
Finding bounded strategies in games with
imperfect information

Théo Losekoot
ENS Rennes

theo.losekoot@ens-rennes.fr

Supervisor : Tristan Charrier
CNRS, Univ Rennes, IRISA

tristan.charrier@irisa.fr

Abstract—We consider turn-based games with imperfect
information. The problem is to decide whether a specific player
has a bounded uniform winning strategy. We show that this
problem is solvable by an algorithm running in polynomial
space. To do so, we construct a polynomial reduction to the
model checking problem of dynamic epistemic logic.

Index Terms—Game theory, Imperfect Information,
Bounded strategies, Dynamic Epistemic Logic, Complexity

I. INTRODUCTION

Game theory is an established domain modeling systems
where agents interact with each other and have different
objectives [1]. An agent is an abstract entity capable of
taking decisions autonomously1, (e.g. humans, coffee ma-
chine, dog, ...). In this paper, we focus on a class of games
respecting two constraints. Firstly, we consider turn-based
games, meaning that at each moment, at most one agent
may play. Secondly, agents have imperfect information on
the system, i.e. might not observe the full state of the system.
For instance, a round of poker, a round of tarot, a bargaining
process are instances of this class of games. Typically, in
a tarot round, there are five agents (human players), each
owning fifteen cards. A round of tarot decomposes itself into
fifteen sub-rounds in which agents play one card each, turn
by turn. There is imperfect information because an agent
does not know what cards other agents own.

In these situations, there may be a way for an agent
to behave in order to be sure to achieve his goals, called
winning strategy. Moreover, his strategy must be uniform,
meaning that it relies on his own knowledge about the
game. For instance in tarot, an agent cannot tune his strategy
depending on the cards of other agents. Furthermore, we
search for k-bounded winning strategies, i.e. always winning
in less than k turns. It is not a limitation for many of those
games, since bounded strategies are sufficient in any game
where a resource is consumed each turn (e.g. playing a card).

Currently, the complexity of finding a bounded uniform
winning strategy in this class of games is unknown2. Our
contribution consists of showing that this problem can be
polynomially reduced to the model checking problem of
dynamic epistemic logic (DEL) [4]. Since this problem is

1See page 9 of [2] if you wish for a more detailed definition of an agent.
2The closest result is a non-deterministic exponential time complexity

for games where we search for strategies for a team of players [3].

in PSPACE3 [6], we deduce that finding uniform bounded
winning strategies yields a PSPACE problem.

The paper is divided as follows. In Section II, we define
the class of turn-based games with imperfect information,
and also define strategies. In Section III, we define dynamic
epistemic logic. In Section IV, we provide the reduction
mentioned above. Finally, in Section V, we introduce a
symbolic representation of games to avoid the combinatorial
explosion on the number of possible states in games, and
discuss its influence on the complexity.

II. TURN-BASED GAMES WITH IMPERFECT
INFORMATION

In this section, we define an outline for turn-based games
with imperfect information, called a game arena. Then, we
add goals in this arena to define strategies for agents. The
definition is inspired from the founding paper of Alternating-
Time Temporal Logic [1].

A. Game arena

Definition II.1. A turn-based game arena with imperfect
information G = 〈Agt,AP, St, V al, Act, Succ,Obs〉 is a
tuple where:
• Agt = {a, b, c, . . . } is the set of agents;
• AP = {p, q, r, . . . } is the set of atomic propositions;
• St = {s1, . . . , sn} is the set of states with an initial

state sinit ∈ St;
• V al : St→ 2AP is the valuation function;
• Act is the disjoint union of Acta for each agent a.
Acta = {α, β, γ, . . . } is the set of actions for agent a;

• Succ : St × Act → St is the (partial) successor
function;

• Obs is the tuple of Obsa for each agent a. Obsa ⊆ AP
is the observation set for agent a.

Intuitively, atomic propositions characterize the truth
value of facts in states. sinit is the state that represents the
configuration in which the game begins. V al is the function
that assigns to each state its valuation (the set of true atomic
propositions). Acta is the set of available actions for agent
a. Succ is the function that gives the successor state from a
state and an action (when it exists). Obsa is the set of atomic
propositions that agent a can observe (e.g. his cards).

3That is, solvable with an algorithm using polynomial space [5].

We illustrate the definition on a game inspired from [2].

Example II.1. Robber in the bank
A vault containing a large amount of money is protected

by a binary code, 0 or 1. If someone enters the right code,
the vault opens and gives access to what is stored in. If an
incorrect code is entered, the alarm switches on. The code
is set anew every morning by the guard agent. Some time
later in the day, the robber enters the bank and tries to open
the vault. However, he does not know the current code.

We represent this example with a graph on Figure 1.
Circles represent states with a color code to specify who
is playing. Labeled arrows represent the Succ function, and
dashed arrows represent the Obsa sets.

S1

S2 S3

S4 S5 S6 S7

S8 S9 S10 S11

Set0 Set1

Play0 Play1 Play0 Play1

Open Ring Ring Open

Guardian’s turn
Robber’s turn
Vault’s turn

Robber cannot distinguish those states

Guardian cannot distinguish those states

Figure 1: Modeling of the Robber example.

