
THÈSE DE DOCTORAT DE

L’UNIVERSITÉ DE RENNES

ÉCOLE DOCTORALE NO 601
Mathématiques, Télécommunications, Informatique, Signal, Systèmes,
Électronique
Spécialité : Informatique

Par

Théo LOSEKOOT
Automatic Program Verification by Inference of Relational Models

Thèse présentée et soutenue à Rennes, le 2024-12-17
Unité de recherche : IRISA

Rapporteurs avant soutenance :

Naoki KOBAYASHI Professor - The university of Tokyo
Mihaela SIGHIREANU Professeur des universités - ENS Paris-Saclay

Composition du Jury :
Président :
Examinateurs : David BAELDE Professeur des universités - ENS Rennes

Naoki KOBAYASHI Professor - The university of Tokyo
Mihaela SIGHIREANU Professeur des universités - ENS Paris-Saclay
Jean-Marc TALBOT Professeur des universités - Aix Marseille Université

Dir. de thèse : Thomas GENET Professeur des universités - Université de Rennes
Co-dir. de thèse : Thomas JENSEN Directeur de recherche - INRIA Rennes

RÉSUMÉ EN FRANÇAIS

2

ACKNOWLEDGEMENT

3

TABLE OF CONTENTS

1 Introduction 7
1.1 Overview of models formalisms to represent programs 9

1.1.1 Proof using Tree automata . 11
1.1.2 Proof using Convoluted tree automata - first contribution 12
1.1.3 Proof using Shallow Horn Clauses - second contribution 13

1.2 Contribution . 14
1.3 Outline . 15

2 Prerequisites 17
2.1 Term algebra and Herbrand model . 17
2.2 Term manipulation . 19
2.3 First-order clauses . 22
2.4 Tree automata . 23

3 State of the art 27
3.1 Syntactic methods . 27
3.2 Semantic methods . 29

3.2.1 Automatic verification with regular language 30
3.2.2 Automatic verification with relational formalisms 36

4 General approach: from programs and properties to proofs 40
4.1 From SMTLIB to clauses . 41
4.2 Approximation of clauses . 46
4.3 Model search for clauses: a generic Learner/Teacher procedure 51

5 Convoluted tree automata 55
5.1 Convolution with padding . 55

5.1.1 Standard left convolution . 56
5.1.2 Right and complete convolution 60
5.1.3 Generalizing convolutions . 62

4

TABLE OF CONTENTS

5.2 Convolution without padding . 65

6 Learner/Teacher for convoluted automata 71

6.1 Teacher . 71

6.1.1 The InhabitsA procedure . 72

6.1.2 Teacher definition and theorems 82

6.2 Learner . 84

6.3 Assembling the learner and teacher: Sat theorems 90

7 Shallow Horn Clauses (SHoCs) 92

7.1 SHoCs definition . 92

7.2 ϵ-clauses and their elimination . 94

7.3 Closure properties and decision procedures of SHoCs 97

7.4 Expressivity of SHoCs . 103

7.4.1 SHoCs and convoluted automata 104

7.4.2 SHoCs and CS-programs . 106

7.4.3 SHoCs and relational alternating automata 107

8 Learner/Teacher for SHoCs 110

8.1 Teacher . 110

8.2 Learner . 111

9 Implementation and experiments 116

9.1 Implementation . 116

9.1.1 Teacher . 117

9.1.2 Learner . 118

9.2 Benchmarks . 119

9.2.1 Zoom in on some benchmarks . 127

10 Conclusion and perspectives 131

10.1 Conclusion . 131

10.2 Perspectives . 132

Bibliography 135

5

TABLE OF CONTENTS

A Appendix 139
A.1 Omitted proofs for the Teacher . 139
A.2 Undecidability of the teacher procedure and of the emptiness of SHoCs 145

6

CHAPTER 1

INTRODUCTION

Formally proving that a program behaves as expected allows to statically verify all
of its behaviors, to have more confidence in the code, and is expected to be realized
alongside testing. However, the formal verification of programs is a hard problem,
which made it a research subject that can be traced back at least to the 1980s and that
have been gaining popularity in the recent years. The work compiled in this thesis
progresses in this direction of proving programs. More precisely, we focus on automat-
ically exhibiting simpler representations of programs to carry out the proof.

Types of properties Many types of properties can be considered, depending on the
setting in which we find ourselves. For example, we may want to assert temporal
properties, such as that a snack vending machine never gets stuck in the checkout
process, or that sending the command to activate a train’s brakes actually activates
them quickly. In the context of a communication protocol, we may want to prove that
messages exchanged between two entities cannot be read or altered by a third entity.
Alternatively, we may want to prove that a certain program building block functionally
behaves as planned, such as verifying that a given implementation of a sort function is
indeed able to sort its input data. We focus on this last type of verification, where the
function performed by the program matters but not its execution time, nor memory,
nor other meta-properties.

Proof assistants and automatic proving Given a program, an expert can write a pen-
and-paper proof that it works as expected, i.e. that it satisfies some desired properties.
However, pen-and-paper proofs being hard to trust and update, proofs assistants (or
interactive theorem provers) have started to be used for such a purpose. In this regard,
a formal description of the programming language must be provided to the proof as-
sistant, together with the program and properties we want to verify on it. This process
of formally proving a program is very tedious, as every detail must be laid out. For

7

Introduction

example, the micro-kernel seL4 1 has been formally proved [25] using Isabelle/HOL,
which took around 11 person*years. Fortunately, proof assistants provide some au-
tomation, thus allowing to prove lemmas without human assistance. However, auto-
matically proving intricate properties on a large project is too complicated for current
techniques, but specialized techniques allow to focus on certain subsets of properties
on which they can be efficient. These techniques can be implemented as Satisfiability
Modulo Theory (SMT) solvers, which answers to whether a set of formulas is satisfi-
able or not in first-order logic with a given theory. Among the common theories can
be found the theory of integers, allowing to reason about programs manipulating inte-
gers, or the theory of Algebraic Data Types (ADT), which we focus on in this thesis.

Automatically proving a property on an tree-manipulating functional program Au-
tomatically proving a property about the input-output behaviour of ADT-manipulating
(or tree-manipulating) functional programs is an active research subject since the 1980s,
with for example the work of Jones [21]. The popularity of this subject has increased
over the recent years, and an overview of some of these more recent works can be
found in Chapter 3.

Since tree-manipulating programs are syntactically defined, a tempting approach to
prove properties on them is to transform a program into axioms and then use standard
syntactic proof techniques from formal logic. In these approaches, one difficulty is to
adapt a proof system and proof search to be efficient for this purpose and guide the
search to find relevant intermediate lemmas. Another difficulty is to proficiently make
use of the (often) inductive nature of programs and allow the proof system to generate
inductive proofs. Unno et al. proposed such a proof system [35], which is discussed
in Section 3.1, and Tsukada et al. [34] wrote a clear and comprehensive overview of
model-checking as syntactic proof searching.

One particular technique is to represent (an approximation of) the program in a weaker
formalism, i.e. a formalism that is less expressive than programming languages but
that has easier decision and closure properties, and then check the properties on this
approximated representation. This idea can also be used to compute the set of config-
urations that the program might reach (the accessible configurations) and then check
that its intersection with bad configurations (representing the negation of properties) is
empty. This technique is declined depending on the formalism used to represent the set

1. https://github.com/seL4/seL4

8

Introduction

of accessible terms, which can be found in the form of grammars in the work of Jones
et al. [21, 22], tree automata in the work of Genet et al. [14, 15], or under more generic
form in the work of Tsukada et al. [34]. Most of this line of work computes the accessi-
ble terms without worrying about intermediate lemmas nor about the relation between
inputs and outputs. This allows to use simple formalisms (such as regular languages),
but limits the precision and therefore also the properties that can be proved. Using reg-
ular languages only allows to prove properties that do not need a precise input/output
relation, which we could call non-relational properties. For example, the property stat-
ing that a non-empty list has a positive length, len (x :: l) > 0, is non-relational and
can be proven with these methods. On the other hand, the property stating that a list
to which an element is added increases its length, len (x :: l) > len l, is relational since
the variable l is used twice. This relational property requires a more precise modeling
of len.

This thesis This thesis focuses on techniques that abstract and simplify the program
to prove properties on it, that we call semantic techniques in Chapter 3. In particular,
we focus on the exhibition of a simpler representation of the program (a model) allow-
ing to directly check the desired properties. A program model is any representation of
the input/output relation of the program. We are particularly interested in formalisms
that are more expressive than regular languages, in order to be able to prove rela-
tional properties, which is also the direction taken by recently published works [18,
33]. The formalisms to represent such models are a pivotal point in this work, which is
reflected by their importance in this thesis ; convoluted tree automata are reworked in
Chapter 5 and Shallow Horn Clauses are presented in Chapter 7. Here is an overview
of some properties that can or cannot be proved depending on the expressivity of the
formalisms for the models. This overview covers three formalisms: tree automata, con-
voluted tree automata, and Shallow Horn Clauses (SHoCs).

1.1 Overview of models formalisms to represent programs

Let nat ::= z | s(nat) and natTree ::= leaf | node(natTree, nat, natTree) be the ADTs
of natural numbers and binary trees of nats. Horn clauses are a widespread formal-
ism to represent programs and properties [5]. In this clausal formalism, we represent
boolean n-ary functions as n-ary relations and non-boolean n-ary functions as n+ 1-ary

9

Introduction

relations.

For example, the height function that could be written as let height T = match T with

| leaf -> z | node(l, _, r)-> s (max (height l)(height r)) in OCaml-like syntax
is encoded as a binary relation Height. That is, first-order clauses are defined in order
to denote a single Herbrand model H in which Height denotes the height relation
{(lea f , z), (node(lea f , z, lea f), s(z)), . . .}.

The following (Horn) clauses uniquely define the predicates Leq (less than or equal),
IsEmpty (is a tree empty), All0 (is a tree full of zeros), No0 (is a tree free of zeros),
Height (the height of a binary tree), and HeightRB (the height of the rightmost branch
of a binary tree). The precise definitions using clauses is not necessary for understand-
ing this section and is intended as reference only. All variables are written in uppercase
and are implicitly universally quantified.

Leq(z, z)
Leq(z, s(X))

⊥ ⇐ Leq(s(X), z)
Leq(s(X), s(Y)) ⇐ Leq(X, Y)
Leq(X, Y) ⇐ Leq(s(X), s(Y))

IsEmpty(leaf)
⊥ ⇐ IsEmpty(node(T1, E, T2))

All0(leaf)
⊥ ⇐ All0(node(T1, s(E), T2))

All0(node(T1, z, T2)) ⇐ All0(T1) ∧ All0(T2)

All0(T1) ⇐ All0(node(T1, z, T2))

All0(T2) ⇐ All0(node(T1, z, T2))

No0(leaf)
⊥ ⇐ No0(node(T1, z, T2))

No0(node(T1, s(E), T2)) ⇐ No0(T1) ∧ No0(T2)

No0(T1) ⇐ No0(node(T1, s(E), T2))

No0(T2) ⇐ No0(node(T1, s(E), T2))

Height(leaf , z)
Height(node(T1, E, T2), s(N1)) ⇐ Height(T1, N1) ∧ Height(T2, N2) ∧ Leq(N2, N1)

Height(node(T1, E, T2), s(N2)) ⇐ Height(T1, N1) ∧ Height(T2, N2) ∧ Leq(N1, N2)

N = M ⇐ Height(T, N) ∧ Height(T, M)

HeightRB(leaf , z)
HeightRB(node(T1, E, T2), s(N)) ⇐ HeightRB(T2, N)

N = M ⇐ HeightRB(T, N) ∧ HeightRB(T, M)

Let P denote this set of clauses that defines the program. Note that, because we rep-
resent non-boolean n-ary functions by n + 1-ary relations, we add a last clause to
their definition that ensures that the relation is functional. We call these clauses the
functionality clauses. For example, the functionality clause of the Height definition is
N = M ⇐ Height(T, N) ∧ Height(T, M). Without this functionality clause, a Her-

10

Introduction

brand model where Height(t, n) is true for all trees t and all natural numbers n is a
correct model for the three first clauses of Height. For a terminating and determinis-
tic function, the added functionality clause ensures, jointly with the others, that P can
only be satisfied by a single Herbrand model H representing this function. To prove a
property φ on P we have to prove P |= φ. Since there is only one model H of P, this
reduces to checking that H |= φ. We now define three properties to prove on P:

φ1 =
de f IsEmpty(T) ⇐ All0(T) ∧ No0(T)

φ2 =
de f Leq(N, M) ⇐ HeightRB(T2, N) ∧ HeightRB(node(T1, E, T2), M)

φ3 =
de f Leq(N, M) ⇐ HeightRB(T, N) ∧ Height(T, M)

Property φ1 can be proven by representing H with a tree automaton. Property φ2 can-
not be proven with tree automata but can be proven using convoluted tree automata.
Finally, property φ3 cannot be proven using convoluted tree automata but can be with
SHoCs, as the Height relation requires a more expressive recursion scheme.

