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Abstract: State of the art methods for proving structural properties on functional programs
in a fully-automatic way are using regular (tree) languages. Regular languages are classically unable
to take into account relations between variables, and are therefore unable to prove relational prop-
erties. To allow for relations to be recognized by regular languages and integrated inside regular
languages verification techniques, some authors use a convolution operation, which transform a rela-
tion between trees into a tree language. The relation can then be recognized, or over-approximated,
by a tree automaton. This internship’s goal is to extend verification techniques based on regular
tree language to handle relational properties using convolutions.
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1 Introduction

1.1 Formal verification of functional programs

Formal verification is a vast domain, and we focus here only on statically proving properties on purely
functional programs. Formal verification tools for functional program can be roughly separated into
two categories: proof assistants and automatic methods. Proof assistants, like Coq or IsabelleHOL,
are designed as a support for checking manual proofs. Automatic verification tools, like FStar, Why3
or LiquidHaskell, are designed to only ask for the property to prove and then automatically try to
prove it. In reality, these categories are not so clearly separated. Most interesting proof assistants
include some automation for relatively simple properties, and many arithmetical properties can be
proved automatically. Many automatic verification tools are not completely automatic, as they
require type annotation or intermediate lemmas. This diversity exists because of the compromise
between automation and expressivity. Indeed, the more properties a solver allows to solve, the
harder it is to automate it. In this document, we are only interested in fully-automatic methods,
restraining expressivity in favor of automation.

Fully automatic methods have multiple applications, as helping proof assistants to automate
more or as providing a verification tool for programmers uncomfortable with proofs. Indeed, non-
fully-automated verification tools often require expert human intervention, which prevents the tool
from being used on a large scale.

1.2 Automatic verification with regular languages

During this internship, we focus on fully automatic methods for proving structural properties. Struc-
tural properties are properties which focus on the structure of objects. For example, verifying that
∀l ∈ ABLists, sorted (sort l) (with ABLists the set of all lists of a and b’s) is true is a structural
property, as it requires to analyze sort in order to separate the resulting lists in two parts. Structural
properties are often opposed to arithmetical properties. Efficient methods for automatically proving
arithmetical properties already exist and are not discussed in this document. One way of proving
structural properties is type annotation, which is discussed in Section 3.1. An other important class
of methods for proving regular properties are using regular languages. These methods are rapidly
increasing and improving since 2007 and are the focus of Section 3.2. In particular, this internship
is in line with the work of [Haudebourg, 2020a].

1.3 Current limitations

All the methods presented in Section 3.2 have a common limitation: their inability to prove relational
properties. For example, it is impossible for those methods to prove that the identity function
effectively returns its input, or that the sort function preserves the list’s size. We see in Section 3.3
a procedure to automatically prove some relational structural properties. However, many interesting
relational properties are staying out of the scope of this method. This internship’s goal is therefore to
extend this last work in two ways: Allowing for the automatic proving of more structural relational
properties, and integrating this new technique into an existing regular properties prover.
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2 Preliminaries

In this section, we introduce the basics which are used in state of the art techniques.
We begin with the formal language used, which is tree language. Then, we define the notions

of position and substitution on terms, which will be useful to apply rewriting rules. Then, we show
how a rewriting rule can be applied to a term and how a set of rules can form a term rewriting
system. Then, we restrict the term rewriting systems to the class of functional term rewriting
systems. Finally, we define tree automaton as a way to represent particular set of terms.

The idea behind those definitions is to get the necessary basics to verify purely functional
programs. A term will be used to model the execution state of the program, and therefore a term
represents an expression, completely evaluated or waiting for evaluation. A program will be modeled
by a term rewriting system. The program entries are modeled as a set of terms, and the outputs
too, and are finitely represented using tree automata.

Definition 1 (Ranked alphabet) A ranked alphabet, often written Σ, is a finite set of symbols
together with an arity function ar : Σ→ N. We write f ∈ Σn for f ∈ Σ ∧ ar(f) = n, and whenever
f ∈ Σ, we write f/n for ar(f) = n. A set X of variables can be seen as a ranked alphabet of
constants (symbols with arity 0).

Definition 2 (Terms) Let Σ be a ranked alphabet. The set of terms over Σ is written T (Σ) and
inductively defined as the smallest set containing f(t1, . . . , tn) for f ∈ Σn and ∀i ∈ [1..n], ti ∈ T (Σ).
For X a set of variables, we also write T (Σ,X ) for T (Σ ] X ), with ] the disjoint union. For a term
t defined over (Σ,X ), we write V ar(t) the set of variables in t. Variables in terms are underlined.

For verification purposes, a term will represent an expression, completely evaluated or waiting
for evaluation.