The formalization of this example is in Appendix A.1.

Our definition needs to be refined. Indeed, we capture for
instance games where two agents can play at the same turn.
That is why we now define some additional constraints.

We define the function Playa : St → 2Act that tells
which actions agent a can play on a particular state. For
every agent a and state s, we have Playa(s) = {α ∈ Acta |
Succ(s, α) is defined}.

Constraint II.1. Turn-based constraint
For every state s, there exists at most one agent a such that

|Playa(s)| >= 1 and for all other agents b, |Playb(s)| = 0.

This constraint means only one agent can play at a time,
or zero when the game is finished.

We also define the (partial) function Turn : St → Agt
that indicates which player can play. For every state s,
Turn(s) = a if and only if |Playa(s)| > 0.

We say that two states s and s′ are indistinguishable for
agent a, noted s ∼a s′, if their valuation seen by agent a is
the same: V al(s) ∩Obsa = V al(s′) ∩Obsa.

Constraint II.2. Same actions on indistinguishable states

For all states s, s′ and agent a, s ∼a s′ implies
Playa(s) = Playa(s

′).

This constraint means that if an agent a does not distin-
guish two states s and s′, then he has the same available
actions in those two states.

Note that the previous example respects constraints II.1
and II.2. Now that we have specified the game arena, we
focus on victory conditions for agents.

B. Perfect-recall uniform strategies
First, we need to define the notion of history.

Definition II.2. A history h ∈ St+ = 〈h1, . . . , hn〉 is a
finite sequence of states corresponding to an execution of
the arena, i.e. h1 = sinit and for i ∈ {1, . . . , n − 1}, we
have hi+1 ∈ {Succ(hi, α) | α ∈ Act}. We note h<=i the
sub-history composed by the i first elements of h and H the
set of all histories for a given arena.

For example, the history for “The guardian set the code
to 1 and then the robber entered 0.” is 〈S1, S3, S6〉.

Definition II.3. We say that two histories h and h′ are
indistinguishable for agent a, noted h ∼a h′ if and only
if (|h| = |h′| and hi ∼a h′i for i ∈ {1, . . . , |h|}).

Note that two histories h, h′ that end in indistinguish-
able states for agent a, h|h| ∼a h′|h′|, are not necessarily
indistinguishable. For example, in a money game where the
agent a can only observe his amount of money, he does not
distinguish two states where he has 5 gold coins but he may
have obtained them in many different ways (histories) and
distinguishes those ways (he recalls what happened).

We now consider how agents can behave during the game,
and thus define the notion of perfect-recall strategy [1].

Definition II.4. A perfect-recall strategy σa : H → Acta of
agent a in a game arena is a partial function that specifies
what agent a should play in every possible history: for all
history h, if Turn(h|h|) = a, then σa(h) ∈ Playa(h|h|) and
σa(h) is undefined otherwise.

In reality, it is pointless to consider strategies that have
different moves for two indistinguishable histories. The con-
cept of uniform strategy corrects this issue, giving the same
output for two histories that the agent cannot distinguish.

Definition II.5. A strategy is said uniform if for all histories
h, h′, h ∼a h′ implies σa(h) = σa(h

′).

Definition II.6. We define the set of all histories H(σa)
generated when agent a sticks to strategy σa as follows.
H(σa) = {h ∈ H | for i ∈ {1, . . . , |h| − 1}, if

Turn(hi) = a, then hi+1 = Succ(hi, σa(h<=i))}

Now that we have a way of characterizing how agents
behave, we want to lead one of them to victory. Let us say
we have, in addition to the game arena, a goal for agent a,
Goala ⊆ St, that is his set of winning states.

Definition II.7. A strategy σa is said winning for agent a if
all histories h ∈ H(σa) contain a winning state. It is said

k-bounded winning if we can find a winning state in all
histories h ∈ H(σa) such that |h| = k or such that |h| < k
with no successor for h|h|.

In our example, if we consider Goala = {S8, S11}, there
is a winning strategy for agent Robber (play Set0 in S2 and
Set1 in S3) but no uniform winning strategy.

III. DYNAMIC EPISTEMIC LOGIC

Dynamic epistemic logic is a logic to reason about agents’
knowledge and their evolution when applying actions. In this
section, we first give a definition of epistemic logic, in which
we model a given static situation, we then complete it by
adding actions.

A. Epistemic Logic

Modern epistemic logic originated from the work of
Hintikka [7]. We consider a countable set of atomic
propositions AP and a finite set of agents Agt.

Definition III.1. The syntax of epistemic logic (EL), whose
language is noted LEL, is defined by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Ka(ϕ)

with p ∈ AP and a ∈ Agt.

Intuitively, Ka(ϕ) means that agent a knows that ϕ.
Boolean connectives >,⊥,∧,→,↔ are defined as usual and
we define the Ka operator’s dual K̂a(ϕ) = ¬Ka(¬ϕ).