1.1.1 Proof using Tree automata

First, we focus on proving that H |= φ1. Recall that the Herbrand model H is the
set of atoms satisfying P. Let HIsEmpty = {IsEmpty(t) | IsEmpty(t) ∈ H}, HAll0 =

{All0(t) | All0(t) ∈ H}, and HNo0 = {No0(t) | No0(t) ∈ H} be sets of atoms and
subsets of H. Thus, proving φ1 is equivalent to showing that, for any term t,

(1) if H |= All0(t) ∧ No0(t) then H |= IsEmpty(t), or equivalently

(2) if All0(t) ∈ HAll0 ∧ No0(t) ∈ HNo0 then IsEmpty(t) ∈ HIsEmpty

To prove (2), we need to pick all terms t such that All0(t) belongs to HAll0, No0(t) be-
longs to HNo0 and check that the term IsEmpty(t) (for the same t) belongs to HIsEmpty.
For proving this automatically, we need a finite representation of HAll0, HNo0, and
HIsEmpty. Those three sets are regular, meaning they can be represented by a tree au-
tomaton. These automata can be can be automatically inferred [30, 15, 19, 27], which
is also done in the Example 4.14. Tree automata rewrite terms to states. If a term t
rewrites to a state q then it is said to be recognized in q. Here is a possible tree automa-
ton recognizing terms t such that IsEmpty(t) belong to HIsEmpty: leaf → qIsEmpty. This
automaton only recognizes the empty tree leaf . We can do the same for No0 with the
following tree automaton:

11

Introduction

leaf → qNo0 z → q0 s(qs) → qs

node(qNo0, qs, qNo0) → qNo0 s(q0) → qs

This automaton recognizes z in q0 and recognizes all natural numbers greater than 0 in
qs, e.g., s(z) → s(q0) → qs. It also recognizes all trees of natural numbers greater than
0 in state qNo0. Thus, the language recognized by qNo0 is the set of terms t such that
No0(t) belongs to HNo0. Finally, we can do the same for All0 with the following tree
automaton where state qAll0 recognizes terms t such that All0(t) belong to HAll0:

leaf → qAll0 z → q0

node(qAll0, q0, qAll0) → qAll0

Thus, to prove (2) it is enough to prove that all terms recognized by both qAll0 and qNo0

are also recognized by qIsEmpty, i.e., prove that the intersection between the languages
of qAll0 and qNo0 is included in the language denoted by qIsEmpty, which is decidable on
tree automata.

1.1.2 Proof using Convoluted tree automata - first contribution

Models that can be expressed using regular languages with tree automata have lim-
itations. To prove the property φ2 the model needs to preserve the relation that exists
between the rightmost branch of node(T1, E, T2) and its height M. Verifying φ2 can-
not follow the previous approach. In this thesis, precisely in Chapters 5 and 6, we use
an extension of tree automata with convolutions [7] to recognize regular languages of
tuples to prove such properties. A convolution transforms a n-tuple of terms into a
term built on n-tuples of symbols. To recognize the binary relation HeightRB, a con-
voluted tree automaton recognizes the overlaying of terms t1 and t2 for all (t1, t2) be-
longing to the relation (i.e. such that HeightRB(t1, t2) ∈ H). For instance, to overlay
t1 = node(node(leaf , z, leaf), z, leaf) and t2 = s(z), one needs to define a new symbol〈
node, s

〉
for the convolution of the top symbols of the two terms and then overlay

subterms of t1 and t2. Since node and s have a different numbers of children, a direct
overlaying is impossible. Convoluted tree automata solve this by extending the arity
of symbols so that they are all the same, replacing non-existent subterms by a padding
symbol □. However, when using such a representation, overlaying t1 and t2 leads to
many possible trees representing t2. As a result, convoluted tree automata are param-
eterized by a fixed overlaying strategy, e.g., the left (resp. right) convolution strategy
overlays the leftmost (resp. rightmost) branches of the two terms together.

12

Introduction

node

node

leaf z leaf

z leaf

(t1) s

z

□ □ □

□ □

(t2 left convolution) s

□

□ □ □

□ z

(t2 right convolution)

〈
node, s

〉

〈
node, z

〉

〈
leaf ,□

〉 〈
z,□

〉 〈
leaf ,□

〉

〈
z,□

〉 〈
leaf ,□

〉

left convolution(t1, t2)=
〈
node, s

〉

〈
node,□

〉

〈
leaf ,□

〉 〈
z,□

〉 〈
leaf ,□

〉

〈
z,□

〉 〈
leaf , z

〉

right convolution(t1, t2)=

Since the HeightRB relation relates the height of the rightmost branch of the tree with
the natural number, the right convolution strategy has to be used. This leads to the
following convoluted tree automaton for HeightRB:
〈
node, s

〉
(qt, qnat, qhRB) → qhRB

〈
node,□

〉
(qt, qnat, qt) → qt

〈
z,□

〉
→ qnat〈

leaf , z
〉
→ qhRB

〈
leaf ,□

〉
→ qt

〈
s,□

〉
(qnat) → qnat

In particular, this automaton recognizes the right convolution of t1 and t2, that is〈
node, s

〉
(
〈
node,□

〉
(
〈
leaf ,□

〉
,
〈
z,□

〉
,
〈
leaf ,□

〉
),
〈
z,□

〉
,
〈
leaf , z

〉
) (depicted above), in the

state qhRB. Similarly, it is possible to build a convoluted automaton recognizing the Leq
relation, which has the following transitions:

〈
z, z

〉
→ qLeq,

〈
□, z

〉
→ qLeq,

〈
□, s

〉
(qLeq) →

qLeq,
〈
z, s

〉
(qLeq) → qLeq,

〈
s, s

〉
(qLeq) → qLeq. Then, using these two automata, it is pos-

sible to prove φ2: we have to prove that for all t1, t2, e, n, m such that (node(t1, e, t2), m)

and (t2, n) belong to the language recognized by qhRB, then the pair (n, m) is recog-
nized by qLeq. This can easily be proven using standard algorithms on tree automata.
Convoluted tree automata successfully model relations for which it is enough to re-
late a single fixed branch of a term (e.g. leftmost or rightmost branch) with another
fixed branch in another term. Note that for another function, say HeightLB computing
the height of the leftmost branch of a binary tree, we would need to choose a different
strategy for convolution than the right convolution.

1.1.3 Proof using Shallow Horn Clauses - second contribution

Using the fixed-branch restriction enables efficient verification of many list process-
ing programs [29], but it prevents convolution from modelling relations that depend
on unpredictable choice of branches, such as the relation Height between a binary tree

13

Introduction

and its height. E.g., it is impossible to have a representation for H (the model of P) suffi-
ciently precise for proving H |= φ3 when using convoluted tree automata. To overcome
this limitation, we define in this thesis a restriction of Horn clauses called Shallow Horn
Clauses (SHoCs) to represent such models. In a set of SHoCs, the predicate symbols re-
place states of tree automata and the language recognized by a predicate R is the set
of tuples of terms (t1, . . . , tn) such that R(t1, . . . , tn) belongs to the smallest Herbrand
model of the SHoCs (equivalently to the least fixpoint of the SHoCs). For instance, the
SHoCs recognizing the HeightRB relation (and equivalent to the previous convoluted
automaton) consists of the following two clauses:

HeightRB(leaf , z) HeightRB(node(T1, E, T2), s(N)) ⇐ HeightRB(T2, N).

Restricting Horn clauses to SHoCs yields decidability of boolean operations like in-
tersection, union, and complement, some of which are necessary for our verification.
Besides, since SHoCs do not rely on a fixed convolution strategy they can precisely
model the height function and prove property φ3. SHoCs are slightly more expressive
than convoluted automata, but more importantly they are less rigid and easier to ma-
nipulate.

1.2 Contribution

This thesis builds upon the preliminary results [18] obtained by Timothée Haude-
bourg during his stay in Naoki Kobayashi’s group in The University of Tokyo. The
formalism for representing the input-output relations of the terms is a central point
of our work, as it conditions both the expressiveness of the relations represented (and
therefore directly which properties can theoretically be proven). Moreover, it also influ-
ences the way in which a model must be learned and the way in which the clauses can
be verified in these models. We use a generic Learner/Teacher framework for proving
the properties, which is described in more details in Chapter 4.
Our contributions are:

— Re-formalizing and simplifying the convoluted tree automata formalism ;

— Formalizing the Teacher and the Learner for convoluted tree automata ;

— Improving the Teacher, therefore increasing its efficiency on both positive and
negative instances ;

— Proving correctness and relative completeness of this approach ;

14

Introduction

— Formalizing a novel formalism for representing tree tuple languages called Shal-
low Horn Clauses and proving some of its properties ;

— Defining the Learner/Teacher procedure using SHoCs instead of convoluted tree
automata and proving the same correctness and relative completeness proper-
ties ;

— Defining a formal framework allowing to safely approximate clauses ;

— Implementing the Learner/Teacher for both convoluted tree automata and SHoCs,
together with their improvements ;

— Benchmarking these approaches.

1.3 Outline

Chapter 2 goes over necessary prerequisites to understand the rest of this thesis.
These prerequisites include typed alphabets, terms, patterns, algebraic datatypes, sub-
stitutions, unification, and tree automata.
Chapter 3 presents some of the state-of-the-art methods for proving properties on func-
tional programs, especially those either using similar techniques as those defined in
this thesis or those proving similar properties.
Chapter 4 presents the overview of the verification technique, going from the pro-
gram and properties to the proof that they are satisfied or not. To this end are defined
the translation from program to clauses, the clauses approximation procedure, and
the generic (w.r.t models) Learner/Teacher procedure for checking satisfiability of the
clauses, which reflects whether the properties are true.
Chapter 5 present a re-formalization of convoluted tree automata that unifies the def-
initions of left, right, complete, and new convolutions. Moreover, a simplification that
allows to remove the padding is presented, which allows more compact automata. The
chapter starts by the standard left-convolution with padding and progresses to more
general convolutions.
Chapter 6 is about the Learner/Teacher procedure using these convoluted tree au-
tomata as well as proofs of correction and partial completeness. Improvements of the
Teacher are also presented.
Chapter 7 presents Shallow Horn Clauses, a new formalism for representing relations
of terms based on a syntactic restriction of Horn clauses, as a fairly direct extension of

15

Introduction

convoluted automata. Most of their closure properties and decision problems are also
addressed, together with a comparison with existing tree-tuple formalisms.
Chapter 8 is about the Learner/Teacher procedure using shallow Horn clauses. The
Teacher is almost immediate by similarity with the Teacher for convoluted automata,
while the Learner must be completely redefined.
Chapter 9 discusses the implementation of this procedure, some practical enhance-
ments that have been implemented, and benchmarks.
Finally, Chapter 10 concludes and proposes further work.