Example 1 Let Ce = {0/0, Nil/0, S/1, Cons/2} a set of constructors and Fe = {double/1} a set
of functions. Let Σe = Ce]Fe be a ranked alphabet. We then have Cons(double(S(0)), Nil) ∈ T (Σe),
and double(S(x)) ∈ T (Σe, {x}). Note that we have Cons(0, 0) ∈ T (Σe) too, although Cons(0, 0) is
usually undesirable, as it would not be considered well-typed in a programming language. To solve
this problem, we later define tree automata to refine the class of terms we consider.

Definition 3 (Substitution) A substitution σ : X → T (Σ) is a map attributing to each variable
in X a term in T (Σ). σ also denotes the natural extension of the substitution from terms to terms.
We write σ(t) for the result of the application of the substitution σ to the term t.

Definition 4 (Position) A position p is a word over N used to point at a subterm. For t ∈ T (Σ)
and p a position, we write t|p the subterm of t at position p, which is defined as:

t|ε = t and f(t1, . . . , tn)|i·p′ = ti|p′ .

We write t[s]p the term t where the subterm at position p has been replaced by the term s.

Example 2 Consider Σe as defined in Example 1. With t = Cons(double(S(x)), Nil) and p = 1 ·ε,
we have t|p = double(S(x)). With σ = {x 7→ 0}, we have σ(t|p) = double(S(0)).
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Definition 5 (Rewriting rule) Let Σ be a ranked alphabet and X a set of variables. A rewriting
rule over (Σ,X ) is a pair (l, r), also written l→ r, with l, r ∈ T (Σ,X ), l /∈ X and V ar(r) ⊆ V ar(l).
A rewriting rule l → r defines the relation →(l,r)⊆ T (Σ) × T (Σ). We have s →(l,r) t if s can be
rewritten to t using l→ r. Formally, s→(l,r) t iff there exists a substitution σ and a position p such
that σ(l) = s|p and s[σ(r)]p = t.

The application of a rewriting rule models a computation step.

Example 3 Still using Σe, the function that doubles a natural number can be modeled using two
rules over (Σe, {x}):

(1) double(0)→ 0 and (2) double(S(x))→ S(S(double(x))

As derivation example, let re-use t = Cons(double(S(x)), Nil), p = 1 · ε and σ = {x 7→ 0}. We
then have t|p = double(S(0)) = σ(double(S(x))), so t rewrites to t2 = t[σ(S(S(double(x))))]p =
Cons(S(S(double(0))), Nil) using (2). Finally, t2 rewrites to t3 = Cons(S(S(0)), Nil) using (1).

Definition 6 (Term rewriting system) A term rewriting system, or TRS, (over Σ,X ) is a finite
set of rewriting rules (over Σ,X ). A TRS R defines the relation →R=

⋃
l→r∈R →(l,r). We write

→∗R the reflexive and transitive closure of this relation. For a set of terms I ⊆ T (Σ), we write
R∗(I) = {t′ | ∃t ∈ I. t→∗R t′} the set of reachable terms using R from any t ∈ I.

Example 4 Using Re defined as {(1), (2)} of Example 3, we have t →∗Re
t3 and R∗e({t}) =

{t, t2, t3}.

Our goal is to use TRS to model functional programs. However, TRS are more expressive. For
example, the following TRS does not correspond to any functional program.

Example 5 The following TRS rewrites any list whose elements are equal to each other to its length:

Cons(h,Cons(h, t))→ S(Cons(h, t))

Cons(h,Nil)→ 1

Nil→ 0

Variable h is captured twice in the left-part of the first rule, meaning the TRS is non left-linear.
Second, it rewrites values, i.e. terms over the constructors only, meaning it is non functional. We
now formally define left-linearity and functional TRS.

Definition 7 (Left-linear TRS) A left-linear rule is a rule in which every variable appears at
most once in the left-hand side. A left-linear TRS is a TRS whose rules are all left-linear.

Definition 8 (First-order functional TRS) A TRS over Σ,X is a functional first-order TRS
iff it is left-linear and the ranked alphabet Σ = C ] F is partitioned into two sets, representing
the constructors and the functions symbols, respectively. Accordingly, rules must be of the form
f(c1, . . . , cn)→ t with f ∈ Fn, t ∈ T (Σ,X ) and ∀i ∈ [1..n], ci ∈ T (C,X ).