Example III.1. Formula Ka(Kb(ϕ)∨Kc(ϕ)) means “Agent
a knows that agent b or agent c knows ϕ”.

The semantics of EL is defined on a pointed Kripke model.

Definition III.2. A Kripke model M = (W, (Ra)a∈Agt, V)
is a triplet where W is the set of possible worlds; Ra is a
binary epistemic relation between worlds (Ra ⊆W ×W);
V is the valuation function (V :W → 2AP).

A pair (M, w) is called a pointed Kripke model where
the world w is the actual world.

Intuitively, a world is the transcription of a state in
the epistemic logic domain. We include all worlds agents
imagine as possible. The epistemic relations Ra represent
the agents’ capacities of reasoning, or to be more precise,
their inability to distinguish worlds. We have wRaw′ if agent
a thinks that w′ may be the actual world when in fact the
actual world is w.

Definition III.3. We note M, w |= ϕ for “Formula ϕ is
true in the pointed Kripke model (M, w)”. It is defined by
induction on ϕ as follows:

M, w |= p iff p ∈ V (w);
M, w |= ¬ϕ iff M, w 6|= ϕ;
M, w |= ϕ ∨ ψ iff M, w |= ϕ or M, w |= ψ;
M, w |= Ka(ϕ) iff for all w′ ∈ W such that

wRaw′, we have M, w′ |= ϕ.

In our case, we limit ourselves to a particular class of
Kripke models where epistemic relations are equivalence
relations. Called S5, those models are typically used to
reason about knowledge [8]. Indeed, since indistinguishable
worlds form equivalence classes, the modality Ka(ϕ) stems
to checking ϕ in the whole equivalence class, which is a
reasonable semantics for knowledge.

Example III.2. We cannot represent the full game II.1 with
epistemic logic but we can represent the knowledge of agents
in one turn. As an example, we can define the pointed Kripke
model (MS1, w1) corresponding to the initial state S1,
and (MS3, w2) corresponding to the state S3. The formal
representation of these examples are in Appendix B.1.

We represent these examples with graphs, where nodes
represent worlds, arrows represent the epistemic relations,
and the valuation is indicated inside the node, next to its
name, see Figures 2 and 3.

w1 : {}

R,G, V

Figure 2: Pointed Kripke model (MS1, w1) for state S1.

w1 : {C0} w2 : {C1}
R

R,G, V R,G, V

Figure 3: Pointed Kripke model (MS3, w2) for state S3.

We can see in the example showed in Figure 3 that, as in
the S3 state of the previous example, everybody distinguishes
the world where the code is 0 from the world where the code
is 1, except the Robber that cannot.

B. Dynamic Epistemic Logic

Originally introduced in [4], dynamic epistemic logic
(DEL) is the subject of many contributions, including the
milestone book [9] and more recently [10].

DEL extends epistemic logic by adding a new operator
〈E , E0〉 for modeling actions, thus allowing us to model a
system in evolution, in our case a game.

Definition III.4. The syntax of DEL, whose language is
noted LDEL, is formed by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Ka(ϕ) | 〈E , E0〉ϕ

with p ∈ AP and a ∈ Agt.

The operator 〈E , E0〉ϕ is composed of an event model E , a
set of available events E0, and a LDEL formula ϕ. 〈E , E0〉ϕ
reads “After the execution of 〈E , E0〉, the formula ϕ is true”.
His dual is defined as follows: [E , E0]ϕ = ¬〈E , E0〉¬ϕ.

We now define event models and (multi-)pointed event
models, their interaction with Kripke models and finally the
semantics of this new modal operator.

Definition III.5. An event model is a tuple
E = 〈E, (REa)a∈Agt, pre, post〉 with E a non-empty
set of events, REa ⊆ E × E the epistemic relation between
events, pre : E → LEL the precondition function and
post : E ×AP → LEL the postcondition function.

An event model can be seen as a Kripke model where
worlds have been replaced by events. Epistemic relations
keep the same meaning as before. For an event e, pre(e)
is the necessary condition to execute the event. For every
p ∈ AP , post(e, p) is the new value of p after executing
event e.

A pair 〈E , e〉 is called a pointed event model, where e ∈ E
represents the actual event. A pair 〈E , E0〉 is called a multi-
pointed event model where E0 ⊆ E is the set of events that
can be used as actual events.

Example III.3. We consider the action of setting the code to
1 in the example II.1. This action is modeled by the couple
(Eset1, e2) defined in Appendix B.2.

We represent this example with a graph, where nodes
(rectangles for events) represent events, arrows the epistemic
relations, and the pre/post conditions are indicated inside the
node, next to its name, see Figure 4.

e1 :
pre : >
post : C0 ← >

e2 :
pre : >
post : C1 ← >

R

R,G, V R,G, V

Figure 4: Pointed event model (Eset1, e2) for setting the code
to 1.

We now define the effect that an event model has on a
Kripke model, named the synchronous product operation.