16

CHAPTER 2

PREREQUISITES

This chapter introduces the basic definitions needed to understand this thesis, in-
cluding that of alphabet, term, pattern, algebraic datatype, substitution, unification,
and tree automaton. We use a simply-typed, also called multi-sorted, version of these
concepts. We start by defining the term algebra and Herbrand model in Section 2.1,
then functions on terms in Section 2.2, then first-order clauses in Section 2.3, and fi-
nally tree automata in Section 2.4.

2.1 Term algebra and Herbrand model

Terms are written using symbols, or functions, from an alphabet.

Definition 2.1 (Typed alphabet). A typed alphabet (Σ, τ, Γ) is a set of symbols Σ, a
set of types Γ, and a typing function τ which assigns to each symbol f a type τ(f) =

(τ1, . . . , τn) → τ0 with ∀i ∈ [0 . . . n], τi ∈ Γ and n ∈ N varying for each symbol f .
When n = 0, the symbol is a constant and does not take input. For f ∈ Σ and τ(f) =
(τ1, . . . , τn) → τ0, we say that f is of arity n, written | f | = n, and that τ0 is the output
type of f , written τout(f) = τ0. When clear from context, we identify the tuple (Σ, τ, Γ)
with Σ.

Definition 2.2 (Term). A (typed) term t over an alphabet Σ is the data of a symbol
f ∈ Σ, called the root symbol of t and written Root(t), together with a list t1, . . . , t| f | of
| f | terms, called children of t, such that their type is compatible, i.e. such that τ(f) =(
τout(Root(t1)), . . . , τout(Root(t| f |))

)
→ τout(f). Such a term t is written f (t1, . . . , t| f |).

We overload τ, the typing function, with τ(t) = τout(Root(t)). The set of terms over an
alphabet Σ is written T (Σ), and the set of terms of a certain type τ0 is written Tτ0(Σ) =
{t | t ∈ T (Σ) ∧ τ(t) = τ0}.

17

Prerequisites

Definition 2.3 (Pattern). A pattern p over an alphabet Σ and a set of (typed) variables X
is a term over the alphabet Σ∪X , with each variable X considered as a 0-ary symbol of
type τ(X). The set of patterns over the alphabet Σ and variables X is written T (Σ,X).

Set of terms, initial algebra, Herbrand structure The initial algebra of a typed alpha-
bet is the set of terms that can be defined on it. This initial algebra, associating the ap-
plication of a function f on (type-compatible) terms t1, . . . , tn to the term f (t1, . . . , tn),
is also called a Herbrand structure.

Example 2.4. Let Σ be a typed alphabet defining natural numbers and lists of natural
numbers as follows: Σ = {z, s, nil, cons} with τ(z) = nat, τ(s) = (nat) → nat, τ(nil) =
natlist, and τ(cons) = (nat, natlist) → natlist.
The set of terms T (Σ) contains, among others, z and cons(s(z), nil) but not s(nil) be-
cause of typing constraints. With X ∈ X a variable of type nat, s(X) ∈ T (Σ,X).

An algebraic datatype is a way of describing a typed alphabet that is usually used in
functional programming.

Definition 2.5 (Algebraic datatype). An algebraic data type is a (possibly recursive)
sum type of product types. In a definition

τ0 = (τ1
1 × . . . × τ1

n1
) + . . . + (τk

1 × . . . × τk
nk
)

each product (τi
1 × . . . × τi

ni
) of the disjoint sum is usually given a symbol fi whose

type is τ(fi) = τi
1 × . . . × τi

ni
→ τ0.

Example 2.6 (nat and natlist). The natural numbers and natural number lists can be
defined as algebraic datatypes by nat = () + (nat) and natlist = () + (nat × natlist).
In programming languages, these are usually written in a grammar-like syntax: nat =
z | s(nat) and natlist = nil | cons(nat, natlist), which defines the typed alphabet of
Example 2.4.

In this thesis, every function of the program will be represented as a relation on the
domain of terms, i.e. as a function returning a boolean. To this end, we introduce the
notion of atom and Herbrand model.

Definition 2.7 (Relation symbol and atom). A relation symbol is a function symbol R
with τ(R) = τ1 × . . . × τn → bool, with bool a special datatype. This relation symbol
will denote a subset of τ1 × . . . × τn.

18

Prerequisites

An atom is a pattern of type bool, i.e. a relation symbol applied to its arguments.

Definition 2.8 (Herbrand model). A Herbrand model H (or Herbrand interpretation
or Herbrand base) over an alphabet Σ is a set A of ground atoms over Σ. This set A
represents the atoms that are true.
Equivalently, a Herbrand model (over an alphabet Σ) is a first-order model H that
extends the Herbrand structure of Σ with the interpretation of the relations.

In this thesis, the only first-order models we are interested in are the Herbrand mod-
els. In first-order logic, this corresponds to using the theory of recursive algebraic
datatypes.

Definition 2.9 (Theory of recursive algebraic datatypes). The theory of algebraic datatypes
restricts the possible first-order models to those whose domain and function interpre-
tation are a Herbrand structure, i.e., to Herbrand models. This allows to use first-order
function symbols as constructors of algebraic datatypes. See [2] for a detailed explana-
tion.

Note that, to define a Herbrand model H, it is sufficient to define the interpretation of
every relation, as the Herbrand structure is fixed. We often explicitly define functions
using the 7→ arrow, with K 7→ V meaning that K is mapped to V.

Example 2.10 (Herbrand model). Following Example 2.6, the Herbrand model H for
the strictly inferior relation Less : Nat × Nat → bool and the length relation Len :
NatList × Nat → bool is given by the following informal interpretation of the two
relations:

Less 7→ {(n1, n2) | τ(n1) = Nat ∧ τ(n2) = Nat ∧ n1 is inferior to n2}
Len 7→ {(l, n) | τ(l) = NatList ∧ τ(n) = Nat ∧ l is of length n}.

2.2 Term manipulation

This section introduces some classic functions and problems on patterns. First, we
define a function that fetches the set of variables of an object.

Definition 2.11 (Variables). A function Vars(·) fetches the set of variables in a pattern
and is extended to tuples, sets, etc.

19

Prerequisites

With variables come substitutions, which are a way to replace variables in patterns by
a pattern.

Definition 2.12 (Substitution). A substitution σ is a finite map between variables and
patterns. The application of a substitution σ to a variable X, written σ(X), is defined
as p if there exists a binding (X, p) ∈ σ and X otherwise. Substitutions are typed, so
(X, p) ∈ σ ⇒ τ(X) = τout(p). The application of a substitution is generalized to pat-
terns by σ(f (p1, . . . , pn)) = f (σ(p1), . . . , σ(pn)). More generally, a substitution can be
applied to any structure containing variables. The composition of substitution, which
first applies σ1 and then σ2, is written σ1; σ2 or σ2 ◦ σ1. The domain of a substitution is
the set of variables for which a binding is defined and is written dom(σ).

Definition 2.13 (Position). A position π is a word over N used to point at a subterm.
We write the concatenation operator · and the empty word ϵ.
The set of positions of a pattern f (p1, . . . , pn) ∈ T (Σ,X) is inductively defined as:

Pos(f (p1, . . . , pn)) = {ϵ} ∪
⋃

i∈[1...n]

{i · π | π ∈ Pos(pi)}

The subterm of a pattern p at position π is defined iff π ∈ Pos(p). In that case, it is
inductively defined as:

p[ϵ] = p and f (p1, . . . , pn)[i · π] = pi[π]

The length of a position π, defined as the length of the string it is represented by, is
written |π|.

Definition 2.14 (Tuple of elements). A tuple of elements (e1, . . . , en) is also written #»e
and #»e [i] means ei, in accordance with Definition 2.13. For example,

#»t represents a
tuple of terms.

Definition 2.15 (Typed complement). Given a set E of terms that are all of some type
τE, its typed complement w.r.t τE is the set {t | τ(t) = τE ∧ t /∈ E} and is simply written
E because τE should be clear from context.

Definition 2.16 (Height). The height ht(·) of a pattern is inductively defined as

ht(f (p1, . . . , pn)) = 1 + max
i∈[1...n]

ht(pi)

20

Prerequisites

The height definition immediately extends to atoms R(#»p) as the maximum of the
height of patterns of #»p , and to sets and tuples as the maximum of each individual
height of their component.
Syntactic unification consists in making patterns equal by applying a substitution.

Definition 2.17 (Syntactic unification). A (syntactic) unification problem is a set E =

{p1
?
= p′1, . . . , pn

?
= p′n} of equalities between patterns. A solution to this unification

problem is a substitution σ such that for all p ?
= p′ in E, σ(p) = σ(p′). Solutions can be

pre-ordered by precision, with σ1 ≤ σ2 ⇐⇒ ∃σ. σ1; σ = σ2. A Most General Unifier
(MGU) is a unifier σ such that, for any other unifier σ′, we have σ ≤ σ′.

With syntactic unification, either the patterns are not unifiable, in which case there is
no solution, or there exists a unique MGU modulo variable renaming.

Example 2.18 (Height, complement, substitution, unification). Let p1 = cons(s(X), L),
p2 = L′, and p3 = s(z) be three patterns. Then,

— Vars(p1) = {X, L}.

— With σ = {(X, s(z)), (L′, nil)}, we have σ(p1) = cons(s(s(z)), L) and σ(p2) = nil.

— With π = 1 · 1, we have p1[π] = X and p2[π] is undefined.

— ht(p1) = 3, ht(p2) = 1, and ht(p3) = 2.

— With E = {p1
?
= p2, X ?

= p3}, we have MGU(E) = σ with σ = {(L′, cons(s(s(z)), L)),
(X, s(z))}. Then, applying σ to p1 yields σ(p1) = cons(s(s(z)), L). The set E =

{p1
?
= L} is non-unifiable using the finite terms we consider.

— Following Example 2.10, the typed complement of L(H, Less,) is L(H, Less) =

{(n1, n2) | n1 ≥ n2}.

A popular formalism to represent programs, or more generally term-transforming func-
tions, is that of Term Rewriting System (or TRS)

Definition 2.19 (Term Rewriting System). A term rewriting system D is a set of rewrite
rules. A rewrite rule is a pair of patterns, commonly written as l → r, to indicate that
the left-hand side l can be replaced by the right-hand side r. A rule l → r can be
applied to a pattern p if the left term l matches some subterm of p, that is, if there is
some substitution σ and a position π such that p[π] = σ(l). The pattern p′ resulting
from this rule application is then a modified version of p whose subterm at position π

is replaced by σ(r). p is then said to be rewritten in one step to p′ by the system D and
is written p →D p′.

21

Prerequisites

Example 2.20 (doule program as TRS). Let Dd be the TRS composed from the following
two rewriting rules:

double(z) → z double(s(X)) → s(s(double(X))).

This TRS defines the double function in that every term double(n) can be rewritten, in
n+ 1 steps, into 2∗n. For example, we have double(s(s(z))) →Dd s(s(double(s(z)))) →Dd

s(s(s(s(double(z))))) →Dd s(s(s(s(z)))).

2.3 First-order clauses

This section introduces the notion of clauses, Horn clauses, and of minimal Her-
brand model.