Example 6 The following Ocaml program defines the insertion sort function on integers.
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let rec insert e l =
match l with
| [] -> [e]
| h :: t -> if e <= h then e :: l else h :: (insert e t)

let rec sort l =
match l with
| [] -> []
| h :: t -> insert h (sort t)

This program can be transformed into the following TRS:

sort(Nil)→ Nil leq(0, x)→ True

sort(Cons(h, t))→ insert(h, sort(t)) leq(S(x), 0))→ False

leq(S(x), S(y))→ leq(x, y)

insert(e,Nil)→ Cons(e,Nil) ite(True, x, y)→ x

insert(e, Cons(h, t))→ ite(leq(e, h), Cons(e, l), Cons(h, insert(e, t))) ite(False, x, y)→ y

The set of first-order TRS is too limiting to model higher-order programs because of the fixed
arity of every symbol. Indeed, higher-order functions, which are functions taking another function
as argument, are modeled as taking a variable as argument. However, variables have an arity of 0,
and therefore can not be applied. To solve this problem, we follow Reynolds [Reynolds, 1968] and
add a new binary symbol @, which models partial application of functions.

Definition 9 (Higher-order functional TRS) A TRS is a functional higher-order TRS iff it is
left-linear and defined over (Σ]{@/2},X ) with the ranked alphabet Σ = C ]F still partitioned into
the constructors and the functions symbols. Rules must be of the form l → r with l ∈ LSHk for
some k ∈ N. LSHk in defined as the smallest set such that:

f(c1, . . . , cn) ∈ LSH0 ⇐= f ∈ Fn ∧ ∀i ∈ [1..n], ci ∈ T (C,X )

@(t, c) ∈ LSHk+1 ⇐= t ∈ LSHk ∧ c ∈ T (C,X )

.
Example 7 The following Ocaml program defines the higher-order function map.

let rec map (f : 'a -> 'b) (l : 'a list) =
match l with
| [] -> []
| h :: t -> (f h) :: (map f t)

It can be transformed to the following TRS :

@(@(map, f), Nil))→ Nil

@(@(map, f), Cons(h, t)))→ Cons(@(f, h),@(@(map, f), t))

The main reference for rewriting systems is [Baader and Nipkow, 1999].
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Definition 10 (Value) A term v ∈ T (Σ) is a value w.r.t. a TRS R if it is non-reducible, i.e.
∀t, v 6→R t. For example, S(S(0)) is a value w.r.t Re.

Now, we would like to characterize the set of inputs a program, here TRS, can receive. This
amounts to representing a subset of the terms T (Σ). For this, we use tree automata, which are the
tree counterpart of finite state automata for language recognition. See [Comon et al., 2008] for more
on tree automata.

Definition 11 (Tree automata) A (bottom-up) tree automaton A is a quadruplet (Σ, Q,Qf ,∆)
with Σ a ranked alphabet, Q a set of states, Qf the set of accepting states and ∆ a TRS over (Σ, Q)
with rewriting rules of the form f(q1, . . . , qn) → q, where f ∈ Σn, q ∈ Q and ∀i ∈ [1..n], qi ∈ Q. A
term t is said to be recognized in a state q if t →∗∆ q, also written t →∗A q. A term t is recognized
by A if t is recognized by a final state q. We write L(A, q) the set of terms recognized by q and
L(A) =

⋃
q∈Qf

L(A, q). We have L(A) ⊆ T (Σ). A set of term is called regular if it is recognized by
a tree automaton.

Example 8 As we have seen in Example 1, the set of terms over Σe contains undesirable terms,
which we could call “not well-typed”. The language of integer lists with potential double functions
on integers, which is a subset of T (Σe), is defined by the following automaton: Ae = (Σe, Q,Qf ,∆)
with Q = {qnat, qilist}, Qf = {qilist} and ∆ composed of:

0→ qnat Nil→ qilist

S(qnat)→ qnat Cons(qnat, qilist)→ qilist

double(qnat)→ qnat

The main reference for tree automata is [Comon et al., 2008].

Definition 12 (Regular safety problem) A safety problem is a triplet (I,R,O) with I,O ⊆ T (Σ)
and where the goal is to know whether R∗(I) ⊆ O. A safety problem is called regular if I and O are
regular, and that either R∗(I) * O, or there exists a regular language L such that R∗(I) ⊆ L ⊆ O.
It is common to represent the set I and O each as tree automaton. We abbreviate Regular Safety
Problem by RSP.

Example 9 (RSP double) Let (Id,Rd,Od) be the safety problem with Id = (Σd = {0/0, S/1,
double/1}, Q = {qn, qf}, Qf = {qf},∆ = {0→ qn, S(qn)→ qn, double(qn)→ qf}) a tree automa-
ton recognizing terms of the form double(n) with n ∈ N, Rd = {double(0) → 0, double(S(x)) →
S(S(double(x))} the TRS defining the double function, and Od = (Σd, Q = {qe, qo}, Qf = {qe},∆ =
{0→ qe, S(qe)→ qo, S(qo)→ qe}) a tree automaton recognizing even numbers. This safety problem
is regular, as we will see in the next section where it will be used to illustrate state of the art methods.