Definition III.6. The synchronous product is an operation
between a Kripke model M = (W, (Ra)a∈Agt, V) and an
event model E = 〈E, (REa)a∈Agt, pre, post〉 that results in
a new Kripke model M⊗ E = (W ′, (R′a)a∈Agt, V

′). This
operation is defined as follows:
• W ′ = {(w, e) ∈ (W × E) | M, w |= pre(e)};
• R′a = {((w, e), (w′, e′)) | wRaw′ and eREae

′};
• V ′((w, e)) = {p ∈ AP | M, w |= post(e, p)}.

Intuitively, we create a new world (w, e) for any combi-
nation of a world w and event e such that w satisfies the
precondition of e. The epistemic relation for agent a between
(w, e) and (w′, e′) is kept if the agent could not distinguish
w from w′ nor e from e′. Proposition p is in the valuation
of (w, e) if and only if w satisfies the postcondition of e for
p.

The synchronous product operation can be extended to
pointed models (M, w) and (E , e): the new pointed Kripke
model is ((M⊗E), (w, e)).

Example III.4. The synchronous product between the
Kripke model MS1 of Example III.2 and the event model
Eset1 of example III.3 is represented in Figure 5. The formal
details are in Appendix, see B.3.

(w1, e1) : {C0} (w1, e2) : {C1}
R

R,G, V R,G, V

Figure 5: Pointed Kripke model
(
(MS1 ⊗Eset1), (w1, e2)

)
.

Note that, as expected, the resulting pointed Kripke model
is equivalent to (MS3, w2), modulo the name of worlds.

We now define the semantics of the operator 〈E , E0〉.

Definition III.7. Semantics of the dynamic operator
We extend the definition M, w |= ϕ from LEL to LDEL

with the following clause:
M, w |= 〈E , E0〉ϕ if there exists e ∈ E0 such that

M, w |= pre(e) and M⊗E , (w, e) |= ϕ.

When considering pointed event models with only one
actual event, we allow the notation 〈E , e〉 instead of 〈E , {e}〉.

Example III.5. Formulas of LDEL

For example, using the previously defined models, we
have:
MS1, w1 |= 〈Eset1, e2〉KG(¬C0);
MS1, w1 6|= 〈Eset1, e2〉KR(¬C0).
Since the guardian knows which code he has set but not

the robber.

The model checking problem for DEL is defined as
follows.

Input: A pointed Kripke model (M, w) and a for-
mula ϕ ∈ LDEL;

Output: Yes if and only if M, w |= ϕ.

IV. PROBLEM AND REDUCTION FROM GAMES TO DEL

We consider the following decision problem EasyWin.
Input: A turn-based game with imperfect informa-

tion G, an integer k and a set Goala1 of
winning states for agent a1 ∈ Agt.

Output: Yes if and only if there exists a k-bounded
uniform winning strategy for agent a1.

This section objective is to prove that EasyWin is a
member of PSPACE. To do so, we polynomially reduce it to
the DEL model checking problem, which is in PSPACE [6].

To prove that, we need to define the size of a game along
with the size of a Kripke model and event models. In the next
two definitions, we consider that the size |f | of a function f :
A→ B is the product of its definition sets’ size, |A| × |B|.

Definition IV.1. We define the size of a game G as follows:
G = 〈Agt,AP, St, V al, Act, Succ,Obs〉
|G| is the sum of the size of its components;
|V al| = |St| × |AP |;
|Succ| = |St| × |St| × |Act|;

Note that |G| ∈ O(|St| × |Act| × |Agt| × |AP |).

Definition IV.2. The size of formulas ϕ ∈ LDEL and models
M = (W, (Ra)a∈Agt, V) , E = (E, (REa)a∈Agt, pre, post)
are defined by induction as follows:
|p| = 1;
|¬ϕ| = |Ka(ϕ)| = 1 + |ϕ|;
|ϕ1 ∨ ϕ2| = |ϕ1|+ |ϕ2|;
|〈E , E0〉ϕ| = 1 + |E|+ |E0|+ |ϕ|;
|M| = |AP | × |W |+

∑
a∈Agt

|Ra|;

|E| = |E|+
∑
e∈E

(
|pre(e)|+

∑
p∈AP

|post(e, p)|
)
+
∑

a∈Agt
|REa |.

Note that, as usual in decision problems with a bound [11],
the bound k uses k memory space, i.e. is written in unary.
This is realistic because we need to store a strategy of which
size is k and not log (k). If one does not tolerate this,
consider the problem of finding a log (k)-bounded winning
strategy. In the following, this convention is accepted.

A. Transformation function

Definition IV.3.
Input: A turn-based game with imperfect information

G = 〈...〉, a bound k and the goal set Goala1
for agent a1.

Output: A pointed Kripke model (M, w), with M =
(W,Ra1 , V), and a formula ϕka1 such that
M, w |= ϕka1 if and only if there exists a k-
bounded uniform winning strategy for agent
a1.

Body:

1) Generating AP and Agt: Add wait to AP and after
that, keep untouched. Also keep Agt untouched.

2) Creation of the pointed Kripke model (M, wsinit
):

M = (W,Ra1 , V);
W = {ws | s ∈ St and s ∼a1 sinit};
Ra1 =W ×W ;
V (w) = V al(w).
For example, if we try to transform our robber example,

the initial Kripke model would be (MS1, ws) (with only
Robber’s epistemic relations).