Definition 2.21 (First-order clause). A clause is a first-order formula of the form

∀ #»

X, R1(
#»p1) ∨ . . . ∨ Rk(

#»pk) ∨ ¬Rk+1(
»pk+1) ∨ . . . ∨ ¬Rn(

»pn)

with
#»

X a tuple of typed variables, 1 ≤ k ≤ n, and for all i in [1 . . . n], Ri is a relation
symbol, #»pi is a tuple of patterns, and Ri(

#»pi) is an atom whose variables are all included
in

#»

X.

Clauses are also written R1(
#»p1) ∨ . . . ∨ Rk(

#»pk) ⇐ Rk+1(
»pk+1) ∧ . . . ∧ Rn(

»pn), where
universal quantification is implicit, H = R1(

#»p1) ∨ . . . ∨ Rk(
#»pk) is called the head and

B = Rk+1(
»pk+1) ∧ . . . ∧ Rn(

»pn) the body. The head and body of a clause can be manip-
ulated as sets of their atoms, since order usually does not matter and duplicates are
useless.

Definition 2.22 (Horn clauses and Strict Horn clauses). A clause H ⇐ B is called a
Horn clause if its head contains at most one atom, i.e. |H| ≤ 1. A Horn clause is called
strict if |H| = 1 and its head does not contain the equality predicate.

Proposition 2.23 (Minimal Herbrand model). Let C be a set of strict Horn clauses. There
exists a unique minimal Herbrand model H(C) of C [11], which corresponds to the inductive
definition (least fixed-point) of C.

22

Prerequisites

Example 2.24. Let C be the following set of strict Horn clauses:

{R0(a, b), R1(f (X), g(Y)) ⇐ R0(X, Y), R0(f (X), g(Y)) ⇐ R1(X, Y)}

The minimal Herbrand model H(C) is defined by

H(C) = {R0(f 2n(a), g2n(b)) | n ≥ 0} ∪ {R1(f 2n+1(a), g2n+1(b)) | n ≥ 0}.

The language of R0 is L(R0,H(C)) = {(f 2n(a), g2n(b)) | n ≥ 0}.

We now recall some standard first-order notations.

Definition 2.25 (Notation for some standard first-order concepts). Given a first-order
model M, a formula φ, and an assignment of variables λ, we write (i) M, λ |= φ to
state that formula φ is true under the assignment λ in model M ; (ii) M |= φ to state
that M, λ |= φ is true for any assignment λ ; (iii) Assigns(M, φ) the set of assignments
λ such that M, λ |= φ. A set of formulas Γ is thought as their conjunction, so M, λ |= Γ
means that, for every formula φ ∈ Γ, we have M, λ |= φ.

Note that, in Herbrand models, an assignment is the same thing as a substitution
whose codomain only contains terms (no variable).

2.4 Tree automata

This section introduces the basics of tree automata, which are the tree counterpart
to finite automata on string.

Definition 2.26 (Tree automaton). A (bottom-up) tree automaton A = (Q, ∆) over an
alphabet Σ is given by a finite set of states Q and a set of transitions ∆ of the form
f (q1, . . . , q| f |) → q0, where f ∈ Σ and ∀i ∈ [0 . . . | f |], qi ∈ Q.

Definition 2.27 (Language recognized by an automaton). The set of terms recognized
in a state q of an automaton A is inductively defined as

L(A, q) = { f (t1, . . . , tn) | f (q1, . . . , qn) → q ∈ ∆ ∧
∧

i∈[1...n]

ti ∈ L(A, qi)}.

23

Prerequisites

A language that is recognized by (a state of) a (tree) automaton is said to be a regular
(tree) language. A reader who is familiar with these notions may wonder what hap-
pened to the final states. We prefer to not introduce them, as we often use an automa-
ton to represent multiple relations at once, especially in Chapter 5 with convoluted tree
automata.

Definition 2.28 (Typed tree automaton). A typed tree automaton is a tree automaton
whose states are typed. We write τ(q) for the type of the state q. Transitions have to be
compatible with the types of the symbols, i.e., for any transition f (q1, . . . , qn) → q0 ∈
∆, τ(f) = (τ(q1), . . . , τ(qn)) → τ(q0).

We also use Q and ∆ as accessors, that is, as functions to respectively extract states
Q(A) and transitions ∆(A) from an automaton A. We usually write q for a state, and A
for an automaton. Tree automata do not have a nice graphical representation, contrary
to string automata, so we have to explicitly list their transitions and, optionally, their
states.

Example 2.29 (Automata for all0 and no0). Let Aall0 be an automaton with states
{q0, qall0} and transitions node(qall0, q0, qall0) → qall0 leaf () → qall0 z() → q0.
The language of qall0 in Aall0, written L(Aall0, qall0), is the set of trees whose elements
are all z. The type of q0 is τ(q0) = nat and τ(qall0) = nattree.

A very similar automaton Ano0 can be defined with states {qs, q0, qno0} and transitions

node(qno0, qs, qno0) → qno0 leaf () → qno0 z() → q0 s(q0) → qs s(qs) → qs.
The language of qno0 in Ano0, written L(Ano0, qno0), is the set of trees whose elements
are all different from z.

Example 2.30 (Automaton for has0). Here is an other automaton Ahas0 with four states
{qt, q0, qall0, qnat} and transitions defined as below:

node(qt, q0, qt) → qhas0 node(qt, qnat, qt) → qt z() → qnat

node(qhas0, qnat, qt) → qhas0 leaf () → qt s(qnat) → qnat

node(qt, qnat, qhas0) → qhas0 z() → q0

The language of qhas0 in Ahas0, written L(Ahas0, qhas0), is the set of trees which contain
the element z in some node. We also have L(Ahas0, qnat) = {n | τ(n) = Nat}. Note that,
contrary to those of Example 2.29, this automaton is non-deterministic, meaning that a
term can be recognized by multiple states. For example, leaf is both in L(Ahas0, qt) and
in L(Ahas0, qhas0).

24

Prerequisites

An automaton can have states which serve no purpose, so we usually only focus on
states recognizing at least one term, the accessible ones. Accessible states can easily
be computed. A state that is not accessible is useless and can be deleted from an au-
tomaton, together with any transition that uses it. An automaton whose states are all
accessible is called reduced.

Definition 2.31 (Accessible states). A state q of an automaton A is said to be accessible
if L(q,A) ̸= ∅.

Tree automata can have properties that restrict their shape, namely determinism and
completeness, that makes them easier to use and manipulate in proofs but also usually
bigger.

Definition 2.32 (Semantic determinism/completeness). A reduced automaton is said
semantically deterministic (resp. complete) if, for every term t ∈ T (Σ), there is at most
(resp. least) one state q such that t ∈ L(q,A).

Definition 2.33 (Syntactic determinism/completeness). A reduced automaton is said
syntactically deterministic (resp. complete) if, for every function f and type-compatible
states q1, . . . , q| f |, there is at most (resp. least) one transition f (q1, . . . , q| f |) → q in A.

Proposition 2.34. The semantic and syntactic definitions of determinism are equivalent.

Proposition 2.35. The semantic and syntactic definitions of completeness are equivalent in the
case of a deterministic automaton.

Note that a deterministic and complete tree automaton over Σ can equivalently be seen
as a finite algebra over Σ, and vice versa. The tree automata formalism is extended with
a new kind of transitions: ϵ-transitions. These transitions allow to not use a function
symbol with the transition. They do not augment the expressivity of the formalism but
sometimes allow for a simpler representation.

Definition 2.36 (ϵ-transition). An ϵ-transition is a transition of the form q → q′, with
τ(q) = τ(q′). The inductive definition of the language recognized in a state q of a tree
automaton A with transitions ∆ is then extended to take them into account:

L(A, q) = { f (t1, . . . , tn) | f (q1, . . . , qn) → q ∈ ∆ ∧
∧

i∈[1...n]

ti ∈ L(A, qi)}∪
⋃

q′→q∈∆

L(A, q′).

25

Prerequisites

Note that, because of the inductive nature of this definition, a chain of ϵ-transitions
q1 → . . . → qn in an automaton A does imply L(A, q1) ⊆ L(A, qn).

Definition 2.37 (Representing Herbrand models with automata). A state q of type bool
in an automaton A can be associated to the Herbrand interpretation L(A, q), i.e., every
relation R represents the set of terms { #»t | R(#»t) ∈ L(A, q)}.

Example 2.38. Continuing Example 2.30, let q be a new state of type bool and consider
the following new transitions:

{Has0(qhas0) → q, node(qt, qnat, qt) → qisNode, IsNode(qisNode) → q}.

This new state q in the automaton extended with the three new transitions defines
the Herbrand model where Has0 represents the unary relation of the set of trees that
contain z and IsNode the set of non-empty trees.

Tree automata are closed under complement, union, and intersection. We write A for
the typed complement of the automaton A, i.e. the automaton such that, for any state
q of A, we have L(A, q) = L(A, q) = {t | t ∈ T (Σ) ∧ τ(t) = τ(q) ∧ t /∈ L(A, q)}. We
also write qc to refer to the state q in A.

26

CHAPTER 3

STATE OF THE ART

This chapter presents some of the techniques that are used to automatically prove
properties about programs manipulating algebraic datatypes. We can coarsely split
these techniques into two categories: those which try to syntactically prove that the
properties are a consequence of (a logic representation of) the program by a formal
proof, and those which try to semantically approximate the program by a simpler rep-
resentation, a model, on which the properties can more easily be checked. These two
categories are not based on a formal distinction.

3.1 Syntactic methods

A syntactic method builds a formal proof whose hypothesis are clauses defining
the program and whose conclusion is the property we want to prove. In practice, such
solvers use SMT-solvers to handle theory-specific properties that are required in the
proof, which allows them to more easily prove quite diverse properties. We only ex-
pose the method whose verification objectives are closest to ours.

Automating Induction for Solving Horn Clauses, Unno et al. [35] This work fo-
cuses on solving the satisfiability of Constrained Horn Clauses (Horn clauses over a
specific theory) and is intended, and used, as a backend solver of a tool capable of
reducing the proving of properties to the satisfiability of CHCs, such as RCaml 1. The
verification method deployed is rather distant from ours but can also prove many in-
teresting relational properties over algebraic datatypes. In this work, the satisfiability
of Constrained Horn Clauses over any SMT-supported theory are reduced to the valid-
ity checking of first-order formulas with inductively-defined predicates. They propose
a syntactic proof system that is able to automatically use inductive reasoning on these

1. https://github.com/hiroshi-unno/coar

27

https://github.com/hiroshi-unno/coar

State of the art

predicates by using case disjunction and inductive invariants. A SMT solver is used
to check theory-related constraints that appear as subgoals of some proof steps. This
inductive theorem prover analyses all the relations together and try to infer invariants
using multiple variables if needed.

Here is an example proving that the double function (relating n to n + n) only returns
even numbers. An inductive definition of natural numbers is used for an easier com-
parison with other techniques, but this solver is also capable of handling native inte-
gers.

Example 3.1 (Double function). The (translation into Horn clauses of the) program
consists of the following inductively defined relations, where the output of the function
(boolean or not) is the last argument of the relation, like it is done in [35]:

double1 : double(z, z)
double2 : double(s(X), s(s(R))) ⇐ double(X, R)
even1 : even(z,⊤)

even2 : even(s(z),⊥)

even3 : even(s(s(X)), R) ⇐ even(X, R)

The goal is to prove the property ⊥ ⇐ double(X, R) ∧ even(R,⊥).

For this, the solver adds double(X, R) and even(R,⊥) as hypotheses and tries to prove
⊥. The solver also adds the universally quantified property ⊥ ⇐ double(X′, R′) ∧
even(R′,⊥) as induction hypothesis, which is also the only clause whose head is ⊥.
However, the solver can not immediately apply this induction hypothesis, although
it would prove the goal, because it would not be safe. Their induction principle is
that the induction hypotheses can only be applied to subderivations of the atoms
double(X, R) and even(R,⊥), i.e. to atoms double(X′, R′) and even(R′,⊥) that derive
from double(X, R) and even(R,⊥) using their definition. The proof given by the solver
is the following, with Unfold being the case disjunction on the definition of an atom.

