ENS Rennes Familles sommables

12 Familles sommables

Exercice 12.1

Soit $(a_p)_p$ une famille de complexes telle que $\sum_p a_p$ est absolument convergente. On définit $\forall (n,p) \in \mathbb{N}^* \times \mathbb{N}^*, u_{n,p} = \frac{p}{n(n+1)} a_p$ si $p \leq n, u_{n,p} = 0$ sinon. Montrer que la famille est sommable et calculer sa somme.

Exercice 12.2

 $\forall (n,m) \in \mathbb{N}^* \times \mathbb{N}^*, \ a_{m,n} = \frac{1}{(n+m)^{\alpha}}, \text{ où } \alpha \in \mathbb{R}. \text{ Étudier la sommabilité de la famille.}$

Exercice 12.3

Démontrer que $\forall x \in]-1,1[$, la famille $(x^{kl})_{k,l\geq 1}$ est sommable. Montrer alors que : $\sum_{k=1}^{+\infty} \frac{x^k}{1-x^k} = \sum_{n=1}^{+\infty} d(n)x^n, \text{ où } d(n) \text{ désigne le nombre de diviseurs de l'entier } n.$

Exercice 12.4

Pour tout entier naturel n, on définit $w_n = 2^{-n} \sum_{k=0}^n \frac{4^k}{k!}$. Montrer que la série de terme général w_n converge, et calculer sa somme à l'aide d'un produit de Cauchy.

Exercice 12.5

Calculer les sommes suivantes

$$\sum_{p,q\in\mathbb{N}\times\mathbb{N}^*}\frac{1}{(p+q^2)(p+q^2+1)} \qquad \sum_{n=0}^{+\infty}\sum_{k=n}^{+\infty}\frac{1}{k!} \qquad \sum_{p,q\geq 1}\frac{1}{pq(p+q+1)}$$

Exercice 12.6

Soit $\varphi: \mathbb{N}^* \to \mathbb{N}^*$ une bijection.

- 1. Montrons que : $\sum_{n} \frac{\varphi(n)}{n^2}$ diverge.
- 2. Montrons que : $\sum_{n=1}^{\infty} \frac{1}{n\varphi(n)}$ converge.

Exercice 12.7

Soit $(p,q) \in \mathbb{N}^* \times \mathbb{N}^*$, on définit : $u_{p,q} = \left\{ \begin{array}{l} 1 \text{ si } q = p \\ 0 \text{ si } q p \end{array} \right.$. Calculer :

$$\sum_{p=1}^{+\infty} \left(\sum_{q=1}^{+\infty} u_{p,q} \right) \text{ et } \sum_{q=1}^{+\infty} \left(\sum_{p=1}^{+\infty} u_{p,q} \right)$$

Khôlles Théo Gherdaoui

ENS Rennes Familles sommables

Exercice 12.8 (**)

Soit (u_n) une suite réelle telle qu'il y ait convergence de la série $\sum_{n\geq 0} u_n^2$. Soient σ une bijection

de \mathbb{N} et (v_n) la suite déterminée par $v_n = u_{\sigma(n)}$ pour tout $n \in \mathbb{N}$.

- 1. Montrer la convergence et calculer la somme de la série $\sum v_n^2$.
- 2. Quelle est la nature de la série $\sum_{n} |u_n v_n|$?
- 3. Déterminer les bornes supérieure et inférieure de $\sum_{n=0}^{+\infty} |u_n v_n|$ pour σ parcourant l'ensemble des bijections de \mathbb{N} .

Exercice 12.9

Soit $(u_n)_{n\in\mathbb{N}}$ une famille sommable. Pour tout $n\in\mathbb{N}$, on pose $v_n=\frac{1}{2^n}\sum_{k=0}^n 2^k u_k$. Montrer que la famille $(v_n)_{n\in\mathbb{N}}$ est sommable et exprimer sa somme des celle de la famille $(u_n)_{n\in\mathbb{N}}$.

Exercice 12.10 (Dénombrement de surjections ***)

On se propose de chercher le nombre $S_{n,p}$ de surjections de $I_n = \{1, ..., n\}$ sur $I_p = \{1, ..., p\}$, où n et p sont des entiers naturels non nuls.

- 1. Calculer $S_{n,p}$ pour p > n. Calculer $S_{n,n}$, $S_{n,1}$ et $S_{n,2}$ (pour le dernier cas, regarder les applications non surjectives!).
- 2. Calculer $S_{p+1,p}$.
- 3. En considérant la restriction à I_{n-1} d'une surjection de I_n dans I_p , montrer que :

$$\forall n > 1, \ \forall p > 1, \ S_{n,p} = p(S_{n-1,p} + S_{n-1,p-1})$$

- 4. Montrer que $\forall n \geq 1, \ \forall k \in \{0, \dots, n\}, \ \sum_{j=1}^{n} \binom{k}{j} S_{n,j} = k^n.$
- 5. En déduire que $\sum_{k=1}^n (-1)^{n-k} k^n \binom{n}{k} = n!$. On pourra utiliser un dl en 0 à l'ordre n de $(e^x-1)^n$.
- 6. Montrer que, $\forall p \leq n$,

$$S_{n,p} = \sum_{k=1}^{p} (-1)^{p-k} k^n \binom{p}{k}.$$

Exercice 12.11

Calculer
$$\sum_{n=0}^{+\infty} \frac{n+1}{3^n}$$

Exercice 12.12

On définit $\forall z \in \mathbb{C}$, $\exp(z) = \sum_{n=0}^{+\infty} \frac{z^n}{n!}$.

Montrer que pour $z, z' \in \mathbb{C}$, $\exp(z + z') = \exp(z) \exp(z')$.

Khôlles Théo Gherdaoui