3) Creation of the formula expressing the bounded uni-
form winning strategy:

In this section, we create a formula ϕka1 that is true if and
only if there exists a k-bounded winning strategy for agent
a1.

We define ϕX the formula corresponding to X . For
example, if X is a valuation, then ϕX is the conjunction
that details which atomic propositions are true and which
are false. If X is an assertion, then the formula ϕX is either
> or ⊥.

We define ϕ0
a1 =

∨
s∈Goala1

ϕV al(s), which corresponds to

being in a winning state, i.e. having a 0-bounded winning
strategy.

We need a formula to represent the course of the game, to
express how actions are played. For the next event models,
the details of the construction can be found in the Appendix
C.

• For every agent a and action α ∈ Acta, we first
define the multi-pointed event model of “agent a plays
action α”, noted (Eαa , Eα0) (see Appendix C.1). We note
(Ea, Ea0) the multi-pointed event model corresponding
to the disjoint union of the (Eαa , Eα0) for every α in
Acta (see Appendix C.2). Therefore, (Ea, Ea0) corre-
sponds to the turn of a. He can play the action he
wants (Ea0 is the totality of events), but must be in a
compatible state (preconditions) and the resulting action
leads to the successor state (postcondition). We also add
one more event, ewait, to allow the execution of this
multi-pointed event model even if it is not agent a’s
turn.

• We then define a pointed event model, noted
(Ewait, ewait) corresponding to “the turn is over, here
begins a new one” (see Appendix C.3).

• We finally define pointed event models noted (Ep, Ep0)
for every p ∈ Obsa1 , each corresponding to “agent a1
observes the value of the atomic proposition p”. We
note the first one (Ep, Ep0) and the last one (Er, Er0)
(see Appendix C.4).

An example of these three preceding steps applied to the
robber example is in Appendix Example C.1.

We now define a turn in the game, noted T (ϕ), where ϕ
describes the rest of the game. It is defined as follows:
T (ϕ) = ϕ0

a1∨〈Ea1 , E
a1
0 〉Ka1

(
[Ea2 , E

a2
0]...[Ea|Agt| , E

a|Agt|
0]

〈Ewait, ewait〉〈Ep, Ep0 〉...〈Er, Er0〉ϕ
)
.

The idea of T (ϕ) is “agent a1 has won, or else agent
a1 can play an action such that he knows that, regardless
of what others play, (and after observing propositions) ϕ is
true”. Note that there is only one agent who plays per turn,
but there is an event model for every agent, and all of them
except one will perform the move ewait because it is not
their turn to play.

We note ϕk+1
a1 = T (ϕka1). To reword, satisfying ϕka1

means that agent a1 either wins directly or can play an action
such that he knows that, no matter what other agents do, he
has a (k − 1)-bounded uniform winning strategy.

Example IV.1. We still consider that winning states for
agent Robber are S7 and S11. We have:
ϕ0
R = ϕV al(S7) ∨ ϕV al(S11);
T (ϕ) = ϕ0

R∨〈ER, ER0 〉KR([EG, EG0][EV , EV0]〈Ewait, ewait〉
〈EC0

, EC0
0 〉 . . . 〈EOp, E

Op
0 〉ϕ);

ϕ3
R = T (T (T (ϕ0

R)));
with (ER, ER0) composed of the disjoint union of

(Eplay0R , Eplay00) and (Eplay1R , Eplay10), constructed as indi-
cated in the reduction.

This transformation function returns the pointed Kripke
model (M, w) and the formula ϕka1 .

B. This reduction was polynomial

We have to prove that the reduction was in polynomial
time. Let (G, k,Goala1) be the input and (M, w) the
resulting pointed Kripke model with M = (W,Ra1 , V al)
and ϕka1 the resulting formula of the transformation function.

We note t(X) the creation duration of a certain object X .
Roughly we have t(X) ∈ O(|X|).

Therefore, we deduce that the execution time for the trans-
formation function is in O(k×|Agt|× |Act|× |St|× |AP |),
so polynomial.

C. Correction of the transformation function

Let (G, k,Goala1) be the input and (M, w) the resulting
pointed Kripke model with M = (W,Ra1 , V al) and ϕka1
the resulting formula of the transformation function.

The assertion that we prove here, called H(k), is: “For
all game G, bound k and set Goala1 , there is a k-bounded
uniform winning strategy for agent a1 if and only if the
constructed formula ϕka1 is satisfied by the constructed
pointed Kripke model”.