Unfold of double(X, R):

1. case of double1: In this case, we have X = z and R = z.
Unfold of even(z,⊥):

(a) case of even1: Unifying even(z,⊥) with even1 means unifying ⊥ (from the
hypothesis atom even(z,⊥)) with ⊤ (from the atom even(z,⊤) of the defin-
ing rule even1), i.e., ⊥ = ⊤, which gives a proof of ⊥.

28

State of the art

(b) case of even2: Gives z = s(z), which is unsatisfiable in the theory of algebraic
datatypes, so ⊥ is proven.

(c) case of even3: Gives z = s(s(X′)), so ⊥ is proven.

2. case of double2: In this case, we have X = s(X′) and R = s(s(R′)), with double(X′, R′)
as new hypothesis.
Unfold of even(s(s(R′)),⊥):

(a) case of even1: Gives s(s(R′)) = z and ⊥ = ⊤, so ⊥ is proven.

(b) case of even2: Gives s(s(R′)) = s(z), so ⊥ is proven.

(c) case of even3: In this case, we have even(R′,⊥) as new hypothesis. The hy-
pothesis environment therefore contains both atoms double(X′, R′) and even(R′,⊥)

that are subderivations of respectively double(X, R) and even(R,⊥). The in-
duction hypothesis can therefore safely be used and adds ⊥, the goal, as a
new hypothesis.

In the above Example 3.1, the solver used an external SMT-solver for checking (un)satisfiability
of the (algebraic datatype) theory-related constraints such as z = s(z). An evaluation
of this method on a part of our benchmarks can be found in Section 9.2.

3.2 Semantic methods

Semantic methods are trying to infer a simpler representation of the program on
which it is easier to check for the desired properties. One common framework is to
represent the property as a set of bad configurations (a configuration is a program
state) that should not be reachable by the program, or, equivalently if the formalism for
describing this set is closed by complement, a set of good configurations from which
the program should not deviate. However, the exact set of reachable configurations
usually can not be represented in a formalism which allows to simply check for the
emptiness of its intersection with the set of bad configurations. The solver therefore
computes an over-approximation of the reachable configurations for which the safety,
i.e. the emptiness of the intersection with bad configurations, can easily be checked.
When proving properties on functional languages manipulating trees, a configuration
can be represented as a term representing a partial execution of the program and the
program as a term rewriting system (TRS). Any set E of terms which contains the initial
configurations (the main program function applied to any input) and that is closed by

29

State of the art

rewriting, i.e., such that any rewriting of a pattern that is in E is also in E, is an over-
approximation of the reachable configurations.
Usually, the program inputs and set of bad configurations are represented by simple
regular languages, which leads to the following definition of a safety problem:

Definition 3.2 (Safety problem). A safety problem is the data of a tree automaton AI

of input program configurations, a tree automaton AB of bad configurations, and a
suitable program representation P such as a TRS.

The set of configurations that can be reached from an initial configuration using the
program is called the set of reachable configurations. The decision problem associated
with a safety problem is whether the set of reachable configurations intersects the bad
configurations. If the set of reachable configurations do not intersect the bad configu-
rations, i.e., the program is safe, then the safety problem is said to be a positive instance.
Otherwise, it is said to be negative. For example, here is a safety problem stating that
the double function only returns even numbers.

Example 3.3 (Positive safety problem: double returns even numbers). We consider the
program double written as a TRS Dd in Example 2.20. Let I be the regular set of initial
program configurations: I = {double(n) | n ∈ TNat(Σ)}. We want to assert that the
output of the double function is even, so the set of bad configurations is the set of odd
numbers: B = {s2n+1(z) | n ∈ N}.

3.2.1 Automatic verification with regular language

This section focuses on techniques that over-approximate the reachable configura-
tions with regular languages. Using regular languages as an over-approximation for-
malism of reachable configurations can be traced back to the work of Jones et al. [23],
then extended to higher-order [21], and completed by a more recent and efficient con-
struction [22]. These three papers use regular tree grammar (the tree counterpart of regu-
lar string grammar, recognizing the same languages as tree automata) for the represen-
tation of regular languages. Tree automata are also used for the abstraction of regular
languages, but mostly in more recent work [15, 30, 27, 19]. These paper all propose a
correct procedure, but with different efficiency and completeness properties.
The subclass of safety problems that can indeed be solved using only regular abstrac-
tions is called regular safety problems.

30

State of the art

Definition 3.4 (Regular safety problem). A regular safety problem is a safety problem
that either is a negative instance or that is a positive instance for which there exists
a regular over-approximation of the reachable configurations that do not intersect the
bad configurations.

The safety problem of Example 3.3 is regular. Examples 3.5 and 3.6 both solve it by
exhibiting a regular representation of the reachable terms that do not intersect the bad
configurations. These methods are all restricted to solving regular safety problems, so
a method is said to be regular-complete if it can decide any regular safety problem. We
now give an overview of the methods described in [22] and [14], one using regular tree
grammar and the other regular tree automaton.

Flow analysis of lazy higher-order functional programs, Jones et al. [22] To exem-
plify the use of regular tree grammar, we focus on [22]. The program is modeled as a
(left-linear higher-order) TRS, and its input is modeled by a regular tree grammar. This
paper proposes an algorithm that, given a TRS and a grammar describing the pro-
gram’s inputs, computes an over-approximation of the program’s output. The main
idea is to iteratively complete the input grammar G0 by adding new symbols and tran-
sitions until reaching a fixed-point, meaning that the set of terms represented by the
grammar is closed by rewriting. We write Gi the grammar at step i, and G∗ the fixed
point.

This method always terminates and thus G∗ is a (finite) regular grammar that al-
ways over-approximates the output, hence the method’s correctness. However, it is
not regular-complete. That is, there exists a TRS, input grammar, and regular over-
approximation of the reachable terms that would allow to conclude that the program
is safe, but the procedure only produces approximations that are too coarse to prove
it. There are two main reasons for this completeness failure. The first one is that the
over-approximation process does not take the property (bad configurations) into ac-
count, which could be used to avoid over-approximating something that it should not.
The second reason is that there is no way of parameterizing the over-approximation’s
precision, so if the approximation is too coarse, there is no way to improve it. We now
give an example of this procedure successfully proving the (regular) safety problem of
Example 3.3.

Example 3.5. This example solves the safety problem from Example 3.3.

31

State of the art

The set of bad configurations, odd numbers, can be described by the symbol RB in the
following regular tree grammar GB, which should be read as “RB can be rewritten to
either s(z) or to s(s(RB))":

GB = RB → s(z) | s(s(RB))

The set of initial configurations I can be described by the symbol R0 in the following
regular tree grammar G0:

G0 =
R0 → double(N)

N → z | s(N)

Then, the grammar G0 is successively extended using the rewriting system Dd that rep-
resents the program. Because R0 can derive double(z) but not z, which is one rewriting
step away from double(z) in Dd, a symbol R1 which derives to z is added to the the
derivatives of R0. G0 can also derive terms of the form double(s(X)) which rewrites to
s(s(double(X))), for which R2 is added in G1. G1 is then completed into G2 in the same
way.

G1 =

R0 → double(N) | R1 | R2

N → z | s(N)

R1 → z
R2 → s(s(double(X)))

X → N

G2 =

R0 → double(N) | R1 | R2

N → z | s(N)

R1 → z
R2 → s(s(double(X))) | s(s(R1)) | s(s(R2))

X → N

A fixed point is reached with G2, as G3 = G2.

Then computing the intersection of the languages denoted by G2 and GB, we find that
L(G2) ∩ L(GB) = ∅. Indeed, every natural number generated by the grammar G∗ is
even, and the property is thus proved. The reachable terms are exactly represented in
this example, which is not always the case when using this method.

This idea of extending the current representation of the reachable configurations by
one step of the program can be found again in the following paper, which we present
to illustrate the use of tree automata.

32

State of the art

Termination criteria for tree automata completion, Genet et al. [14] In this paper,
the author presents the Tree Automaton Completion algorithm (TAC for short), and
termination criteria. The TAC algorithm takes as input a tree automaton A0 represent-
ing the program’s inputs in a state q f and a TRS D, and computes the set of reachable
terms.

This algorithm is very similar in essence to that of completing a grammar, but differs
in details, particularly in variable names handling, which results in differences about
how approximations are done. After taking A0 and D as input, the core of TAC consists
in iteratively computing A1, A2, . . . to follow rewriting steps of D until a fixed point,
named A∗, is reached.

As previously, we have that at each step i, Ai satisfies some properties: first, L(Ai, q f) ⊆
L(Ai+1, q f) ; second, if t ∈ L(Ai, q f) and t rewrites to t′ using one step of D, then
t′ ∈ L(Ai+1, q f). We therefore have, if a fixed-point A∗ is reached, that it contains at
least all the reachable configurations.

Example 3.6. This example also solves of the safety problem from Example 3.3.

The set of bad configurations can be represented in the state qo of the following regular
tree automaton AB:

z() → qe s(qe) → qo s(qo) → qe

The set of initial configurations I can be represented in the state q f of the following
regular tree automaton A0:

z() → qn s(qn) → qn double(qn) → q f

This automaton A0 is, in the same way as G0 from Example 3.5, not closed by rewriting
by D. Indeed, double(z) is recognized but z is not, and the same is true for double(s(z))
and s(s(double(z))). These are called critical pairs, and the goal of the completion is to
eliminate them by allowing each term t′ that has been rewritten from t to be recognized
in the same state as t. This process is depicted in the following figure:

33

State of the art

double(z) z

q f

D

A0 impossible in A0

double(z) z

q f qz

D

A0 A1

A1

The completion of these two critical pairs yields the following transitions to be added
to A0: {z → qz, qz → q f , s(qo) → qe, s(q f) → qo, qe → q f }.

A1 has no critical pair, so A∗ = A1. The intersection between the languages of A∗ and
AB is empty, which allows to prove the property stating that double only returns even
numbers.

This short example does not reflect the limitations of the TAC algorithm. One partic-
ularity of this algorithm is that the resulting automaton A∗, if any, recognizes exactly
the reachable terms D∗(I) 2. This is an interesting particularity for some usage, but
not for abstraction, as the language D∗(I) may not be regular and therefore the algo-
rithm would diverge. An instance making the TAC procedure loop can be found in the
chapter 3 of [18].

To remedy this problem, the authors proposed to use equations over patterns to merge
terms into equivalence classes. For example, X = s(s(s(X))) separates natural num-
bers into the three classes of natural numbers modulo 3. Using equations makes the
abstraction coarser, and therefore allows the algorithm to terminate on instances on
which it did not without equations. However, contrary to the method proposed in
[22], the abstraction’s precision can be controlled by which equations are used. Given
the correct equations, the TAC algorithm always finds a sufficient over-approximation,
given that there exists one. The new challenge is to find those equations. The authors
proposed an algorithm to pick equations from a restrained set of equations, therefore
allowing the TAC algorithm to decide many interesting regular safety problems. How-
ever, using this restricted set of equations, this procedure is not regular-complete.

This method is efficient on small programs but lacks modularity to be able to treat
substantial programs, which is addressed in a more recent work by Haudebourg et
al. [19].

2. In reality, TAC as shown above computes a non-controlled over-approximation, but the input can
be transformed so that the output, when terminating, is exactly D∗(I)

34

State of the art

We now present two methods that still infer an approximation of reachable configu-
rations but now relying on a Counter-Example Guided Abstraction Refinement (CE-
GAR), in which a (here regular) abstraction of functions is refined, using examples,
until the property is proven true or false.

