ENS Rennes Espaces vectoriels

20 Espaces vectoriels

Exercice 20.1

Soit E l'espace vectoriel des fonctions $f:[0,1]\to\mathbb{R}$. Les parties suivantes sont-elles des sous-espaces vectoriels de E?

```
1. \{f \in E, f(0) = 2f(1)\}\
```

2.
$$\{f \in E, f(0) = f(1) + 1\}$$

3.
$$\{f \in E, f \ge 0\}$$

4.
$$\{f \in E, \forall x \in E, \ f(x) = f(1-x)\}\$$

- 5. $\{f \in E, f \text{ polynôme de degré 4}\}$
- 6. $\{f \in E, f \text{ polynôme de degré } \leq 4\}$

Exercice 20.2

On munit \mathbb{R}^n des lois usuelles. Parmi les sous-ensembles suivants de \mathbb{R}^n , lesquels sont des sous-espaces vectoriels?

```
1. \{(x_1,\ldots,x_n)\in\mathbb{R}^n, x_1=0\}
```

2.
$$\{(x_1,\ldots,x_n)\in\mathbb{R}^n, x_1=1\}$$

3.
$$\{(x_1,\ldots,x_n)\in\mathbb{R}^n, x_1=x_2\}$$

4.
$$\{(x_1,\ldots,x_n)\in\mathbb{R}^n, x_1.x_2=0\}$$

5.
$$\{(x_1,\ldots,x_n)\in\mathbb{R}^n, x_1+\cdots+x_n=0\}$$

Exercice 20.3

Soient F et G deux sous-espaces vectoriels de E. Montrer que $F \cup G$ est un sous-espace vectoriel de E si et seulement si $F \subset G$ ou $G \subset F$.

Exercice 20.4

A, B, C sont des sous-espaces vectoriels de E tels que :

1. $A \cap C \subset B$, $C \subset A + B$ et $B \subset C$. Montrer que B = C.

2. $A \cap B = A \cap C$, A + B = A + C et $B \subset C$. Montrer que B = C.

Exercice 20.5

Soient A,B,C,D quatre sous-espaces de E tels que $E=A\bigoplus B=C\bigoplus D$. On suppose que $A\subset C$ et $B\subset D$. Montrer que A=C et B=D.

Exercice 20.6

Montrer que la famille a = (9, -3, 7), b = (1, 8, 8), c = (5, -5, 1) est liée.

Exercice 20.7

Peut-on déterminer λ et μ dans \mathbb{R} tels que le vecteur $u=(-2,\lambda,\mu,3)$ appartienne au sous-espace vectoriel de \mathbb{R}^4 engendré par a=(1,-1,1,2) et b=(-1,2,3,1)?

Exercice 20.8

Montrer que a=(1,2,3) et b=(2,-1,1) engendrent le même sous-espace de \mathbb{R}^3 que c=(1,0,1) et d=(0,1,1).

Khôlles Théo Gherdaoui

ENS Rennes Espaces vectoriels

Exercice 20.9

Dans l'espace vectoriel de toutes les fonctions de \mathbb{R} dans \mathbb{R} , montrer que la famille de fonctions $(f_{\lambda}: x \mapsto \exp(\lambda x))_{\lambda \in \mathbb{R}}$ est libre. Même question avec $(f_{\lambda}: x \mapsto \cos(\lambda x))_{\lambda \in \mathbb{R}^+}$.

Exercice 20.10

Soit E l'espace des fonctions de \mathbb{R} dans \mathbb{R} . On note $f_k : x \mapsto |x - k|$. Montrer que la famille (f_1, \ldots, f_n) est libre.

Exercice 20.11

Soient A, B dans $\mathbb{K}[X]$, non constants, premiers entre eux. Soit $n \in \mathbb{N}$. On pose $P_k = A^k B^{n-k}$. Montrer que (P_0, \ldots, P_n) forment une famille libre.

Exercice 20.12

Montrer que dans l'espace vectoriel E de toutes les fonctions $f: \mathbb{R} \to \mathbb{R}$, les ensembles \mathcal{P} et \mathcal{I} formés respectivement des fonctions paires et impaires forment deux sous-espaces vectoriels supplémentaires dans E.

Exercice 20.13

Soient E un \mathbb{K} -espace vectoriel, E_1 et E_2 deux sous-espaces de E tels que $E = E_1 + E_2$, et soit F_2 un supplémentaire de $E_1 \cap E_2$ dans E_2 . Montrer que $E = E_1 \bigoplus F_2$.

Exercice 20.14

Dans $E = \mathbb{R}^4$, on considère $V = \{(x,y,z,t) \in E, \ x-2y=0 \ \text{et} \ y-2z=0\}$ et $W = \{(x,y,z,t) \in E, \ x+z=y+t\}$.

- 1. Montrer que V et W sont des sous espaces vectoriels de E.
- 2. Donner une base de V, une base de W et une base de $V \cap W$.
- 3. Montrer que E = V + W.

Exercice 20.15

Soient $F = \{(\lambda, \dots, \lambda), \lambda \in \mathbb{R}\}$ et $G = \{(x_1, \dots, x_n) \in \mathbb{R}^n, x_1 + \dots + x_n = 0\}$. Montrer que F et G sont des sous-espaces vectoriels de \mathbb{R}^n et que $\mathbb{R}^n = F \bigoplus G$.

Exercice 20.16

Dans \mathbb{R}^4 , soit E l'ensemble des u=(x,y,z,t) tels que x+3y-2z-5t=0 et x+2y+z-t=0. Montrer que E est un sous-espace de \mathbb{R}^4 . En donner la dimension et une base.

Khôlles Théo Gherdaoui