ENS Rennes Logique

1 Logique

Exercice 1.1

Les assertions suivantes sont-elles vraies ou fausses?

- 1. 136 est un multiple de 17 et 2 divise 167.
- 2. 136 est un multiple de 17 ou 2 divise 167.
- 3. $\exists x \in \mathbb{R}, (x+1=0 \text{ et } x+2=0).$
- 4. $(\exists x \in \mathbb{R}, x + 1 = 0)$ et $(\exists x \in \mathbb{R}, x + 2 = 0)$.
- 5. $\forall x \in \mathbb{R}, (x+1 \neq 0 \text{ ou } x+2 \neq 0).$
- 6. $\exists x \in \mathbb{R}^*, \forall y \in \mathbb{R}^*, \forall z \in \mathbb{R}^*, z xy = 0.$
- 7 $\forall x \in \mathbb{R}^*, \exists y \in \mathbb{R}^*, \forall z \in \mathbb{R}^*, z xy = 0.$
- 8. $\forall x \in \mathbb{R}^*, \forall y \in \mathbb{R}^*, \exists z \in \mathbb{R}^*, z xy = 0.$
- 9. $\exists a \in \mathbb{R}, \forall \varepsilon, > 0, |a| < \varepsilon$.
- 10. $\forall a \in \mathbb{R}, \exists \varepsilon, > 0, |a| < \varepsilon$.

Exercice 1.2

Écrire la négation des propositions suivantes :

- 1. $\forall x \in \mathbb{R}, \exists n \in \mathbb{N}, x \leq n$.
- 2. $\exists y \in \mathbb{R}^*, \forall x \in \mathbb{R}^*, xy = 1.$
- 3. Tous les hommes de ce village ont une femme qui a un frère.
- 4. Tous les élèves de moins de quinze ans ou de plus de dix-huit ans ont une note comprise entre 9 et 16.

Exercice 1.3

Soit $(u_n)_n$ une suite de réels et f une application de \mathbb{R} dans \mathbb{R} . Écrire avec des quantificateurs chacunes des propositions suivantes :

- 1. La suite $(u_n)_n$ est majorée par 4.
- 2. La suite $(u_n)_n$ est majorée.
- 3. La suite $(u_n)_n$ n'est pas majorée.
- 4. La suite $(u_n)_n$ est bornée.
- 5. La suite $(u_n)_n$ est croissante.
- 6. La suite $(u_n)_n$ est constante.
- 7. L'application f est nulle.
- 8. L'application f s'annule.
- 9. L'application f est croissante.
- 10. L'application f admet un maximum.

Exercice 1.4

La condition m et n sont des entiers pairs est-elle une condition nécessaire, une condition suffisante, une condition nécessaire et suffisante pour que l'on est m + n pair?

Exercice 1.5

Montrer que, pour tout $x \in \mathbb{R}$, $|x-1| \le x^2 - x + 1$.

Exercice 1.6

Montrer que $\sqrt{2}$ est irrationnel.

En déduire que : soit $n \ge 1$. Démontrer que si n est le carré d'un entier, alors 2n n'est pas le carré d'un entier.

Khôlles Théo Gherdaoui

ENS Rennes Logique

Exercice 1.7

Résoudre dans \mathbb{R} l'équation |x+1|=4-|3x-2|.

Exercice 1.8

Déterminer toutes les applications f de \mathbb{R} dans \mathbb{R} telles que

$$\forall (x,y) \in \mathbb{R}^2, \ f(x)f(y) = f(xy) + x + y.$$

Exercice 1.9

Démontrer que si n^2 est impair, alors n est impair.

Exercice 1.10

Soit $a \in \mathbb{R}$. Montrer que :

$$\forall \varepsilon > 0, |a| < \varepsilon \Longrightarrow a = 0.$$

Exercice 1.11

Soit a et b deux réels. Démontrer la proposition suivante : si a+b est irrationnel, alors a ou b sont irrationnels.

Exercice 1.12

Démontrer que pour tout entier naturel n non nul,

$$2^{n-1} < n! < n^n$$
.

Exercice 1.13

Soit $(u_n)_n$ la suite définie par $u_0=2,\ u_1=3$ et $\forall n\in\mathbb{N}, u_{n+2}=3u_{n+1}-2u_n$. Démontrer que, $\forall n\in\mathbb{N},\ u_n=1+2^n$.

Exercice 1.14

Soit $f: \mathbb{R} \to \mathbb{R}$. Démontrer que f s'écrit de manière unique comme somme d'une fonction paire et somme d'une fonction impaire.

Exercice 1.15

Soient A, B, C trois ensembles.

- 1. Est-ce que $C \subset A \cup B$ entraı̂ne $C \subset A$ ou $C \subset B$?
- 2. On suppose que $A \cup B = B \cap C$. Montrer que $A \subset B \subset C$.
- 3. Montrer que $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$ et $(A \cup B)^c = A^c \cap B^c$.
- 4. Montrer que $A \cup B = A \cap B$ implique A = B.

Exercice 1.16

Soient E et F deux ensembles. Soient A, C deux parties de E, et B, D deux parties de F. Montrer que

$$(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D).$$

Khôlles Théo Gherdaoui