Automata-based abstraction for automated verification of higher-order tree-processing
programs, Matsumoto et al. [30] The goal of the paper is to abstract higher-order
functional programs into Higher-Order Recursion Schemes (HORS) on finite types us-
ing predicate abstraction. Each type of the concrete program is abstracted by a state of
a tree automaton, where, as before, a state q denotes every term t such that t ∈ L(A, q).
Having done so, they can use a higher-order model checker to check for a safety prop-
erty. If the abstract program (the one manipulating automata states) is safe, then the
concrete program is safe and the model checking procedure can conclude. If the ab-
stract program has a problematic run, there are two possibilities: First, the concrete
program admits the same run, and the property is thus proved to be false. Second, the
approximation automaton was too coarse, as the run found can not exist in the con-
crete program, so the abstracting automaton is refined and the verification procedure
continues with this new model. This method is a particular case of Counter-Example
Guided Abstraction Refinement (CEGAR) and is based on the work of [26], but uses
tree automata as abstraction instead of booleans.
A similar approach is used in Regular Language Type Inference with Term Rewriting [19],
but the program is represented by a TRS and the abstraction is therefore a transition
system manipulating the states of a tree automaton.
These two methods [30] and [19] are both correct and regular-complete. The method
from [19] also provides an open-access tool timbuk4 3.

Comparison summary: Regarding expressivity, [22] did not mention any scope of
application for their method, but it seems to solve strictly less problems than the other
three. [14] is complete for a (strict) sub-class of regular safety problems that is defined
in the paper, and both [30] and [19] are regular-complete.
Regarding speed and memory consumption, [22] did not mention any implementation.
The three other methods have comparable speed for small functions. The memory us-
age for [19] is much more stable than in [14], and does not explode on bigger instances.

3. https://people.irisa.fr/Thomas.Genet/timbuk/index.html

35

https://people.irisa.fr/Thomas.Genet/timbuk/index.html

State of the art

Memory usage is not mentioned in [30].

Limitations of regular languages: All of the previously-presented methods use reg-
ular approximation of sets of terms. Regular languages are widely used for their good
closure properties, decision problem properties, and simplicity. However, their expres-
sivity is quite limited when trying to represent relations. This was not a problem for
regular safety problems, as they all can be solved without exhibiting any (infinite) re-
lation between terms. However, many properties require the comparison of elements
(of an infinite domain). These kind of properties are not regular and therefore can not
be handled by the techniques presented in the previous section.
For example, even the identity relation on natural numbers {(n, n) | n ∈ TΣ(nat)} can
not be represented using a regular automaton. Therefore the safety problem with the
regular set of inputs I = { f (n) | n ∈ TΣ(Nat)}, B = { f alse}, and rewriting system

f (N) → eq(N, N)

eq(z, z) → true eq(s(X), s(Y)) → eq(X, Y)

eq(s(X), z) → f alse eq(z, s(Y)) → f alse

is not regular, i.e., fails to be proved by the techniques presented in the previous sec-
tion. There exist automata recognizing over-approximations of this eq relation, but then
not representing the exact relation, which does not allow to conclude. To remedy this
problem and prove such relational properties, focus was turned to more expressive for-
malisms to represent the functions of the programs, such as extensions of tree automata
called automata on tuple, which we also call convoluted (tree) automata.

3.2.2 Automatic verification with relational formalisms

We now discuss two papers that prove programs by representing their relations
using more expressive formalisms than regular tree automata. This first one combines
symbolic automata [8] and automatic relations and the second one uses and extends con-
voluted tree automata.

Symbolic Automatic Relations and Their Applications to SMT and CHC Solving,
Shimoda et al. [33] This work defines a new formalism called symbolic automatic re-
lations meant to combine symbolic automata [8] and automatic relations [16]. Symbolic

36

State of the art

automatic relations are automata-represented relations between words, hence the "au-
tomatic" part of the name [16], which is the vocabulary used when dealing with con-
volution of words. Moreover, transitions of these automata may use domain-specific
operations and predicates, hence the "symbolic" part of the name.

Example 3.7 (Simple automata taken from [33]). Here is an automaton A recognizing
the convolution of two words w0 and w1 over the domain of natural numbers (every
symbol is a number). This automaton recognizes words such that, at every index i, it
is not true that w0[i], the ith element of w0 if any, is greater that w1[i]. This indirect
formulation, using a negation, is necessary for handling words w0 and w1 of different
length. The transitions of the automata have (as usual) no concept of ith symbol of a
word and can only access the current symbol. We write l0 for the current symbol of
the word w0 and l1 for that of w1. This automaton has only one (initial) state q and one

transition q
¬(l0>l1)→ q.

q

¬(l0 > l1)

Considering that a word encodes a list, this automaton can then be used to define the
sorted predicate on lists of natural numbers by sorted(w) =

de f
(0 · w, w) ∈ L(A, q).

These kind of automata allow to express various relations on a specific domain and
can be used to represent the model of a set of formula. Although not detailed in the
paper, they extend this formalism from words to trees by using convolutions, which
are presented in the following paragraph. A procedure for deciding a certain class of
first-order formula on these automata is given, thus implementing the teacher part of
a Learner/Teacher verification algorithm (presented in Section 4.3). However, every
automata has to be given by the user as no procedure for learning an automaton is
given, which is left as further work.
We now take a quick look at convoluted tree automata, which are used in the work of
Haudebourg et al. [18] and formally defined in Chapter 5.

Convoluted tree automata Automata recognizing string relation have been intro-
duced in [4] and their extension on tree relations can be traced back to [9] and [24].
More recently, automata recognizing tree relations can be found in the tree automata

37

State of the art

reference [7] or in T. Haudebourg’s thesis [18]. To make an automaton recognize a n-
ary relation, the main idea is to read the n trees at the same time instead of separately.
However, automata classically only read one symbol at a time. To adapt the automata
formalism, the idea is to create new symbols representing tuples of symbols, using a
convolution operation. Terms are then overlayed by following their syntax tree.

Example 3.8 (Convolution). Using Σ = {z, s, nil, cons}, the new alphabet for a binary
relation is Σ = {

〈
s, s

〉
,
〈
s, z

〉
,
〈
s,□

〉
,
〈
z, s

〉
,
〈
z, z

〉
,
〈
z,□

〉
,
〈
□, s

〉
,
〈
□, z

〉
,
〈
cons, s

〉
, . . .} with

□ a padding symbol. The convolution operator is written□L t; the convolution between
the terms s(z) and s(s(s(z))) and between the list cons(z, cons(z, nil)) and its size
s(s(z)) are depicted in the figure below.

□L t (,)s

z

s

s

s

z

=
〈
s, s

〉

〈
z, s

〉

〈
□, s

〉

〈
□, z

〉

With lex and nex as defined below,

lex = cons lex =

z cons

z nil

nex = s nex =

s

z

□L t (lex, nex)

=〈
cons, s

〉

〈
z, s

〉

〈
□, z

〉

〈
cons,□

〉

〈
z,□

〉 〈
nil,□

〉

Note that, when overlaying terms of a different shape, every subterm is paired with
the subterm that is at the same position, if any, and otherwise with the padding □.
This method is simply known as convolution of terms, or left convolution (hence the L
notation).

A state of a convoluted automaton therefore recognizes a tuple (t1, . . . , tn) if it recog-
nizes its convolution □L t (t1, . . . , tn). The automaton recognizing the convolution of
the equality relation of natural numbers in a state q f is then given as the automaton A
with states {q f } and transitions

〈
z, z

〉
() → q f

〈
s, s

〉
(q f) → q f .

Automatic Verification of Higher-Order Functional Programs using Regular Tree
Languages, Haudebourg et al. [18] This preliminary work has been started by T.
Haudebourg during a stay in N. Kobayashi’s group in The University of Tokyo. In it,
relations are learned by following a CEGAR loop inspired by Garg et al. [12] which
is more formally introduced in Section 4.3. It consists of a back and forth between an
entity called teacher and an entity called learner, where at each step the learner will

38

State of the art

propose an automaton and the teacher will check if it is correct, and if not gives back
learning constraints to guide the learner. This technique has been applied in order to
prove relational properties such that length (rev l) = length l, or length (insert-sort l) =
length l.
We directly extend this preliminary work to make it more formal, practical, and proven,
which corresponds to Chapters 5 and 6 of this thesis, and then devise a new formal-
ism (Shallow Horn Clauses) to augment the capabilities of this approach, which corre-
sponds to Chapters 7 and 8.

39

CHAPTER 4

GENERAL APPROACH: FROM PROGRAMS

AND PROPERTIES TO PROOFS

This chapter focuses on the whole chain of trans-
formation, going from the functional program
and properties written in a "high-level" language
SMTLIB to the yes/no answer to whether the
properties are true in the program. First, the pro-
gram and properties are translated from SMTLIB
to a set of clauses that represents the same func-
tions in Section 4.1. Then, this set of clauses is
modified to allow for approximations in Sec-
tion 4.2. Finally, the Learner/Teacher procedure
that takes this set of clauses as input and checks
for satisfiability is presented in Section 4.3.

Program + properties in SMTLIB

Program + Properties as clauses

Equisatisfiable approximated clauses

Section 4.1

Section 4.2

Learner Teacher

Section 4.3

UNSAT!
Some property is false

SAT!
The properties are true

Section 4.3 gives a generic view of the Learner/Teacher procedure. This generic view
describes the roles of the Learner and Teacher and how they interact to define a model-
inference procedure. This procedure is generic and will later be instantiated twice, in
Chapters 6 and 8. The Learner/Teacher procedure presentation of Section 4.3 is generic
in three ways: (a) the inferred models are abstract, no formalism to actually finitely rep-
resent them is given; (b) the Learner algorithm, which infers a model from examples,
is not given ; (c) the Teacher algorithm, which checks that desired properties are true
in a model, is not given either. In this thesis, we re-define and extend the convoluted
automata formalism in Chapter 5 and a Learner and Teacher algorithms for those con-
voluted automata in Chapter 6. Then, we define Shallow Horn Clauses in Chapter 7
and adapt the Learner and Teacher to SHoCs in Chapter 8.

40

General approach: from programs and properties to proofs

4.1 From SMTLIB to clauses

SMTLIB [1] is a language used for describing satisfiability problems in various the-
ories and that is widely used in the verification community. We parse a restricted
subset of SMTLIB that is sufficient to describe elementary functional programs and
properties. More precisely, we support (i) the definition of monomorphic algebraic
datatypes (ii) the definition of (recursive) algebraic functions using simple pattern
matching and if-then-else (iii) the definition of universally quantified properties in a
first-order clausal syntax.
Definitions of the datatypes do not require any particular processing. The recursive
functions and properties, however, are transformed into clauses. The program, i.e.
the set of functions that the program defines, is transformed into an equivalent set
of clauses Γ! and the properties are transformed into an equivalent set of clauses Γ?.
Because we only support terminating and deterministic functions, Γ! has exactly one
Herbrand model M! and the properties are true in the program iff Γ? are true in M!

(written M! |= Γ?). Termination and determinism are not checked by our tool but
assumed.
During this transformation from the program and properties to clauses, functions are
all transformed into relations. Every n-ary boolean function f : (τ1, . . . , τn) → Bool
is transformed into an n-ary relation R f : (τ1, . . . , τn) → Bool and every non-boolean
n-ary function f : (τ1, . . . , τn) → τ0 is transformed into an n + 1-ary relation R f :
(τ1, . . . , τn, τ0) → Bool.

