24 Equations différentielles linéaires

24.1Révisions de sup

Exercice 24.1

Résoudre les équations différentielles suivantes sur l'intervalle I de \mathbb{R} .

- $\begin{array}{ll} 1. \ x \ln(x) y' + y = x \ \text{sur} \ I =]1, + \infty[. \\ 2. \ x y' + 3 y = \frac{1}{1 + x^2} \ \text{sur} \ I =]0, \infty[. \\ \end{array} \qquad \begin{array}{ll} 4. \ x (x y' + y x) = 1 \ \text{sur} \ I =] \infty, 0[. \\ 5. \ y' \sin(x) y \cos(x) + 1 = 0 \ \text{sur} \ I =]0, \pi[. \\ \end{array}$
- 3. $(1-x)^2y' = (2-x)y$ sur $I =]-\infty, 1[$. 6. $y' + y = e^{2x}$ sur $I = \mathbb{R}$.

Exercice 24.2

Déterminer la solution sur \mathbb{R} de l'E.D.O. $y' + y \tanh(x) = 0$ prenant la valeur 1 en 0.

Exercice 24.3

Résoudre l'équation différentielle $(1-x^2)y'-2xy=x^2$ sur chacun des intervalles I suivants : $I =]1, +\infty[, I =]-1, 1[, I =]-1, +\infty[$ et $I = \mathbb{R}$.

Exercice 24.4

Résoudre sur $\mathbb R$ les équations différentielles suivantes :

- 1. $y'' 2y' + 2y = \cos(x)\cosh(x)$. 4. $y'' 2ky' + (1+k^2)y = e^x\sin(x)$, pour
- 2. $y'' + 6y' + 9y = e^{2x}$

- 3. $y'' 2y' + y = \cosh(x)$.

Exercice 24.5

Soit $a \in \mathbb{R}^*$. Soit f continue sur \mathbb{R} et périodique de période $T \neq 0$. Montrer que l'équation différentielle y' + ay = f admet une et une seule solution périodique sur \mathbb{R} , de période T.

Exercice 24.6

Déterminer toutes les fonctions $f: \mathbb{R} \to \mathbb{R}$ dérivables vérifiant

- 1. $\forall x \in \mathbb{R}, f'(x) + f(x) = f(0) + f(1)$ 2. $\forall x \in \mathbb{R}, f'(x) + f(x) = \int_0^1 f(t) dt$.

Exercice 24.7

Résoudre les équations différentielles suivantes :

- 1. $x^2y'' 3xy' + 4y = 0$, sur \mathbb{R}_+^* . On pourra introduire le changement de variables $z(t) = y(e^t)$.
- 2. xy'' + 2(x+1)y' + (x+2)y = 0 sur \mathbb{R} . On pourra introduire z(t) = y(t)t.

Exercice 24.8

Trouver toutes les fonctions $f: \mathbb{R} \to \mathbb{R}$, \mathcal{C}^1 vérifiant $\forall x \in \mathbb{R}$, $f'(x) + f(-x) = e^x$.

Exercice 24.9

L'accroissement de la population P d'un pays est proportionnel à cette population. La population double tous les 50 ans. En combien de temps triple-t-elle?

Khôlles Théo Gherdaoui

24.2 Programme de spé

24.2.1 Résolution explicite

Exercice 24.10

Résoudre sur $\mathbb R$ les systèmes différentiels

$$\begin{cases} x' = 4x - 2y + e^t \\ y' = 3x - y + 2e^t \end{cases} \qquad \begin{cases} x'' = 3x + y \\ y'' = 2x + 2y \end{cases}$$

Exercice 24.11

Résoudre sur $I=]0,+\infty[$ l'équation $t^2y''+ty'-y=0$ en cherchant des solutions sous la forme $y(t)=t^\alpha,\alpha\in\mathbb{R}.$

Exercice 24.12

Résoudre sur \mathbb{R} l'équation $(t^2+2t+2)y''-2(t+1)y'+2y=0$ en cherchant des solutions polynomiales.

Exercice 24.13

Résoudre sur]-1,1[l'équation $(1-t^2)y''-4ty'-2y=0$ en cherchant des solutions développables en série entière.

Exercice 24.14

Résoudre sur \mathbb{R} l'équation $y'' - 2y' + y = \frac{e^t}{1 + t^2}$.

