ENS Rennes Suites réelles

11 Suites réelles

Exercice 11.1

Étudier la convergence ou la divergence des suites de termes généraux

$$U_n = \sqrt[n]{n} \quad U_n = \frac{n^3 + 5n + 1}{5n^2 - 2n + 8} \quad U_n = \frac{\sqrt{4n^5 + 3n + 7}}{2n^3 - 1} \quad U_n = \frac{3^n - 2^n}{3^n + 2^n} \quad U_n = \frac{1}{n^2} \sum_{k=1}^n \lfloor kx \rfloor$$

$$U_n = \frac{1}{n^{\alpha}} \sum_{k=1}^{n} k^2 \qquad U_n = \sum_{k=1}^{2n+1} \frac{1}{\sqrt{n^2 + k}} \qquad U_n = \sum_{k=n}^{2n} e^{-\sqrt{k}} \qquad U_n = \frac{1}{n} \sum_{k=0}^{n} (1 - 2k).$$

Exercice 11.2

Montrer que les suites $s_n = \sin(n\alpha)$ et $c_n = \cos(n\alpha)$, où $\alpha \in \mathbb{R} \setminus \mathbb{Z}$. On pourra raisonner par l'absurde, supposer que $(c_n)_n$ converge, montrer que $(s_n)_n$ converge et étudier la dépendance des limites.

Exercice 11.3

Faire l'étude complète des suites définies par :

1.
$$U_0 = 0$$
 et $\forall n \in \mathbb{N}, U_{n+1} = \sqrt{6 + U_n}$.

2.
$$U_0 = 1/2$$
 et $\forall n \in \mathbb{N}, U_{n+1} = U_n^2 + \frac{3}{16}$.

3.
$$U_0 = 0$$
 et $\forall n \in \mathbb{N}, U_{n+1} = \sqrt{2 - U_n}$.

Exercice 11.4 (CSSA)

Soit (a_n) une suite de réels positifs, décroissante, de limite nulle. On définit :

$$\forall n \in \mathbb{N}, \ U_n = \sum_{k=0}^n (-1)^k a_k.$$

- 1. Montrer que la suite (U_n) est convergente. On note L sa limite.
- 2. Montrer que $\forall n \in \mathbb{N}, |U_n L| \leq a_{n+1}$.

Exercice 11.5

Soit (U_n) une suite telle que les suites (U_{2n}) , (U_{2n+1}) , et (U_{3n}) sont convergentes. Montrer que (U_n) converge.

Exercice 11.6

Étudier les assertions suivantes, les démontrer si elles sont vraies, fournir un contre exemple sinon

- 1. Une suite qui tend vers $+\infty$ est croissante à partir d'un certain rang.
- 2. Si (U_n) est une suite bornée, et si $(U_{n+1}-U_n)$ converge vers 0, alors (U_n) est convergente. $(U_n = \ln(\ln(n)))$.
- 3. Si (U_n) converge, alors $\{U_n, n \in \mathbb{N}\}$ admet un plus petit et un plus grand élément.

Exercice 11.7

Soit f une application injective de $\mathbb N$ dans $\mathbb N$. Montrer que $\lim_{n\to +\infty} f(n)=+\infty$.

Khôlles Théo Gherdaoui

ENS Rennes Suites réelles

Exercice 11.8

Soient (x_n) et (y_n) des suites définies par $\forall n \in \mathbb{N}, x_{n+1} = \frac{1}{2}(x_n - y_n)$ et $y_{n+1} = \frac{1}{2}(x_n + y_n)$. Étudier la convergence des suites. (On pourra introduire $z_n = x_n + iy_n$).

Exercice 11.9

Soit (U_n) une suite réelle bornée telle que $\forall n \geq 1, 2U_n \leq U_{n+1} + U_{n-1}$. On introduit $V_n = U_{n+1} - U_n$. Étudier la suite $(V_n)_n$. En déduire le comportement de la suite $(U_n)_n$.

Exercice 11.10

Soit U_n l'unique racine positive de l'équation $x^n + x - 1 = 0$. Étudier la suite (U_n) .

Exercice 11.11 (Césaro)

Soit (u_n) une suite réelle, convergeant vers l. On définit :

$$\forall n \in \mathbb{N}, \ v_n = \frac{u_0 + \dots + u_n}{n+1}.$$

- 1. Montrer que (v_n) converge vers l.
- 2. Montrer que si la suite (u_n) est bornée, la suite (v_n) est bornée. Réciproque?
- 3. Montrer que si la suite (u_n) est croissante alors la suite (v_n) l'est aussi.

Exercice 11.12

Soit $(a_n)_{n\geq 0}$ une suite complexes convergeant vers l. Étudier la convergence de la suite $(b_n)_{n\geq 0}$ définie par :

$$\forall n \in \mathbb{N}, \ b_n = \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} a_k.$$

Exercice 11.13

Montrer que la suite de terme général complexe z_n définie par la relation de récurrence $z_{n+1} = \frac{1}{2} \left(z_n + |z_n| \right)$ converge et calculer sa limite.

Exercice 11.14

Montrer que les suites définies par $u_n = \sum_{k=0}^n \frac{1}{k!}$ et $v_n = u_n + \frac{1}{nn!}$ sont adjacentes. Montrer que leur limite est irrationnelle.

Exercice 11.15

Soit (u_n) une suite réelle convergeant vers $l \in \mathbb{R}$. Étudier la limite de $(\lfloor u_n \rfloor)_n$.

Exercice 11.16

Soit (u_n) une suite réelle non majorée. Montrer qu'il existe une suite extraite de (u_n) tendant vers $+\infty$.

Khôlles Théo Gherdaoui