut donc pas être contrôlé.

Ces exemples permettent de constater que ce critère est parfois compliqué à mettre en œuvre en pratique; il faut pouvoir calculer la résolvante du système, puis l'intégrale, déterminer si la matrice est inversible, etc. On cherche donc à déterminer un critère plus simple à vérifier en pratique.

2.3Théorème de Kalman

Dans toute cette section, on suppose que A et B sont des matrices à coefficients constants.

Définition 2.7 (Ending map). On définit l'opérateur :

$$\mathcal{F}_{T_1}: \begin{bmatrix} (\mathcal{C}^0([T_0, T_1], \mathbb{R}^m), \|\cdot\|_{\infty}) & \to & \mathbb{R}^n \\ u & \mapsto & \int_{T_0}^{T_1} R(T_1, s) B(s) u(s) \mathrm{d}s \end{bmatrix}$$

Remarque 2.8. Au vu de cette définition, le système (2) est contrôlable sur l'intervalle $[T_0, T_1]$ ssi l'application \mathcal{F}_{T_1} est surjective

Définition 2.9 (Matrice de Kalman). On introduit la matrice de Kalman du système (2),

$$K = [B|AB| \cdots |A^{n-1}B] \in \mathcal{M}_{n,n \times m}(\mathbb{R}),$$

matrice dont les m premières colonnes sont celles de B, les m suivantes celles de AB etc.

Les deux propositions suivantes motivent l'introduction de la matrice de Kalman :

Proposition 2.10 (Lien avec l'ending map).

$$Im(K) = Im(\mathcal{F}_{T_1})$$

Démonstration. On remarque que $\text{Im}(K) = \text{Vect}(A^i B u, u \in \mathbb{R}^m, i \in [0, n-1])$.

Pour le sens direct, on considère $y \in \text{Im}(K)^{\perp}$. Alors, pour tout $i \in [0, n-1]$, ${}^tyA^iB = 0$. Par le théorème de Cayley-Hamilton, on peut écrire A^n comme combinaison linéaire des $(A^i)_{i \in [0, n-1]}$. Alors, par récurrence, on montre que $\forall i \in \mathbb{N}, {}^tyA^iB = 0$. Par suite, pour tout $N \in \mathbb{N}$, pour tout réel t,

$${}^t y \sum_{k=0}^N \frac{t^k A^k}{k!} B = 0.$$

En passant à la limite, on obtient ${}^tye^{At}B=0$, pour tout réel t. Ainsi, pour tout contrôle $u\in \mathcal{C}^0([T_0,T_1],\mathbb{R}^m)$,

$$(y, \mathcal{F}_{T_1}(u))_{2,\mathbb{R}^n} = {}^t y \int_{T_2}^{T_1} e^{(T_1 - s)A} Bu(s) ds = 0.$$

Par suite, $y \in \operatorname{Im}(\mathcal{F}_{T_1})^{\perp}$.

Réciproquement, on considère $y \in \text{Im}(\mathcal{F}_{T_1})^{\perp}$, alors, pour tout $u \in \mathcal{C}^0([T_0, T_1], \mathbb{R}^m)$, on a :

$$(y, \mathcal{F}_{T_1}(u))_{2,\mathbb{R}^n} = {}^t y \mathcal{F}_{T_1}(u) = \int_{T_0}^{T_1} {}^t y e^{(T_1 - s)A} Bu(s) ds = 0.$$

Ainsi, on obtient avec le contrôle particulier $u:t\in [T_0,T_1]\mapsto {}^tBe^{(T-t)^tA}y\in\mathbb{R}^m$:

$$\int_{T_0}^{T_1} \left\| {}^t y e^{(T_1 - s)A} B \right\|_{2,\mathbb{R}^m}^2 \mathrm{d}s = 0.$$

Ainsi,

$$g: t \in [T_0, T_1] \mapsto {}^t y e^{(T_1 - t)A} B \in \mathbb{R}^m$$

est nulle. Ainsi, $\forall i \in [0, n-1], \ q^{(i)}(T_1) = (-1)^{it} y A^i B = 0$. Par suite,

$$\forall i \in [0, n-1], \forall u \in \mathbb{R}^m, \quad {}^t y A^i B u = 0;$$

Donc, $y \in \operatorname{Im}(K)^{\perp}$.