Exercice 24.15

Résoudre sur \mathbb{R} l'équation $(1+e^x)y''+2e^xy'+(2e^x+1)y=e^x$ en posant $z(x)=(1+e^x)y(x)$.

Exercice 24.16

Résoudre sur $]0, +\infty[$ l'équation $x^2y'' + xy' - \left(x^2 + \frac{1}{4}\right)y = 0$ en posant $y(x) = x^{\alpha}z(x)$.

Exercice 24.17

Résoudre sur]0,1[l'équation x(1-x)y''+(1-3x)y'-y=0 en cherchant une solution développable en série entière.

Exercice 24.18

Résoudre sur $]0, +\infty[$ l'équation $x^2y'' + 3xy' + y = 0$ en posant $x = e^t$.

Exercice 24.19

Résoudre sur \mathbb{R} l'équation $(x^2+1)^2y''+2x(x^2+1)y'+4y=0$ en posant $t=\arctan(x)$.

Khôlles Théo Gherdaoui

Exercice 24.20

Résoudre sur des intervalles à préciser l'équation $y'' + y = \frac{1}{\cos(x)}$.

24.2.2 Étude qualitative

Exercice 24.21

Soit $A \in \mathcal{M}_n(\mathbb{R})$, montrer que A est antisymétrique ssi chaque solution X de X' = AX est de norme (euclidienne) constante.

Exercice 24.22

Soient $p, q : [0, 1] \to \mathbb{R}$, continues. On étudie l'équation différentielle sur [0, 1], y'' + p(t)y' + q(t)y = 0. Montrer que si une solution possède une infinité de racines, elle est nulle.

Exercice 24.23

On étudie l'équation différentielle $y'' + e^{-x}y = 0$. Soit f une solution bornée sur $[0, +\infty[$.

- 1. Montrer que la dérivée, f', admet une limite finie en $+\infty$. Quelle est cette limite?
- 2. Soit g une solution bornée sur $[0+\infty[$. En étudiant le wronskien de f et de g, établir que les fonctions f et g sont liées. Qu'en déduire?

Exercice 24.24

On considère l'équation différentielle y'' - q(x)y = 0, avec q, continue et positive sur \mathbb{R} .

- 1. Soit y une solution sur \mathbb{R} . Étudier la convexité de y^2 . En déduire que si y(0) = y(1) = 0, alors la solution est nulle sur \mathbb{R} .
- 2. Soient y_1 et y_2 deux solutions telles que $(y_1(0),y_1'(0))=(0,1)$ et $(y_2(1),y_2'(1))=(0,1)$. Démontrer que (y_1,y_2) forme une base de l'espace des solutions.
- 3. Soit $f: \mathbb{R} \to \mathbb{R}$ continue. Démontrer que l'équation y'' q(x)y = f(x) admet une unique solution vérifiant y(0) = y(1) = 0.

Exercice 24.25

Soient $a, b : \mathbb{R} \to \mathbb{R}$, continues telles que pour $x \in \mathbb{R}$, $a(x) \ge 1$.

- 1. On suppose ici que la limite en $\lim_{x\to +\infty} b(x)=0$. Montrer que toute solution sur $\mathbb R$ de y'+ay=b admet la limite 0 en $+\infty$.
- 2. On suppose ici que la limite en $\lim_{x\to -\infty} b(x) = 0$. Montrer qu'il existe une unique solution sur \mathbb{R} de y' + ay = b admet la limite 0 en $-\infty$.

Exercice 24.26

Soit $f \in \mathcal{C}^1(\mathbb{R})$ telle que $\lim_{x \to +\infty} (f(x) + f'(x)) = 0$. Montrer que $\lim_{x \to +\infty} f(x) = 0$.

Exercice 24.27

Soit $p: \mathbb{R} \to \mathbb{R}^+$ une fonction continue non identiquement nulle. Soit f une solution de y'' + p(x)y = 0, on suppose qu'elle ne s'annule pas

- 1. Justifier que f est de signe constant. On supposera f > 0.
- 2. Soit $a \in \mathbb{R}$. Justifier que la courbe de f est en-dessous de sa tangente en (a, f(a)).
- 3. Conclure.

Khôlles Théo Gherdaoui