ENS Rennes Polynômes

18 Polynômes

Exercice 18.1

Si $P \in \mathbb{R}[X]$ est scindé, montrer que P' est scindé. Réciproque ?

Exercice 18.2

Montrer l'équivalence suivante : $\forall P \in \mathbb{R}[X], P \geq 0 \Leftrightarrow \exists (A, B) \in \mathbb{R}[X]^2 \text{ tel que } P = A^2 + B^2.$

Exercice 18.3

Pour tout $n \in \mathbb{N}$, pose $A_n = a_n X^{n+1} + b_n X^n + 1$. Déterminer a_n , b_n pour que A_n soit divisible par $(X-1)^2$. Quel est alors le quotient de la division?

Exercice 18.4

Dans $\mathbb{R}[X]$, on pose $A_n = (X\sin(\theta) + \cos(\theta))^n$, et $B = X^2 + 1$. Quel est le reste dans la division de A par B?

Exercice 18.5

Soient m, n, p, q des entiers naturels. Montrer que $B = X^3 + X^2 + X + 1$ divise $A = X^{4m+3} + X^{4n+2} + X^{4p+1} + X^{4q}$.

Exercice 18.6

On pose $A_n = X^{n+1}\cos((n-1)\theta) - X^n\cos(n\theta) - X\cos(\theta) + 1$. Effectuer la division de A_n par $B = X^2 - 2X\cos(\theta) + 1$.

Exercice 18.7

Montrer que le PGCD de $X^n - 1$ et $X^p - 1$ est $X^{\operatorname{pgcd}(n,p)} - 1$.

Exercice 18.8

Trouver les polynômes, U, V tels que $(X - 1)^3 U + (X + 1)^2 V = 1$.

Exercice 18.9

Résoudre le système = $\begin{cases} x+y+z=1\\ xy+xz+yz=1\\ xyz=1 \end{cases}$

Exercice 18.10

Résoudre le système =
$$\begin{cases} x+y+z=1\\ x^2+y^2+z^2=9\\ \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1 \end{cases}$$

Khôlles Théo Gherdaoui

ENS Rennes Polynômes

Exercice 18.11

On considère l'équation (E): $x^4 - 4x^3 + x^2 + 6x + 2 = 0$. Résoudre (E) sachant que la somme de deux des solutions vaut 2.

Exercice 18.12

Calculer $a^4 + b^4 + c^4$ où a, b, c sont les racines de $P = X^3 + pX + q$.

Exercice 18.13

Calculer $\sum \left(\frac{\alpha+2}{2\alpha+5}\right)^3$, où α décrit les racines de $x^3+2x^2-x+1=0$.

Exercice 18.14

Calculer $\prod_{k=1}^{n-1} \sin\left(\frac{k\pi}{n}\right), n \ge 2.$

Exercice 18.15

Soit P un polynôme différent de X. Montrer que P(X) - X divise P(P(X)) - X.

Exercice 18.16

- 1. Soient $p \in \mathbb{N}$ et a un réel. Donner le développement de $(\cos(a) + i\sin(a))^{2p+1}$ puis en choisissant astucieusement a, déterminer $\sum_{k=1}^p \cot^2\left(\frac{k\pi}{2p+1}\right)$. En déduire $\sum_{k=1}^p \frac{1}{\sin^2\left(\frac{k\pi}{2p+1}\right)}$.
- 2. Pour n entier naturel non nul, on pose $u_n = \sum_{k=1}^n \frac{1}{k^2}$. Montrer que la suite $(u_n)_{n\geq 1}$ converge.
- 3. Montrer que pour $x \in \left]0, \frac{\pi}{2}\right[, \cot(x) < \frac{1}{x} < \frac{1}{\sin(x)}$.
- 4. En déduire un encadrement de u_n puis la limite de (u_n) .

Exercice 18.17

Trouver un polynôme de degré 5 tel que P(X) + 10 soit divisible par $(X + 2)^3$ et P(X) - 10 soit divisible par $(X - 2)^3$.

Exercice 18.18

Trouver tous les polynômes P vérifiant P(2X) = P'(X)P''(X).

Exercice 18.19

Résoudre dans $\mathbb C$ l'équation $z^4-21z+8=0$ sachant qu'il existe deux des solutions sont inverses l'une de l'autre.

Exercice 18.20

Trouver les polynômes $P \in \mathbb{R}[X]$ tels que P(X) = P(1 - X).

Khôlles Théo Gherdaoui

ENS Rennes Polynômes

Exercice 18.21

Soit $n \geq 2$ et a_1, \ldots, a_n des éléments de \mathbb{Z} deux à deux distincts. Montrer que $P = (X - a_1) \ldots (X - a_n) - 1$ est irréductible dans $\mathbb{Z}[X]$.

Exercice 18.22

Soit $P \in \mathbb{R}[X]$ tel que $\forall x \in \mathbb{R}$, $P(x) \ge 0$. Soit n le degré de P et $Q = P + P' + \cdots + P^{(n)}$. Montrer que pour tout $x \in \mathbb{R}$, $Q(x) \ge 0$.

Exercice 18.23

Décomposer en produits d'irréductibles de $\mathbb{R}[X]$ les polynômes suivants :

1.
$$X^4 + 1$$

2.
$$X^8 - 1$$

3.
$$(X^{\frac{1}{2}} - X + 1)^2 + 1$$

Exercice 18.24

- 1. Déterminer tous les polynômes $P \in \mathbb{C}[X]$ tels que $P(\mathbb{C}) \subset \mathbb{R}$.
- 2. Déterminer tous les polynômes $P \in \mathbb{C}[X]$ tels que $P(\mathbb{R}) \subset \mathbb{R}$.
- 3. Soit $P \in \mathbb{C}[X]$. Démontrer que $P(\mathbb{Q}) \subset \mathbb{Q}$ si et seulement si $P(\mathbb{Q}) \subset \mathbb{Q}$.

Exercice 18.25

Déterminer tous les polynômes $P \in \mathbb{R}[X]$ vérifiant P(0) = 0 et $P(X^2 + 1) = (P(X))^2 + 1$.

Exercice 18.26

Déterminer tous les polynômes $P \in \mathbb{R}[X]$ vérifiant :

- 1. $P'^2 = 4P$
- $2. P \circ P = P.$

Exercice 18.27

Déterminer les polynômes P de degré supérieur ou égal à 1 et tels que P'|P.

Exercice 18.28

Montrer que si P et Q sont deux polynômes de $\mathbb{C}[X]$ premiers entre eux, alors P+Q et PQ le sont aussi.

Exercice 18.29

Soit $P \in \mathbb{C}[X]$. On note, pour p < n, u_p la somme des racines de $P^{(p)}$. Démontrer que u_0, \ldots, u_{n-1} forme une progression arithmétique.

Exercice 18.30 (Théorème de Gauss-Lucas)

Soit $n \ge 1$. Soit $P = X^n + a_{n-1}X^{n-1} + \dots + a_0 \in \mathbb{C}[X]$. Soit $Z(P) = \{z_1, \dots, z_p\}$ l'ensemble des racines distinctes de P. On note α_k la multiplicité de la racine z_k .

- 1. Rappeler la décomposition en éléments simples de la fraction rationnelle P'/P.
- 2. Soit z une racine de P' n'appartenant pas à Z(P). Montrer que : $\sum_{j=1}^{p} \frac{\alpha_j(z-z_j)}{|z-z_j|^2} = 0$. En déduire que $Z(P') \subset C(Z(P))$.

Khôlles Théo Gherdaoui