Proposition 2.11 (Lien avec la matrice gramienne).

$$Im(K)^{\perp} = \ker(\mathfrak{S}).$$

Démonstration. En introduisant $g: t \in [T_0, T_1] \mapsto {}^t y e^{(T_1 - t)A} B$, on a :

$$\begin{array}{ll} y \in \mathrm{Im}(K)^{\perp} & \Leftrightarrow & \forall i \in [\![0,n-1]\!], \forall u \in \mathbb{R}^m, \ (y,A^iBu)_{2,\mathbb{R}^n} = {}^tyA^iBu = 0 \\ & \Leftrightarrow & \forall i \in [\![0,n-1]\!], \ {}^tyA^iB = 0 \\ & \Leftrightarrow & \forall i \in \mathbb{N}, \ {}^tyA^iB = 0 \ (\mathrm{par} \ \mathrm{Cayley\text{-}Hamilton}) \\ & \Leftrightarrow & \forall i \in \mathbb{N}, \ {}^g(i)(T_1) = 0 \\ & \Leftrightarrow & g \equiv 0 \ (\mathrm{car} \ g \ \mathrm{est} \ \mathrm{analytique}) \\ & \Leftrightarrow & \int_{T_0}^{T_1} \left\| g(t) \right\|_{2,\mathbb{R}^m}^2 \mathrm{d}t = 0 \ (\mathrm{par} \ \mathrm{continuit\acute{e}}) \\ & \Leftrightarrow & y \in \ker(\mathfrak{S}). \end{array}$$

Pour la dernière équivalence, le sens réciproque est clair. Pour le sens direct, si ${}^ty\mathfrak{S}y=0$, alors, comme \mathfrak{S} est symétrique positive, elle admet une racine carré, *i.e.* il existe $S\in \mathcal{S}_n^+(\mathbb{R})$ tel que $S^2=\mathfrak{S}$. Ainsi,

$$0 = {}^{t}y\mathfrak{S}y = {}^{t}yS^{2}y = ||Sy||_{2,\mathbb{R}^{n}}^{2}.$$

Donc, $y \in \ker(S) = \ker(S^2) = \ker(\mathfrak{S})$.

Théorème 2.12 (Kalman). Le système (2) est contrôlable ssi rg(K) = n.

Démonstration.

Le système est contrôlable ssi $\mathfrak{S} \in GL_n(\mathbb{R})$ ssi $\ker(\mathfrak{S}) = 0$ ssi $\operatorname{Im}(K) = \mathbb{R}^n$ ssi $\operatorname{rg}(K) = n$.

- Remarques 2.13. 1. Dans cette condition, les variables T_0 et T_1 n'apparaissent pas. Ainsi, dans le cas des systèmes linéaires à coefficients constants, entre contrôlable sur $[T_0, T_1]$ est équivalent à être contrôlable sur $[T'_0, T'_1]$. Cela ne dépend pas de l'intervalle de temps sur lequel on se place.
 - 2. On obtient même de la smooth-STLC. Plus précisement, on peut utiliser la densité de $\mathcal{GL}_n(\mathbb{R})$ dans $\mathcal{M}_n(\mathbb{R})$ pour montrer qu'il est possible d'obtenir de la contrôlabilité avec des contrôles \mathcal{C}^{∞} à support compact.
 - 3. Cadre : contrôle scalaire (m=1) et $A \sim diag(\lambda_1, \ldots, \lambda_n)$, diagonalisable. La formule de Duhamel fournit :

$$\forall t, \ x(t) = e^{A(t-T_0)}x_0 + \int_{T_0}^t e^{A(t-s)}Bu(s)ds.$$

Ainsi, $\forall x_0, x_1 \in \mathbb{R}^n$, $\forall T_0 < T_1$, on a:

$$x(T_1) = x_1 \Leftrightarrow \int_{T_0}^{T_1} e^{A(T_1 - s)} Bu(s) ds = x_1 - e^{A(T_1 - T_0)} x_0.$$

On introduit une base \mathcal{B} de diagonalisation de A et, en écrivant $B = (b_i)_{i \in \{1,...,n\}}$, $x_{0/1} = (x_{0,i/1,i})_{i \in \{1,...,n\}}$ les coordonnées associées dans cette base.

$$\forall i \in \{1, \dots, n\}, \quad b_i \int_{T_0}^{T_1} u(s) e^{\lambda_i (T_1 - s)} ds = x_{1,i} - e^{\lambda_i (T_1 - T_0)} x_{0,i}.$$

Ce système admet une unique solution quelque soit x_0, x_1 ssi les $(\lambda_i)_i$ sont deux à deux distincts, et les b_i sont non nuls (on construit alors une famille biorthogonale à $(t \mapsto e^{-\lambda_j t})_j$). De plus,

$$\det(B, AB, \dots, A^{n-1}B) =$$

$$\begin{vmatrix} b_1 & \lambda_1 b_1 & \cdots & \lambda_1^{n-1} b_1 \\ \vdots & \vdots & & \vdots \\ \vdots & \vdots & & \vdots \\ b_n & \lambda_n b_n & \cdots & \lambda_n^{n-1} b_n \end{vmatrix} = b_1 \dots b_n \prod_{1 \le i < j \le n} (\lambda_j - \lambda_i).$$

- 4. Recasage: 148 220 221.
- 5. Référence : Control and Nonlinearity, J.-M. Coron.