We prove this proposition by induction on k.
• Case k = 0:

These strategies correspond to winning directly. The
corresponding formula ϕ0

a1 is simply the disjunction of
the formulas ϕV al(s) for s ∈ Goala1 . We then have
to check if the pointed Kripke model (M, w) satisfies
the formula corresponding to being in a winning state.
There is a winning strategy in 0 moves if and only if the
game is already on a winning state. The initial world
is wsinit

, so the equivalence is true.
• Case k > 0:

We suppose that H(k − 1) is true. We distinguish two
possible cases:
– It is agent a1’s turn. Game speaking, agent a1 has

a k-bounded winning strategy if and only if he can
choose an action such that he knows that he has a
(k − 1)-bounded uniform strategy. Recall that only
person plays per turn, so all other agents are perform-
ing the action ewait. DEL speaking, the formula ϕka1
is true if and only if the application of 〈Ea1 , E

a1
0 〉 on

the current model leads to a model where agent a1
knows that the formula ϕk−1a1 is true. We know that
applying the event model 〈Ea1 , E

a1
0 〉 is equivalent

to choosing an action for agent a1. By induction,
satisfying a ϕk−1a1 is equivalent to having a (k − 1)-
bounded uniform strategy. Therefore, the assertion
H(k) is true in this subcase.

– It is not a1’s turn. Game speaking, agent a1 has
a k-bounded winning strategy if and only if he
knows that whatever his opponent ai play, he has
a (k − 1)-bounded uniform strategy. DEL speaking,
the formula ϕka1 is true if and only if the agent a1
knows that, in the resulting model by the application

of one event model [Eai , E
ai
0] on the current model,

the formula ϕk−1a1 is true. We know that applying the
event model [Eai , E

ai
0] is equivalent to choosing an

action for agent ai. By induction, satisfying a ϕk−1a1
is equivalent to having a (k − 1)-bounded uniform
strategy. Therefore, the assertion H(k) is also true
in this subcase.

Consequently, the assertion H(k) is proved for every
value of k.

V. CONCLUSION

We proved a PSPACE membership result for the problem
of finding bounded winning uniform strategies in turn-
based games with imperfect information. This reduction also
paved the road to a more interesting result. Indeed, those
games can be represented in a symbolic way, thus avoiding
the exponential description of the states. These symbolic
games can then be reduced to symbolic DEL, whose model
checking is also in PSPACE [12]. This symbolic reduction
is almost the same as the one we did here, and an intuition
is provided in the Appendix D.

The problem here was about the existence of a bounded
winning uniform strategy, but this solution can be used to
extract an artificial intelligence. Let us say that we have a
game and an agent a1 for whom there exists a k-bounded
winning uniform strategy. When it’s agent a1’s turn (at the
nth 6 k turn of the game), we just have to construct the
formula ϕka1 , replacing past actions by the actions that have
been actually played (or all actions that he cannot distinguish
from the real actions), and testing if he has a (k−n)-bounded
winning uniform strategy for each of its actual choices of
actions. When he finds such an action, he plays it. It is
necessary that he finds at least one action to play because
he had a winning strategy in the first place, and followed it.

Finding winning strategies is most of the time doomed
to failure, and agents may be more interested in finding
strategies with a high probability of victory. There exist
extensions with probability both in the domain of games [13]
and epistemic logic [14]/dynamic epistemic logic [15], so we
could use them as well.

REFERENCES

[1] R. Alur, T. A. Henzinger, and O. Kupferman, “Alternating-time
temporal logic,” J. ACM, 2002.

[2] W. Jamroga, Logical Methods for Specification and Verification of
Multi-Agent Systems. Institute of Computer Science, Polish Academy
of Sciences, 2015.

[3] E. D. Demaine and R. A. Hearn, “Constraint logic: A uniform
framework for modeling computation as games,” in Conference on
Computational Complexity, 2008.

[4] A. Baltag, L. S. Moss, and S. Solecki, “The logic of public announce-
ments and common knowledge and private suspicions,” in Theoretical
Aspects of Rationality and Knowledge, 1998.

[5] S. Arora and B. Barak, Computational Complexity - A Modern
Approach. Cambridge University Press, 2009.

[6] G. Aucher and F. Schwarzentruber, “On the complexity of dynamic
epistemic logic,” in Theoretical Aspects of Rationality and Knowledge,
2013.

[7] J. Hintikka, “Knowledge and belief. an introduction to the logic of
the two notions,” 1962.

[8] R. Fagin, J. Y. Halpern, Y. Moses, and M. Vardi, Reasoning about
knowledge. MIT press, 2004.

[9] H. Van Ditmarsch, W. van Der Hoek, and B. Kooi, Dynamic epistemic
logic. Springer Science & Business Media, 2007.

[10] H. Ditmarsch, J. Y. Halpern, W. van der Hoek, and B. P. Kooi,
Handbook of epistemic logic. College Publications, 2015.

[11] H. Turner, “Polynomial-length planning spans the polynomial hierar-
chy,” vol. 2424, 08 2002.

[12] T. Charrier and F. Schwarzentruber, “A succinct language for dynamic
epistemic logic,” in Autonomous Agents and Multi-Agent Systems,
2017.

[13] K. R. Apt and E. Grädel, Lectures in game theory for computer
scientists. Cambridge University Press, 2011.

[14] J. Y. Halpern and M. R. Tuttle, “Knowledge, probability, and adver-
saries,” J. ACM, 1993.