The state of the art section presents methods for automatically solving regular safety problems
on TRS modeling functional programs. The goal of this internship is to extend the method from
[Haudebourg et al., 2020] with regular relations, which could allow for the automatic checking of
more properties, notably relational ones. Indeed, actual method is unable to prove properties relying
on infinite relations. For example, state of the art methods are able to prove the RSP double, but
not equality between natural numbers, or that (double(N)) ≥ N , or that the sort function returns
a list of the same size as its input.
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3 State of the art

In this section, we present state of the art techniques for functional programs verification. We begin
with type annotation methods, then continue with methods using regular languages, and finish by
presenting the ICE principle with learner/teacher.

3.1 Automatic verification with type annotation

Type systems can be used to express and statically verify more expressive types than those classically
present in programming languages. For example, the type annotation x : int statically guarantees
the programmer that the variable x will be an integer, but not more. One could want to specify
additional properties on variables, and one way to do so is to allow predicates in types, forming
refined types.

For example, we can type the get function on an array to only accept a correct index to avoid
reading on a non-reserved memory, which can be written as:

get : ar : char array → n : {ν : int | 0 ≤ ν ∧ ν < len ar} → char

In the method described in [Rondon et al., 2008], predicates (like 0 ≤ ν) are restrained to a user-
defined set of logical qualifiers, which are predicates over a special variable ν and the placeholder ?.
This forms Logically Qualified Data Types, or Liquid Types, which are dependent types where the
refinement predicate is a conjunction of instances of logical qualifiers. Instantiate logical qualifiers
amounts to replacing the ? by variables known in the context, as in the get example above, where
ν < len ? has been replaced by ν < len ar.

To use liquid types, the programmer can type the functions he is interested in, and then ask
the type-checker if the program is secure, i.e. if variables can only take values from their refined
type. To answer, the type checker starts by inferring classical types using the Hindley-Milner type
inference procedure, and then, for every term/function of the program, infer the strongest logical
qualifiers that hold, and finally verify that the specifications are met.

This method still suffers from several limitations. First, this method is not fully automatic.
Indeed, some properties can not be inferred if the programmer does not manually type some in-
termediate functions with relevant liquid types. The type system can also be too conservative and
reject valid programs, which can not be typed with liquid types. Second, this systems lacks expres-
sivity, as there is no way to refine a recursive datatype, or specify a refinement over the base type
of a polymorphic data structure.

Liquid types are then extended in [Kawaguchi et al., 2009] with recursive liquid types, allowing
the qualification of subterms of an algebraic type. For example, with lists of integer defined as
ilist = Nil | Cons(int, ilist), it is possible to construct the type representing lists whose elements
are all greater than an integer, say i. To do so, it is sufficient to assert that every Cons is applied
on integers greater than i. As list is an algebraic type with two constructors, the type will be in
two parts. The first part will simply assert True, as there are no constraint on Nil. The second
part will itself be composed of two parts, as Cons is a binary constructor: the constraint on the
head, and the constraint of the rest. There is no need to specify constraints of the rest of the list,
as it is a recursive type, because the whole type will be applied to it. The type of lists of integers
greater than i is thus (True; 〈i ≤ ν, True〉).

The second contribution of the paper is to allow the refinement of basic types of polymorphic
data structure such as arrays, vectors, hash tables, etc., thus refining every element of the structure.
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For example, it is possible to define the type of maps (finite functions) from integers to lists of
greater integers, which can be seen as a directed acyclic graph.

This method is nevertheless still not fully automatic, as manual annotations are required.
These ideas have been implemented in Haskell, [Vazou et al., 2014], effectively allowing the use of

dependent types checking and inference in Haskell. At the same period, Microsoft Research and Inria
developed F* [Microsoft Research, 2013], a programming language aimed at program verification
using dependent types. The main difference between F* and Liquid Types is the language the
predicates are written in. As said above, all the predicates used in liquid types are taken from a
user-defined set of predicates, themselves constrained to have a certain shape. For F*, any predicate
defined in the programming language can be used in the type. This leads to much more expressivity,
but at the cost of losing some automation, as F* can require well-chosen type annotations for
intermediate functions.

3.2 Automatic verification with regular language

In this section, we explain the framework developed around tree automata and rewriting systems
and their use for proving functional programs. The use of regular languages coupled with rewriting
systems for checking tree-processing programs goes back to [Jones, 1987].