Exemple 2.14. On reprend l'exemple 2 traité dans la partie précédente. On a $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ et $B = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Ainsi,

$$\operatorname{rg}(B,AB)=\operatorname{rg}\left(\begin{pmatrix}0\\1\end{pmatrix},\begin{pmatrix}1\\1\end{pmatrix}\right)=2.$$

Le système est donc contrôlable sur $[T_0, T_1]$, quelque soit $(T_0, T_1) \in \mathbb{R}^2$.

3 Vers les distributions

Proposition 3.1 (Dérivation constante sur \mathbb{R}). Soit I un intervalle ouvert de \mathbb{R} , et $T \in \mathcal{D}'(I)$ telle que T' = 0. Alors, il existe C > 0 tel que :

$$T = C$$

Remarque 3.2. Il s'agit ici d'un abus de notation. Dans l'égalité précédente, la constante présente dans le second membre désigne la distribution associée à la fonction constante C, qui est $L^1_{loc}(I)$.

Démonstration. Soit $\chi \in \mathcal{D}(I)$ vérifiant $\int_I \chi(t) dt = 1$. Soit $\varphi \in \mathcal{D}(I)$. Alors, $\psi := \varphi - \chi \int_I \varphi(t) dt \in \mathcal{D}(I)$ est d'intégrale nulle. Ainsi, il existe $\xi \in \mathcal{D}(I)$ telle que $\xi' = \psi$. On a alors :

$$(T,\varphi)_{\mathcal{D}'(I),\mathcal{D}(I)} = \left(T,\xi' + \chi \int_{I} \varphi(t) dt\right)_{\mathcal{D}'(I),\mathcal{D}(I)} = \underbrace{-(T',\psi)_{\mathcal{D}'(I),\mathcal{D}(I)}}_{-0} + (T,\chi)_{\mathcal{D}'(I),\mathcal{D}(I)} \cdot \int_{I} \varphi(t) dt.$$

On obtient donc: $(T, \varphi)_{\mathcal{D}'(I), \mathcal{D}(I)} = (C, \varphi)_{\mathcal{D}'(I), \mathcal{D}(I)}$, avec $C = (T, \chi)_{\mathcal{D}'(I), \mathcal{D}(I)}$.

Exemple 3.3. Résolvons dans $\mathcal{D}'(\mathbb{R})$ l'équation xT' + T = 0. On a :

$$xT' + T \underset{\mathcal{D}'(\mathbb{R})}{=} 0 \Leftrightarrow (xT)' \underset{\mathcal{D}'(\mathbb{R})}{=} 0$$
$$\Leftrightarrow \exists C > 0, \ xT \underset{\mathcal{D}'(\mathbb{R})}{=} C$$
$$\Leftrightarrow \exists C > 0, \ x \left(T - Cvp\left(\frac{1}{x}\right) \right) \underset{\mathcal{D}'(\mathbb{R})}{=} 0$$
$$\Leftrightarrow \exists C > 0, K > 0, \ T \underset{\mathcal{D}'(\mathbb{R})}{=} Cvp\left(\frac{1}{x}\right) + K\delta_0.$$

4 Autres suggestions

- 1. Cauchy-Lispchitz global. Recasage: 205 220 (220 221).
- 2. Nombre de zéros d'une EDO. Recasage : 220-221-224. Référence : Quéffelec-Zuily, Analyse pour l'agrégation (p 404).

Théorème 4.1 (Nombre de zéros d'une EDO). Soit $a \in \mathbb{R}$, $q \in \mathcal{C}^1([a, +\infty[, \mathbb{R}_+^*] \text{ v\'erifiant } q'(x) = o_{+\infty}(q^{\frac{3}{2}}(x))$ et $\int_a^{+\infty} \sqrt{q(x)} dx = +\infty$. Soit y une solution non nulle de l'EDO y'' + qy = 0. On d'efinit alors, pour $x \geqslant a$, $N(x) = \#\{u \in [a, x], y(u) = 0\}$. Alors,

$$N(x) \underset{x \to +\infty}{\sim} \frac{1}{\pi} \int_{a}^{x} \sqrt{q(u)} du.$$

- 3. Étude des équations de Hill Mathieu. Recasage : 220 221.
- 4. EDP de transport linéaire. Recasage : 220-221.
- 5. Problème aux limites (espace de Sobolev et Lax Milgram). Recasage: 205 208 213.
- 6. Partie d'un développement : transformée de Fourier de la Gaussienne.