[15] B. P. Kooi, “Probabilistic dynamic epistemic logic,” Journal of Logic,
Language and Information, 2003.

[16] T. Charrier and F. Schwarzentruber, “Complexity of dynamic epis-
temic logic with common knowledge,” in Advances in Modal Logic,
2018.

[17] S. Reisch, “Hex is pspace-complete,” Acta Informatica, 1981.

APPENDIX A
APPENDIX OF SECTION II

In Sections A and B, we consider the same agents
Agt = {R(obber), G(uard), V (ault)} and atomic propo-
sitions AP = {C0, C1, R0, R1, Al, Op}.

Example A.1.
The formalization of the robber example with the game

definition is: G = 〈Agt,AP, St, V al, Act, Succ,Obs〉 with:
St = {S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11}
sinit = S1

V al : S1 S2 S3
∅ {C0} {C1}

S4 S5 S6 S7
{C0, R0} {C0, R1} {C1, R0} {C1, R1}
S8 S9 S10 S11
{C0, R0, Op} {C0, R1, Al} {C1, R0, Al} {C1, R1, Op}

Act = ActR ∪ActG ∪ActV ;
ActR = {Play0, P lay1}; ActG = {Set0, Set1}; ActV =

{Ring, Unlock};

Succ : S1 S2 S3 S4 S5 S6 S7 S8/9/10/11
Set0 S2 / / / / / / /
Set1 S3 / / / / / / /
Play0 / S4 S6 / / / / /
Play1 / S5 S7 / / / / /
Ring / / / / S9 S10 / /
Unlock / / / S8 / / S11 /

ObsG = {C0, C1, Al, Op}; ObsR = {R0, R1, Al, Op};
ObsV = {C0, C1, R0, R1, Al, Op}.

APPENDIX B
APPENDIX OF SECTION III

In this section, when defining post function, all atomic
propositions not mentioned are considered to remain at the
same value (i.e. post(e, p) = p).

Example B.1. Kripke models (MS1, w1) and (MS3, w2).

The state S1 of the previous example corresponds to the
following pointed Kripke model (MS1, w1) where:
MS1 = (W, (Ra)a∈Agt, V al);
W = {w1};
RR = RG = RV = {(w1, w1)};
V al(w1) = ∅;
The state S3 of the previous example corresponds to the

following pointed Kripke model (MS3, w2) where:
MS3 = (W, (Ra)a∈Agt, V al);
W = {w1, w2};
RR =W ×W ; RG = RV = {(w1, w1), (w2, w2)};
V al(w1) = {C0}; V al(w2) = {C1}.

Example B.2. Event model (Eset1, e2).
Eset1 = 〈E, (REa)a∈Agt, pre, post〉;
E = {e1, e2};
RER = E × E; REG = REV = {(e1, e1), (e2, e2)};
pre(e1) = >; pre(e2) = >;
post(e1, C0) = >; post(e2, C1) = >.

Example B.3.
MS1 = (W, (Ra)a∈Agt, V) is as in Example III.2;
Eset1 = 〈E, (REa)a∈Agt, pre, post〉 is as in Example III.3;
We have MS1 ⊗ Eset1 = (W ′, (R′a)a∈Agt, V

′) with:
W ′ = {(w1, e1), (w1, e2)};
R′R =W ′ ×W ′;
R′G = R′V = {((w1, e1), (w1, e1)), ((w1, e2), (w1, e2))};
V ′((w1, e1)) = {C0}; V ′((w1, e2)) = {C1}.

APPENDIX C
APPENDIX OF SECTION IV

Definition C.1. Event models (Eαa , Eα0)
In those models, we only represent agent a1’s knowledge,

because he is the one we search a winning uniform strategy
for, and we do not care about what other agents know.
Eαa = 〈Eα, Rαa1 , pre

α, postα〉; Eα0 = Eα;
Eα = {eαs | s ∈ St and α ∈ Playa(s)};
Rαa1 = E × E;
For every event eαs , preα(eαs) = ϕV al(s) ∧ ¬wait;
For every event eαs , postα(eαs , wait) = > and for
every other atomic proposition p, postα(eαs , p) =
ϕ(V al(Succ(s,α))|=p).

Definition C.2. Event model (Ea, Ea0)
We note E∀a =

⊔
α∈Acta

Eα.

Ea = 〈E,REa1 , pre, post〉; E
E
0 =

(⊔
α∈Acta

Eα0
)
t {ewait};

E = E∀a t {ewait};
Because agent a1 knows which actions he plays but not
which action opponents play, if a is a1, then
REa1 =

(⊔
α∈Acta

Rαa1
)
t {(ewait, ewait)};

and else
REa1 = E∀ × E∀ t {(ewait, ewait)};

For every action α ∈ Acta and event e ∈ E∀a , pre(e) =
preα(e), and for every atomic proposition p, post(e, p) =
postα(e, p);
pre(ewait) = wait ∨ (

∧
s|Turn(s)=a

¬ϕV al(s)).