[Jones and Andersen, 2007] This paper extends [Jones, 1987], but only [Jones and Andersen,
2007] is considered here. For their method, a program is modeled as a left-linear higher-order TRS,
and its input is modeled by a regular tree grammar (the tree counterpart of regular string grammar,
recognizing the same languages as tree automata). They proposed an algorithm that, given a TRS
and its input grammar, computes an over-approximation of the program’s output. The main idea is
to iteratively complete the input grammar G0 by adding new symbols and transitions until reaching
a fixed-point. We write Gi the grammar at step i, and G∗ the fixed point.

This method always terminates and thus G∗ is a (finite) regular grammar over-approximating the
output. This method is correct in the sense that it over-approximates the output. However, it is not
complete, in the sense that there exists regular safety problems (I,R,O) for which this methods fails
at finding an over-approximation L of the program’s output such that L ⊆ O. There are two main
reasons for this completeness failure. The first one is that the over-approximating process does not
take into account the property O, which could be used to avoid over approximating something that
it should not. The second reason is that there is no way of parametrizing the over-approximation’s
precision, so if the approximation is too coarse, there is nothing to do about it.

Example 10 We consider (Id,Rd,Od) from example 9. We then define the corresponding initial
grammar G0, representing Id, and then apply the successive iterations:

G0 = R0 → double(N)

N → 0 | S(N)

G1 = R0 → double(N) | R1 | R2 G2 = R0 → double(N) | R1 | R2

N → 0 | S(N) N → 0 | S(N)

R1 → 0 R1 → 0

R2 → S(S(double(X))) R2 → S(S(double(X))) | S(S(R1)) | S(S(R2))

X → N X → N
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A fixed point is reached with G2, as G3 = G2.

With this example, we have that every natural number generated by G2 is even, so L(G2) ⊆
L(Od). We can therefore prove that every term in R∗d(Id) is even.

[Matsumoto et al., 2015] This paper uses the same base as [Kobayashi et al., 2011], so we start
by describing Kobayashi et al.’s method. Abstract higher-order functional programs (a formalism
for representing functional programs) are abstracted into higher-order functional programs on finite
types using predicate abstraction. Each type is abstracted by boolean predicates, so a value is a list
of booleans, representing a valuation of those predicates. Having done so, they can use higher-order
model checker to check for a safety property. If the abstract program is safe, then the real program
is safe and the model checking procedure can conclude. If the abstract program have a problematic
run, there are two possibilities: First, the real program admit the same run, and the property is
thus proved to be false. Second, the approximation was too coarse, as the run found can not exist in
the real program, so the abstracting predicates are refined and the verification procedure continues
with this new model. This method is a particular case of CEGAR, for Counter-Example Guided
Abstraction Refinement. In [Matsumoto et al., 2015], authors’ solution has a similar structure,
except for the predicate refinement. Their originality is to abstract infinite (tree) data type with
the states of a tree automaton, instead of booleans, where each state q of an automaton A abstracts
all the terms of L(A, q). A similar approach is used in [Haudebourg et al., 2020].

[Genet, 2016] In this paper, the author presents the Tree Automaton Completion algorithm
(TAC for short), and termination criteria. The TAC algorithm takes as input a tree automaton A0

and a TRS R, and computes the set of reachable terms R∗(L(A0)).
After taking A0 and R as input, the core of TAC consists in iteratively computing A1, A2, . . .

until a fixed point, named A∗, is reached. At each step i, we have that Ai respects some properties:
first, L(Ai) ⊆ L(Ai+1) ; second, if t ∈ L(Ai) and t→R t′, then t′ ∈ L(Ai+1,). We therefore have, if
a fixed-point A∗ is reached, that R∗(L(A0)) ⊆ L(A∗).

The first concept is that of critical pair. To explain it, we fix an automaton A = (Σ, Q,Qf ,∆)
and TRS R over (Σ,X ). A critical pair is a triple (l→ r, σ, q) with l→ r ∈ R, σ : X → Q and q ∈ Q
such that σ(l)→∗A q, but σ(r) 6→∗A q. Intuitively, a critical pair is a problem because the automaton
A, representing accessible terms, is not closed by rewriting with R. The TAC algorithm consists in
finding those critical pairs and extending A in order to eliminate them, i.e. adding transitions such
that σ(r)→∗A q.

To compute Ai+1 from Ai and R, TAC performs a completion step, which consists of two parts:
the matching, which is to find all the critical pairs of Ai w.r.t R, and the normalization, which is
the way of extending Ai into Ai+1. We write Ai+1 = CR(Ai).

Example 11 We consider (Id,Rd,Od) from Example 9. The initial automaton A0 is Id.

1. The critical pairs are the following:

• (double(0)→ 0, ∅, qf ), as double 0 is recognized by qf but 0 is not, see Figure 1

• (double(S(x))→ S(S(double(x))), {x 7→ qn}, qf ).