Example 4.1 (All0, No0, IsEmpty). In this example, we define three functions on trees
of natural numbers t: (i) All0, returning true iff all the elements of t are equal to z.
(ii) No0, returning true iff all the elements of t are different than z. (iii) IsEmpty, return-
ing true iff t is equal to leaf . The property we assert is that, for any tree T, IsEmpty(T) ⇐
All0(T)∧No0(T). Here is the corresponding SMTLIB file, to show what SMTLIB looks
like:

(se t − l o g i c HORN)

(declare −datatypes ((nat 0) (n t ree 0))
(((z)

(s (pred nat)))
((l e a f)

(node (hd nat) (l n t ree) (r n t ree)))))

41

General approach: from programs and properties to proofs

(define −fun−rec All0 ((t n t ree)) Bool
(match t (

(l e a f t rue)
((node n t1 t2)

(i t e (= n z) (i t e (All0 t1) (All0 t2) f a l s e) f a l s e
)))))

(define −fun−rec No0 ((t n t ree)) Bool
(match t (

(l e a f t rue)
((node n t1 t2)

(i t e (= n z) f a l s e (i t e (No0 t1) (No0 t2) f a l s e)))
)))

(define −fun−rec IsEmpty ((t n t ree)) Bool
(match t (

(l e a f t rue)
((node n t1 t2) f a l s e))))

; ; property all0_and_no0_is_empty
(a s s e r t (f o r a l l ((t n t ree))

(=> (and (Al l0 t) (No0 t))
(IsEmpty t))))

(check − s a t)

The clauses extracted from these definitions are the same as those of Section 1.1, which
we label here because of their use in Section 4.3.

I1 : IsEmpty(leaf) I2 : ⊥ ⇐ IsEmpty(node(T1, E, T2))

A1 : All0(leaf)
A2 : All0(node(T1, z, T2)) ⇐ All0(T1) ∧ All0(T2) A4 : All0(T1) ⇐ All0(node(T1, z, T2))

A3 : ⊥ ⇐ All0(node(T1, s(E), T2)) A5 : All0(T2) ⇐ All0(node(T1, z, T2))

N1 : No0(leaf)
N2 : No0(node(T1, z, T2)) ⇐ No0(T1) ∧ No0(T2) N4 : No0(T1) ⇐ No0(node(T1, z, T2))

N3 : ⊥ ⇐ No0(node(T1, s(E), T2)) N5 : No0(T2) ⇐ No0(node(T1, z, T2))

42

General approach: from programs and properties to proofs

Finally, the clause for the property all0_and_no0_is_empty stays the same:

φ = IsEmpty(T) ⇐ All0(T) ∧ No0(T).

Note that there is only one Herbrand model M! for the set of clauses defining the
program. Moreover, in this case, M! |= φ.

Translation of functions into clauses We give here the principle of the translation
of functions into clauses. We begin by stating its abstract behavior and then show a
step-by-step translation of the height definition in Example 4.2.

A function definition in SMTLIB is of the form

(define-fun-rec f ((arg_1 type_1) ... (arg_n type_n)) type_0

expr)

The function f has n arguments and returns a value of type type_0. Each arg_i is the
ith argument and type_i its type. The clauses defined from this function will all be
of the form R f (arg1, . . . , argn, arg0) ⇐ B with the clause’s body B defined w.r.t expr

and possibly containing negated atoms. The procedure is then compositionally defined
on the form of expr by adding elements to B. A function may yield multiple clauses.
This is taken into account due to the translation function being able to, when handling
expr, fork, which causes the current clause to be duplicated. We consider here that an
expression is either (i) a match construction ; (ii) an if-then-else construction ; (iii) a
value or function application.

A match construction is of the form

(match x (

(pattern_1 expr_1)

...

(pattern_k expr_k)

))

In this case, the translation procedure forks k times, one for each branch. For any branch
i, the constraint x = pattern_i is added to their copy of the clause and the translation
continues on expr_i. An if-then-else construction is of the form

(ite condition expr_then expr_else)

43

General approach: from programs and properties to proofs

In this case, the translation function forks twice, one for the then branch and one for
the else branch. First of all, the condition is translated into a clause Rc(. . .) ⇐ Bc. For
the then branch, the condition Rc(. . .) ∧ Bc is added to B and the translation continues
on expr_then. For the else branch, the condition ¬Rc(. . .) ∧ Bc is added to B and the
translation continues on expr_else.
When the expression expr is a value v, the constraint arg0 = v is added to B and the
translation stops.

Example 4.2 (From the height function to the Height relation). Let the definition of
height be the following:

(define -fun -rec height ((T tree)) nat

(match T (

(leaf z)

((node T1 N T2) (s (ite (leq (height T1) (height T2))

(height T2) (height T1)))))))

We define the binary relation Height. The clauses defined will thus be of the form
Height(T, V) ⇐ B with the body B of the clause depending on the function’s expres-
sion. This height function is defined as a pattern-matching with two cases, which forks
the transformation into two cases:

— The first case forces T to be of the form leaf , so the constraint T = leaf is added
in B. Moreover, the first case returns z, so we also add the constraint V = z to B.
This results in the clause Height(T, V) ⇐ T = leaf ∧ V = z.

— The second case forces T to be of the form node(T1, N, T2) and returns (s (ite

(leq (height T1)(height T2))(height T2)(height T1))), so the constraint T =

node(T1, N, T2) is added to B. Because s, the function applied to the returned
value, is simply a constructor, the atom V = s(V′) is added to the clause body B
and the program expression is now (ite (leq (height T1)(height T2))(height

T2)(height T1)). When an if-then-else constructor ite is encountered, its con-
dition is first translated. The clausal version of the condition is Leq(N1, N2) ⇐
Height(T1, N1)∧Height(T2, N2). Then, the if-then-else forks the translation into
two branches

— The first branch has the if-then-else clause’s atoms as additional constraints
in B and the ’then’ branch as current program expression. Concretely, the
literals Height(T1, N1)∧Height(T2, N2)∧Leq(N1, N2) are added to B and

44

General approach: from programs and properties to proofs

the current program’s expression is (height T2). This program expression
corresponds to adding the atom Height(T2, V′) to B. The resulting clause
is Height(T, V) ⇐ T = node(T1, N, T2) ∧ V = s(V′) ∧ Height(T1, N1) ∧
Height(T2, N2) ∧ Leq(N1, N2) ∧ Height(T2, V′).

— The second branch has the negation of the condition as additional constraints
in B and the ’else’ branch as current program expression. Concretely, the lit-
erals Height(T1, N1) ∧ Height(T2, N2) ∧ ¬Leq(N1, N2) are added to B and
the current program’s expression is (height T1). This program expression
corresponds to adding the atom Height(T1, V′) to B. The resulting clause
is Height(T, V) ⇐ T = node(T1, N, T2) ∧ V = s(V′) ∧ Height(T1, N1) ∧
Height(T2, N2) ∧ ¬Leq(N1, N2) ∧ Height(T1, V′).

This translation thus yields three clauses that, once simplified, are:

Height(leaf , z)
Height(node(T1, N, T2), s(N2)) ⇐ Height(T1, N1) ∧ Height(T2, N2) ∧ Leq(N1, N2)
Height(node(T1, N, T2), s(N1)) ⇐ Height(T1, N1) ∧ Height(T2, N2) ∧ ¬Leq(N1, N2).

This third clause is, in accordance with Definition 2.21, rather written in the form
Height(node(T1, N, T2), s(N1)) ∨ Leq(N1, N2) ⇐ Height(T1, N1) ∧ Height(T2, N2),
which is the form used in the implementation. However, in the following, we write it
Height(node(T1, N, T2), s(N1)) ⇐ Height(T1, N1) ∧ Height(T2, N2) ∧ Leq(N2, N1)
to simplify the presentation.

Finally, because a unary function has been transformed into a binary function, one last
clause is added to this translation: N1 = N2 ⇐ Height(T, N1) ∧ Height(T, N2). This
last clause is called the functionality clause and enforces the definition to have only one
Herbrand model, the one representing exactly the height relation.

Here is a collection of definitions we use throughout this manuscript. Note the pres-
ence of functionality clauses in the definition of every relation that was (in the pro-
gram) a non-boolean function and their absence in the case of boolean function, for
which the boolean is not reified as the last argument. Non-boolean functions are Max,
Plus, Height, HeightRB, and Len. The relation Shal relates trees with natural numbers
greater or equal to their height. Recall also that the semantics used for these clauses is
not the least fixpoint, but standard first-order semantics (on the theory of ADT).

Definition 4.3 (Clausal definition of Leq, Max, Plus, Len, Height, HeightRB, Shal).

45

General approach: from programs and properties to proofs

Leq(z, z) Max(z, z, z)
Leq(z, s(N)) Max(z, N, N)

Leq(s(X), s(Y)) ⇐ Leq(X, Y) Max(N, z, N)

Leq(X, Y) ⇐ Leq(s(X), s(Y)) Max(s(N), s(M), s(R)) ⇐ Max(N, M, R)
⊥ ⇐ Leq(s(X), z) R1 = R2 ⇐ Max(N, M, R1) ∧ Max(N, M, R2)

Plus(z, z, z) Len(nil, z)
Plus(z, N, N) Len(cons(X, L), N) ⇐ Len(L, N)

Plus(s(N), M, s(R)) ⇐ Plus(N, M, R)
R1 = R2 ⇐ Plus(N, M, R1) ∧ Plus(N, M, R2) N1 = N2 ⇐ Len(L, N1) ∧ Len(L, N2)

Height(leaf , z)
Height(node(T1, E, T2), s(N1)) ⇐ Height(T1, N1) ∧ Height(T2, N2) ∧ Leq(N2, N1)

Height(node(T1, E, T2), s(N2)) ⇐ Height(T1, N1) ∧ Height(T2, N2) ∧ Leq(N1, N2)

N1 = N2 ⇐ Height(T, N1) ∧ Height(T, N2)

HeightRB(leaf , z)
HeightRB(node(T1, E, T2), s(N)) ⇐ HeightRB(T2, N)

N1 = N2 ⇐ HeightRB(T, N1) ∧ HeightRB(T, N2)

Shal(leaf , N)

Shal(node(T1, E, T2), s(N)) ⇐ Shal(T1, N) ∧ Shal(T2, N)

Shal(T1, N) ⇐ Shal(node(T1, E, T2), s(N))

Shal(T2, N) ⇐ Shal(node(T1, E, T2), s(N))

⊥ ⇐ Shal(node(T1, E, T2), z)

Once clauses are extracted from the program and properties, we can transform them
to approximate the relations and more easily prove or refute the properties.

4.2 Approximation of clauses

Since the programs we verify are deterministic and terminating, their clausal rep-
resentation has only one possible Herbrand model. However, this model may not be
(precisely) representable using the formalism we chose for Herbrand models (first clas-
sical tree automata in Example 4.14, then convoluted automata in Chapters 5 and 6, and
finally Shallow Horn Clauses in Chapters 7 and 8). Thus, trying to verify a property us-
ing an exact model of the relation will fail on such programs. We try to circumvent this

46

General approach: from programs and properties to proofs

problem by approximating relations. Assume that we have a relation Plus(N, M, U)

relating N and M with their sum U and a relation Less(N, M) relating N and M iff
N < M. Let φ be the property

φ = Less(N, U) ⇐ Plus(N, M, U) ∧ Less(z, M)

This property φ cannot be proved straightforwardly using any of the above-mentioned
formalisms because they cannot represent exactly the relation Plus. We can prove this
property with an over-approximation of the relation Plus, say Plus+, that is such that
Less(N, U) ⇐ Plus+(N, M, U) ∧ Less(z, M) is true. The model inferred by our tool
over-approximates the Plus relation by the set of triples {(sn(z), z, sn(z)) | 0 ≤ n} ∪
{(sn(z), sk(z), sm(z)) | 0 ≤ n < m and 0 < k}, which is enough to carry out the proof.

