ENS Rennes Intégration

22 Intégration

Exercice 22.1

- 1. Montrer que $x \mapsto \cos(x^2)$ n'est pas uniformément continue sur \mathbb{R} .
- 2. Montrer que $x \mapsto \sqrt{x}$ est uniformément continue sur \mathbb{R}^+ .

Exercice 22.2

Soient f,g deux fonctions uniformément continues et bornées sur $I \subset \mathbb{R}$. Montrer que fg est uniformément continue. Contre-exemple quand f,g ne sont plus supposées bornés?

Exercice 22.3

Soit $f: \mathbb{R} \to \mathbb{R}$, continue, telle que $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to -\infty} f(x)$ existent dans \mathbb{R} . Montrer que f est uniformément continue sur \mathbb{R} .

Exercice 22.4

Soit $f: \mathbb{R} \to \mathbb{R}$ uniformément continue. Montrer qu'il existe $a, b \geq 0$ tels que : $\forall x \in \mathbb{R}$, $|f(x)| \leq a|x| + b$.

Exercice 22.5

Soient f, g deux fonctions continues sur [a, b]. On pose $M(\alpha) = \max_{x \in [a, b]} (f(x) + \alpha g(x))$. Montrer que M est lipschitzienne sur \mathbb{R} .

Exercice 22.6

Soit $f:[0,1]\to\mathbb{R}$ continue. Montrer que $\lim_{n\to+\infty}\frac{1}{n}\sum_{k=1}^n(-1)^kf\left(\frac{k}{n}\right)=0.$

Exercice 22.7

Soient f, g continues sur [0, 1]. Calculer $\lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} f\left(\frac{k}{n}\right) g\left(\frac{k+1}{n}\right)$.

Exercice 22.8

Calculer

$$\lim_{n \to +\infty} \frac{1}{n\sqrt{n}} \sum_{k=1}^{n} \sqrt{k} \quad \lim_{n \to +\infty} \left(\frac{n!}{n^n}\right)^{1/n} \quad \lim_{n \to +\infty} \frac{1}{n\sqrt{n}} \sum_{k=1}^{n} \lfloor \sqrt{k} \rfloor \quad \lim_{n \to +\infty} \int_{0}^{n} \frac{\mathrm{d}t}{1 + e^{nt}}$$

$$\lim_{n \to +\infty} \int_{0}^{1} x^n \ln(1 + x) \mathrm{d}x \qquad \lim_{n \to +\infty} \left(\left(1 + \left(\frac{1}{n}\right)^2\right) \cdots \left(1 + \left(\frac{n}{n}\right)^2\right) \right)^{1/n}.$$

Exercice 22.9

Soit $f:[0,1]\to\mathbb{R}$ continue. Montrer que $\lim_{n\to+\infty}n\int_0^1x^nf(x)\mathrm{d}x=f(1)$

Khôlles Théo Gherdaoui

ENS Rennes Intégration

Exercice 22.10

Soit $f:[a,b]\to\mathbb{R}$ continue. On suppose que $\left|\int_a^b f(x)\mathrm{d}x\right|=\int_a^b |f(x)|\mathrm{d}x$. Que dire sur f?

Exercice 22.11

Montrer que $\sum_{k=1}^{n} \frac{1}{\sqrt{k}} \underset{n \to +\infty}{\sim} 2\sqrt{n}$.

Exercice 22.12 (Jensen)

Soit $f:[a,b]\to\mathbb{R}$, continue, $g:\mathbb{R}\to\mathbb{R}$ convexe. Montrer que

$$g\left(\frac{1}{b-a}\int_a^b f(x)\mathrm{d}x\right) \leq \frac{1}{b-a}\int_a^b g\circ f(x)\mathrm{d}x.$$

Exercice 22.13

Soit $f:[0,1]\to\mathbb{R}$ une fonction continue telle que $\int_0^1 f(t)dt=\frac{1}{2}$. Montrer que f admet au moins un point fixe dans [0,1].

Exercice 22.14

Soit $f:[a,b]\to\mathbb{R}$ continue et positive. Calculer $\lim_{n\to+\infty}\left(\int_a^b f(x)^n\mathrm{d}x\right)^{1/n}$.

Exercice 22.15 (Théorème de la moyenne)

Soit $f:[a,b]\to\mathbb{R}$ continue. Démontrer qu'il existe $c\in[a,b]$ tel que $f(c)=\frac{1}{b-a}\int_a^b f(x)\mathrm{d}x$.

Exercice 22.16

Soit $f:[0,1]\to\mathbb{R}$ une fonction continue et $u_n=\int_0^1 t^n f(t) dt$. Calculer la limite de $(u_n)_n$. On suppose $f(1)\neq 0$ et $f\in\mathcal{C}^1([0,1],\mathbb{R})$. Déterminer un équivalent de $(u_n)_n$.

Exercice 22.17

Soit $f(x) = \int_x^{2x} \frac{dt}{\sqrt{t^4 + t^2 + 1}}$. Déterminer le domaine de définition de f, son imparité, étudier ses variations, puis l'existence de ses limites au bord de l'intervalle de définition.

Exercice 22.18

Montrer que pour $n \ge 2$, $\int_{n-1}^{n} \ln(t) dt \le \ln(n) \le \int_{n}^{n+1} \ln(t) dt$. En déduire un équivalent de $\ln(n!)$ en $+\infty$.

Khôlles Théo Gherdaoui