2. A1 = CRd
(A0) = A0 + {0→ q0, q0 → qf , S(qo)→ qe, S(qf )→ qo, qe → qf}
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double(0) 0
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Figure 1: First critical pair and normalisation step in pictures

No critical pair remains after one iteration only, so A∗ = A1. We have that all values recognized
by A∗ are even numbers, as regular language inclusion can confirm.

This short example does not reflect the limitations of the TAC algorithm. One particularity
of this algorithm is that the resulting automaton A∗, if any, recognizes exactly R∗(I). This is an
interesting particularity for some usage, but not for abstraction, as the language R∗(I) may be
uncomputable and therefore the algorithm would diverge. See chapter 3 of [Haudebourg et al.,
2020] for an instance that makes TAC loops.

To remedy this problem, the authors proposed to use equations over patterns to merge terms
into equivalence classes. For example, x = S(S(x)) separates natural numbers in two classes:
even and odd numbers. Using equations makes the abstraction coarser, and therefore allows the
algorithm to terminate on instances on which it did not without equations. However, contrary to
the method proposed in [Jones and Andersen, 2007], the abstraction’s precision can be controlled by
which equations are used. Given the correct equations, the TAC algorithm decides all safety regular
problems. The new challenge is to find those equations. The authors proposed an algorithm to pick
equations from a restrained set of equations, therefore allowing the TAC algorithm to conclude on
most of regular safety problems.

This verification method presents comparable times to those of [Matsumoto et al., 2015], but as
the previously shown methods it lacks modularity to be able to treat substantial programs, which
is solved in [Haudebourg et al., 2020].

[Haudebourg et al., 2020] In this paper, the authors present a fully-automatic verification as
a type inference procedure, extending previous works such as [Genet, 2016] and [Matsumoto et al.,
2015]. This procedure has interesting properties, as being:

• Complete w.r.t regular safety problems ;

• Refutationally complete: the procedure will stop with a counterexample, if any, in a finite
time ;

• Modular: each function is analyzed independently.

The method is a kind of abstract interpretation, where terms of T (Σ) are abstracted into states
Σ# of a tree automaton Λ. Each value (irreducible term) v is said to be abstracted into τ ∈ Σ#

if v →∗Λ τ . We then say that v is of type τ . For example, using TRS Rd and Λd = (Σd =
{0/0, S/1, double/1},Σ# = {qe, qo, qnat}, Qf = Σ#,∆# = {0 → qe, S(qe) → qo, S(qo) → qe, qe →
qnat, qo → qnat}), we have that S(S(0))→Λd

S(S(qe))→Λd
S(qo)→Λd

qe, so S(S(0)) is of type qe.
The input TRS R cannot rewrite abstract terms (terms containing types), so an abstract TRS

R# has to be defined, safely abstracting the behavior of R. For example, double(qnat) cannot be
rewritten by Rd, as no rule applies, so we define R#

d = {double(qnat)→ qe}.

9



The abstract TRS R# rewrites functions applied to types into a type. We say that a term t has
type τ if t→∗R#∪Λ

τ . For example, double(S(0)) has type qe.
This procedure is specified as:

Abstract-type inference:
Input: A Quadruplet (R,Λ∗, p, τ) with:

• R the TRS representing the program

• Λ∗ = (Σ,Σ#
∗ ,Σ

#
∗ ∆#
∗ ) the values’ initial ab-

straction

• p a term over Σ ] X representing the input,
with σ : X → Σ#

∗ a typing environment for
variables in p (we write x : q for σ(x) = q)

• τ ∈ Σ#
∗ a type, with which we want to type p

Output: A triplet (Λ,R#,Π) with:

• Λ = (Σ,Σ#,Σ#∆#) a tree automaton more
precise than Λ∗

• R# an abstract rewriting system that safely
abstracts R

• Π the set of substitutions π : X → Σ# such
that π(p)→∗R#∪∆# τ .

Steps:

1. Analyse the top symbol of p = f(p1, . . . , pn) and extract type signature τi needed for every pi
in order to type p with τ together with the abstract rewriting system R#.

2. Recursively try to type all pi with τi and retrieve extended TRSs R#
i .

3. If both steps went well, combine retrieved TRSs R# and R#
i and return resulting abstraction

and Π.

Example 12 (Double) To illustrate these three steps in a bit more details, let us prove the regular
safety problem (Id,Rd,Od) of Example 9. First, let us translate this instance to match the input
shape. We call the main method with (Rd,Λd, double(x : qnat), qo) with Λd as defined in the previous
paragraph explaining this method and qnat, qe states of Λd.

1. The symbol double is analyzed w.r.t. the type qo, which means that the algorithm will try to
infer how to type subterms of p (here only x) to be able to type double(x) with qo. At this step,
the algorithm found that no matter how x is typed, double(x) cannot be typed with qo. This
step also gives us the abstract TRS R# that led the algorithm to this answer.