Definition C.3. Event model (Ewait, ewait)
The event model Ewait = 〈E,REa1 , pre, post〉 is defined

as follows:
E = {ewait};
REa1 = {(ewait, ewait)};
pre(ewait) = >;
post(ewait, wait) = ⊥.

Definition C.4. Event model (Ep, Ep0)
Ep = 〈E,REa1 , pre, post〉; E

p
0 = E;

E = {ep, e¬p};
REa1 = {(ep, ep), (e¬p, e¬p)};
pre(ep) = p; pre(e¬p) = ¬p.

Example C.1. Here is an example of the transformation
function on the example II.1.

We can find the multi pointed models corresponding to
the 3 steps of the creation of event models. The first step
is separated into two substeps. The following models are
obtained with the method described in the reduction.

Figure 6 corresponds to the guardian setting the code
to 1, Figure 7 to playing the guardian’s turn, Figure 8 to
stop waiting for the next turn and Figure 9 to observing the
proposition p.

We introduce the notation ϕV al(S1) = ¬C0∧¬C1∧¬R0∧
¬R1 ∧ ¬Al ∧ ¬Op.

eSet1S1 :
pre : ϕV al(S1) ∧ ¬wait
post : C1 ← >

wait← >

R

Figure 6: Pointed event model (ESet1G , eSet1S1), corresponding
to the guardian setting the code to 1.

eSet0S1 : . . . eSet1S1 : . . .

ewait :
pre : ¬ϕV al(S1) ∨ wait
post : C1 ← >

wait← >

R

R R

R

Figure 7: Multi pointed event model (EG, EG0), correspond-
ing to the turn of the guardian.

ewait :
pre : >
post : wait← ⊥

R

Figure 8: Pointed event model (Ewait, ewait) corresponding
to stop waiting for next turn.

ep :
pre : p
post : e¬p :

pre : ¬p
post :

R R

Figure 9: Multi pointed event model (Ep, Ep0) corresponding
to observing p.

APPENDIX D
SYMBOLIC METHODS

Our definition of game arenas suffers from a combinatorial
explosion in the number of states. To solve this problem, we
create a symbolic representation of a turn-based game arena
with imperfect information. It consists in representing sets

by boolean formulas whose elements are the valuations of
the formulas. We note L0(AP) the set of boolean formulas
on AP . The elements that are represented symbolically are:
St, the states, Succ, the successor function and Playa, the
playable function. Moreover, V al, the valuation function,
disappears because states are already represented by their
valuation, so we may use “state” or “valuation” interchange-
ably.

Definition D.1. A symbolic turn-based game arena with
imperfect information, G, is the following tuple:
G = 〈Agt,AP, St,Act, P lay, Succ,Obs〉
where Agt,AP,Act and Obs are defined as in definition

II.1 and:

• St ∈ L0(AP) with an initial state sinit ∈ V al(AP)
such that sinit |= St;

• Succ : Act → L0(AP ∪ AP ′) with AP ′ = {p′ | p ∈
AP}. We suppose AP ∩AP ′ = ∅;

• Play is the tuple of Playa for each agent a. Playa :
Acta → L0(AP);

Intuitively, St is a formula on AP such that every valua-
tion that satisfies St is a state, sinit is the initial valuation,
Playa is the function that returns the formula that represents
the states in which the agent a can play the given action. For
Succ, we need to introduce a new notation: for a valuation
s, we note prime(s) the exact same valuation, but on AP ′

(i.e. every propositional variable is replaced by its equivalent
on AP ′). There is a transition from state s to state s′ using
action α if and only if (s ∪ prime(s′) |= Succ(α)).

Note that Playa is included in the definition this time
since computing it may require exponential time. Thus, we
impose that it is computed beforehand. It is not a problem in
practice since specifying which actions agent a1 may play
is easy. For instance, the action “play card i” is playable in
states where agent a1 has card i.

For example, we can redefine the turn-based constraint.

Constraint D.1. Turn-based constraint
For every state s such that s |= St, there exists at most

an agent a such that s |=
∨

α∈Acta
Playa(α) and for all other

agents b ∈ (Agt \ {a}), s 6|=
∨

α∈Actb
Playb(α).

The other functions and constraints are defined similarly
to what we did in section II.

The definitions of a history and a bounded winning
uniform strategy remain the same.

Symbolic dynamic epistemic logic (SDEL) is defined with
the same ideas. A clear definition can be found in [12] and
a simpler definition in [16].

The new decision problem is the following:

Definition D.2. Symbolic EasyWin decision problem

Input: A Symbolic turn-based game with imper-
fect information G, an integer k and a
formula Goala1 of goals for agent a1.

Output: Yes if and only if there exists a k-bounded
uniform winning strategy for agent a1.

The same reduction as in part IV can be done with
symbolic methods by transposing the definition of models
with their symbolic counterparts. Due to the lack of space,
we omit the details here.

Once this reduction is properly written, the result will be
that this new decision problem is also a member of PSPACE
because the model checking problem in SDEL is also in
PSPACE. We suspect that this it is also PSPACE-hard since
for instance finding strategies for Hex is PSPACE-hard and
specifying it as a symbolic game arena should be direct [17].