2. Now, the recursive case is easy, as x is a variable and can be typed with anything. This example
is minimal, so this step is not particularly useful here.

3. The final TRS is R# = {double(qnat)→ qe} and the set Π empty, which means that double(x)
cannot be typed with qo.

As double(x) cannot be typed with the abstract type representing odd numbers, the RSP (Id,Rd,Od)
is true.

The tool timbuk4 implements this last method, and some experiments can be found at [Haude-
bourg, 2020b].
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Comparison summary Regarding expressivity, [Jones and Andersen, 2007] did not mention
any scope of application for their method, but it seems to solve strictly less problems than the
other three. [Matsumoto et al., 2015] is complete for a subclass of safety problems, which is hard
to compare with the class of RSP, as their formalism is different. [Genet, 2016] is complete for a
sub-class of RSP defined in the paper, and [Haudebourg et al., 2020] is complete w.r.t. RSP and
complete in refutation.

Concerning speed and memory consumption, [Jones and Andersen, 2007] did not mention any
implementation. The three other methods have comparable speed for small functions. The mem-
ory usage for [Haudebourg et al., 2020] is much more stable than in [Genet, 2016], and does not
explode on bigger instances. Memory usage is not mentioned in [Matsumoto et al., 2015] and no
implementation is available. Finally, the method presented in [Haudebourg et al., 2020] is expected
to perform much better than previous ones on whole programs, speed-wise and memory-wise.

3.3 Regular relations

One particularity of regular safety problems is that they all can be solved without exhibiting any
relation between variables of the program. However, many properties, including most of arithmetical
properties, require the comparison of elements (of an infinite domain). These kind of properties are
not regular and therefore can not be handled by the techniques presented in the previous section.

For example, let R= the TRS defining equality over natural numbers defined as:

eq(0, 0)→ true eq(S(x), S(y))→ eq(x, y)

eq(S(x), 0)→ false eq(0, S(y))→ false

The safety problem (I,R=,O) with I the tree automaton recognizing all terms of the form
eq(n, n) with n ∈ N and O recognizing only true is not regular, meaning that it is impossible to
have an automaton A∗ recognizing exactly the input terms eq(n, n), which is what is necessary to
conclude with the method from [Haudebourg et al., 2020] on this instance. There exists automata
recognizing over-approximations of this relation, but then losing the relation between variables and
therefore recognizing terms that rewrite to false. To remedy this problem and prove such relational
properties, extensions of tree automata are proposed.

Automata recognizing relations have first been introduced in [Khoussainov and Nerode, 1994].
The extensions that Khoussainov and Nerode propose concern string automata, but can be extended
to tree automata. We begin by showing the intuition for automata recognizing relations on string
languages. To make an automaton recognize a n-ary relation, the main idea is to read the n words
at the same time instead of one after the other. However, automaton classically only read one letter
at a time.
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To keep this formalism, the idea is to create new letters represent-
ing product of letters, using a convolution operation. For exam-
ple, using Σ = {0, S}, the new alphabet for a binary relation is
Σ× = {SS ,

S
0 ,

S
· ,

0
S ,

0
0 ,

0
· ,
·
S ,
·
0} with · a new symbol used for padding.

The convolutions between the terms 1 and 3 is depicted in the figure
on the right.
Using this alphabet, the automaton (using tree automaton formalism,
for simplicity) recognizing the convolution of the equality relation is
given as A = (Σ×, {qf}, {qf}, {0

0 → qf ,
S
S (qf )→ qf}).

A relation whose convolution is recognized by an automaton is called
a regular relation, or automatic relation (w.r.t. the convolution oper-
ator).

S

0

S

S

S

0

× =

S
S

0
S

·
S

·
0

This idea can be extended for tree relations, as detailed in the tree automata reference [Comon
et al., 2008] or in [Haudebourg, 2020a]. The main difference is how trees are convoluted, as there are
multiple sensible choices for convolution trees. The most straightforward way to convolute terms is
to overlay their syntax tree, which is called the standard convolution.

The standard convolution between two terms t1, t2, written t1⊕ t2, is defined as: f(f1, . . . , fn)⊕
g(g1, . . . , gm) = f

g (f1 ⊕ g1, . . . , fN ⊕ gN ), with N = max(n,m) and fi = · (resp. gi = · ) if
i > n (resp. i > m). This new term is over the alphabet Σ⊕ = {fg | f, g ∈ Σ ] {·}} with
ar(fg ) = max(ar(f), ar(g)) and ar(·) = 0.

Note that this definition corresponds to the one for strings if every symbol of the alphabet is of
arity 0 and 1. In particular, the convolution between 1 and 3 is still a valid example.

This convolution is however not powerful enough to recognize more advanced relations. For
example, the binary relation {(d, T ) | T ∈ BinaryTree∧ d = depth(T )} is not automatic w.r.t. the
standard convolution. Indeed, the trees d⊕T of this relation would only overlay the tree d (shaped
like a branch) on the first branch of T , as Figure 2 shows, making it impossible to compare the
depth d with the longest branch.

S

S

0

⊕
Node

Leaf

4

Node

Leaf

7

Leaf

9

S
Node

S
Leaf

0
4

·
Node

·
Leaf

·
7

·
Leaf

·
9

=

Figure 2: Standard convolution

S

S

0

⊗
Node

Leaf

4

Node

Leaf

7

Leaf

9

S
Node

S
Leaf

0
4

S
Node

0
Leaf

·
7

0
Leaf

·
9

=

Figure 3: Full convolution

To this extend, the full convolution is proposed as an extension of the standard convolution
in [Haudebourg, 2020a]. The idea behind full convolution is to relate every subterm that have the
same depth.
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The full convolution of two terms t1, t2 ∈ T (Σ), written t1 ⊗ t2, is defined as:

f ⊗ g =
f

g
if ar(f) = ar(g) = 0

f(f1, . . . , fn)⊗ g =
f

g
(f1 ⊗ ·, . . . , fn ⊗ ·) if ar(f) > 0 ∧ ar(g) = 0

f ⊗ g(g1, . . . , gm) =
f

g
(· ⊗ g1, . . . , · ⊗ gm) if ar(f) = 0 ∧ ar(g) > 0

f(f1, . . . , fn)⊗ g(g1, . . . , gm) =
f

g
(f1 ⊗ g1, . . . , f1 ⊗ gm, . . . , fn ⊗ g1, . . . , fn ⊗ gm) otherwise

The full convolution over alphabet Σ results in a term over the alphabet Σ⊗ = {fg | f, g ∈ Σ]{·}}
with ar(fg ) = 0 if ar(f) = ar(g) = 0 and otherwise ar(fg ) = max(ar(f), 1) ∗max(ar(g), 1).

An example of full convolution is given in Figure 3, next to the standard convolution example.

Example 13 (Automaton Al recognizing relation between integer list and its length)
Note that the standard convolution between lists and natural numbers overlays the natural number
over the first element of the list, which is undesirable for proving structural properties on lists. One
solution is to use the full convolution, but an other one is to use an unusual convention for lists,
that is to reverse the order of parameters for the Cons symbol, thus having the tail first. We use this
second solution here. Consider Σ = {0/0, S/1, Nil/0, Cons/2}. The automaton Al recognizing the
relation { (lst, l) | lst ∈ Lists ∧ l = len(lst) } is defined as follows: A = (Σ⊕, {qn, qf}, {qf}, {0 →
qn, S(qn)→ qn,

Nil
0 → qf ,

Cons
S (qf , qn)→ qf}).

As for regular safety problems, we want to automatically learn (an over-approximation of) the
output produced by a function in order to prove properties on this function. Techniques presented
in Section 3.2 only allow for the learning of non-relational abstractions (or over finite domain).
In [Haudebourg, 2020a], Haudebourg proposes a technique to automatically learn automata rec-
ognizing regular relations by adapting the ICE principle with learner/teacher model [Garg et al.,
2014]. His method aims at constructing a tree automaton recognizing the standard convolution of
a relation described by a set of constraints generated from a TRS. This technique has been success-
fully (but partially manually) applied by Haudebourg in order to prove relational properties such
that length (rev l) = length l, or length (insert-sort l) = length l. However, this method is more
of a prototype, and work remains to make this method usable, which is the internship’s goal.

4 Internship goal

The regular relation learning method proposed by Haudebourg suffers from some limitations by
design. The first one is that this method currently only supports standard convolution. This is a
problem because many relations are not regular w.r.t. the standard convolution. This limitation
comes from the fact that every branch of a tree covers only one branch of the other tree, making it
impossible to compare one branch with every other branches, as shown in Figure 2. Augmenting this
method to be able to handle full convolution would be a first step. The full convolution however
has a high cost as soon as terms have an arity of 2 or more. One further path to follow is the
design of an adaptive convolution and corresponding ICE framework to not unnecessarily compute
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large convolutions. The second current limitation of this approach is its non-modularity and non-
integration in a verification tool like Timbuk. This instance of the ICE framework thus needs to
be modularized and included into the algorithm proposed in [Haudebourg et al., 2020]. Despite
these limitations, this approach for proving relational properties on functional programs seems very
promising, as non-trivial properties like the list length conservation on insertion-sort, which were
out of the scope of previous chapter techniques, have been proved in less than a second.
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