In general, proving a property R1(
#»p1) ∨ . . . ∨ Rk(

#»pk) ⇐ Rk+1(
»pk+1) ∧ . . . ∧ Rn(

»pn) can
be done by proving the property R−

1 (
#»p1) ∨ . . . ∨ R−

k (
#»pk) ⇐ R+

k+1(
»pk+1) ∧ . . . ∧ R+

n (
»pn)

with, for i ∈ [1 . . . k], R−
i any under-approximation of Ri and, for i ∈ [k + 1 . . . n], R+

i
any over-approximation of Ri.

However, we make the choice to have a unique representation for any relation, which
limits the approximation power and requires to reason about which relation can be
over- or under-approximated. For this task, it is more suitable to reason about which
relation can not be approximated, as we can compute them iteratively.

Definition 4.4 (Approximation lattice). Let E = {∅, {+}, {−}, {+,−}} be a 4-element
lattice ordered by set inclusion. Its elements characterize relations and are to be read
as:

∅: This relation cannot be approximated ;

{+}: This relation can be over-approximated but not under-approximated ;

{−}: This relation can be under-approximated but not over-approximated ;

{+,−}: This relation can be approximated by anything.

Our abstract approximation values are thus functions α : R → E that assign to any
relation an element of E. We call such a function an approximation profile. We use ⊓ for
the abstract intersection (defined as the point-by-point intersection of functions) and,
with V ∈ E an abstract value, R 7→ V is a notation for the function α mapping R to V
and any other relation to {+,−}.

47

General approach: from programs and properties to proofs

An approximation profile α describes how a model M can drift from M! within safety
bounds.

Definition 4.5 (Approximation within bounds). Let M! be the unique model of the set
of clauses Γ! describing the program and let α be an approximation profile. We say that
a model M approximates M! w.r.t α if, for any relation R defined in Γ!,

— L(M, R) \ L(M!, R) ̸= ∅ =⇒ {+} ⊆ α(R) ;

— L(M!, R) \ L(M, R) ̸= ∅ =⇒ {−} ⊆ α(R).

With Γ? the set of formulas defining properties and Γ! the set of formulas defining the
program in which we want to prove the properties, the final abstract approximation
profile α f is computed in two steps: computing an initial approximation profile α? de-
pending on Γ?, and then refining it using Γ!.

Definition 4.6 (Approximation α? from Γ?). Let RH be the set of relation symbols ap-
pearing in the head of at least one clause from Γ? and RB those appearing in the body
of a clause from Γ?. Then

α? =
[l

R∈RH

R 7→ {−}
]
⊓
[l

R∈RB

R 7→ {+}
]

This α? forbids to over-approximate any relation appearing in the head of a property
and to under-approximate any relation appearing in the body of a property.

Proposition 4.7. Let M! be the model of Γ! and α? the approximation profile defined from Γ?.
We have M! |= Γ? iff there exists a Herbrand model M approximating M! w.r.t α? (Defini-
tion 4.5) such that M |= Γ?.

We now want to relax the clauses of Γ! while keeping that every model satisfying them
is an approximation of M! w.r.t α?. The clauses Γ! can be partitioned into one set ΓR per
relation R that the program defines. Modifying ΓR can allow us to over-approximate
or under-approximate the relation R. However, we have to be careful, as any set of
formulas ΓR defines exactly R only if the relations used in it are also exact. In other
words, relations are defined using (other) relations, thus approximating a relation must
account for these connections.
For example, the Height definition presented in Definition 4.3 is composed of the fol-
lowing four clauses:

48

General approach: from programs and properties to proofs

ΓHeight =

Height(leaf , z)
Height(node(T1, E, T2), s(N1)) ⇐ Height(T1, N1) ∧ Height(T2, N2) ∧ Leq(N2, N1)

Height(node(T1, E, T2), s(N2)) ⇐ Height(T1, N1) ∧ Height(T2, N2) ∧ Leq(N1, N2)

N = M ⇐ Height(T, N) ∧ Height(T, M)
When Leq is represented by the exact lesser-or-equal relation, we have that any model
M such that M |= ΓHeight represents Height by the exact height relation. Now, sup-
pose that Leq is allowed to be under-approximated. Then, because Leq(N2, N1) ap-
pears in the body of the clause whose head is Height(node(T1, E, T2), s(N1)), it may
allow models of the set of clauses ΓHeight to under-approximate the Height relation.
Similarly but trickier, because this same clause contains an atom Height(T2, N2) in its
body besides Leq(N2, N1), under-approximating Leq may also allow models of the set
of clauses ΓHeight to over-approximate the Height relation (on atoms Height(T2, N2)

that keep Leq(N2, N1) false, so as to not make the body of the clause true). For exam-
ple, if the relation Leq is under-approximated by the empty relation, then Height could
be approximated by any relation as long as it contains (leaf , z) and is functional. There-
fore, if one wants to represent the exact relation Height using the clauses ΓHeight, then
Leq must also not be under-approximated. This intuition is formalized by the function
restrictΓ! : (R → E) → (R → E) that restricts an approximation profile α using Γ!.

Definition 4.8 (restrictΓ!). Let α : R → E be some approximation profile. Let R be a
relation and ΓR the set of clauses defining R. Let φ = H ⇐ B ∈ ΓR be a clause. Suppose
that R(#»p) and R′(

#»

p′) are two different atoms appearing in φ (so either in H or B). Then

restrictΓ!(α) = α ⊓





R′ 7→ {−} if R(#»p) ∈ H ∧ R′(
#»

p′) ∈ H ∧ {−} /∈ α(R)

R′ 7→ {+} if R(#»p) ∈ H ∧ R′(
#»

p′) ∈ B ∧ {−} /∈ α(R)

R′ 7→ {−} if R(#»p) ∈ B ∧ R′(
#»

p′) ∈ H ∧ {+} /∈ α(R)

R′ 7→ {+} if R(#»p) ∈ B ∧ R′(
#»

p′) ∈ B ∧ {+} /∈ α(R)

R′ 7→ {+,−} otherwise

To make this definition more intuitive, we expand on the first case: R′ 7→ {−} if R(#»p) ∈
H ∧ R′(

#»

p′) ∈ H ∧ {−} /∈ α(R). This case is to be read as "If R should not be under-
approximated and if there is, in the head of a clause defining R, an atom R(#»p) and
another atom R′(

#»

p′), then R′ must not be over-approximated". This is because over-
approximating R′ may compensate for under-approximating R.
The function restrictΓ! can then be applied to an approximation profile α until we reach

49

General approach: from programs and properties to proofs

a fixpoint. The final approximation profile α f is the fixpoint given by the repeated
application of restrictΓ! to the approximation profile α?. We now state that this ap-
proximation profile α f is safe and allows to modify the clauses defining each relation
individually.

Proposition 4.9. Let Γ = Γ! ∪ Γ? be a set of formula describing both a program and properties.
Let α f = f ixpoint(restrictΓ! , α?) be the final approximation defined by repeated application of
restrictΓ! to α?.

Suppose that, for every relation R that the program defines, the set of clauses ΓR is modified
into Γ′

R such that, supposing that other relations are approximated w.r.t α f , then any model
satisfying Γ′

R approximates R w.r.t α f (R).

Then, any model M satisfying every set of clauses Γ′
R is an approximation of M! w.r.t α f .

Now that each relation R has its approximation profile α f (R), we can relax the clauses
using α f , which corresponds to defining the sets Γ′

R in the above definition. Our current
method focuses on over-approximations but cannot, yet, produce under-approximations.
Over-approximations are computed by forgetting functionality clauses (e.g. the clause
N = M ⇐ Height(T, N) ∧ Height(T, M) for the Height relation). This allows (some)
over-approximations for relations coming from a non-boolean function in the program.
We do not yet know any satisfying way to automatically relax the clauses to over-
approximate other relations or to under-approximate them.

Finally, note that, when trying to over-/under-approximate a relation, deleting every
clause of its definition that contains only negative/positive atoms is not sound. For
example, suppose the relation HeightRB of Definition 4.3 is assigned the value {−},
i.e. we want to under-approximate it without over-approximating it. Then deleting
the clause HeightRB(leaf , z) may seem like a good idea but allows models that con-
tain terms which are not in the exact relation, for example the model that represents
HeightRB by the set of tuples (t, s(n)) with n the height of the rightmost branch of t,
which is not an under-approximation.

Now that clauses extracted from the program have been modified to allow approxima-
tions, we define the procedure that checks their satisfiability.

50

General approach: from programs and properties to proofs

4.3 Model search for clauses: a generic Learner/Teacher

procedure

This section presents a generic procedure for proving or disproving the satisfiabil-
ity of a set Γ of clauses. This model exhibition procedure is very close to the Impli-
cation CounterExample (ICE) [12] framework, featuring two entities: a Learner and a
Teacher. The Learner and the Teacher are iteratively communicating candidate mod-
els and counterexamples (ground instances of Γ). The Teacher’s role is to verify that a
given model M satisfies all formulas of Γ (i.e. that M |= Γ), and if not to extract a coun-
terexample to M |= Γ that is given to the Learner. The Learner’s role is to propose a
new model inferred from the (counter)examples that the Teacher previously answered.
The procedure shows satisfiability of Γ by finding a model M such that M |= Γ. Un-
satisfiability is shown by finding a contradiction in Γ, i.e., a finite contradictory set
of ground instances of Γ. We now define the specification for the Teacher and for the
Learner using generic models M.

Definition 4.10 (Teacher specification).

Input: A finite set of clauses Γ and a model M.

Output: None if M |= Γ and Some(φ̂) with M ̸|= φ̂ and φ̂ ∈ Grd(Γ) otherwise, with
Grd(Γ) the set of ground instances of Γ.

Definition 4.11 (Learner specification).

Input: A finite set of ground clauses Γ̂.

Output: None if Γ̂ is contradictory and Some(M) with M |= Γ̂ otherwise.

The whole procedure, Sat(Γ), is then designed as a back-and-forth between the Learner
and the Teacher. If the Learner cannot find a model of its input examples (because they
are contradictory), then Γ is contradictory too. If every formula is satisfied by a model
proposed by the Learner, then Γ is shown true.

Definition 4.12 (The satisfiability procedure Sat(Γ)). Given Γ, a finite set of clauses, the
loop Sat(Γ) proceeds as:

0. Let Γ̂0 := ∅ and i := 0.

1. If Learner(Γ̂i) = None, then return “Disproved: Γ̂i”.
If Learner(Γ̂i) = Some(Mi), then go to step 2.

51

General approach: from programs and properties to proofs

2. If Teacher(Mi, Γ) = None, then return “Proved: Mi".
If Teacher(Mi, Γ) = Some(φ̂i), let Γ̂i+1 := Γ̂i ∪ {φ̂i}, i := i + 1, and go to step 1.

As generic as this procedure currently is, we can already state its progress lemma.

Lemma 4.13 (Progress). During an execution of Sat(Γ):

— The Learner never outputs the same model twice ;

— The Teacher never outputs the same counterexample twice.

Proof.

— Any model Mi that the Learner proposes at a step i is either correct and the pro-
cedure stops or the Teacher outputs a counterexample φ̂i to it that is incorporated
into Γ̂i+1, therefore ensuring that all next proposed models satisfy φ̂i, what Mi

does not.

— Any proposed model Mi satisfies every ground constraint Γ̂i that the Teacher
sent from the beginning, so the Teacher cannot find φ̂ ∈ Γ̂i such that M ̸|= φ̂.

Using this generic satisfaction procedure requires three elements to be defined:

— the formalism for representing models ;

— the Learner procedure ;

— the Teacher procedure.

In order to illustrate our Learner/Teacher procedure, we instantiate it with the formal-
ism of (regular) tree automata. It will later be instantiated with two other formalisms
presented in this manuscript: convoluted tree automata in Chapter 5 and then Shal-
low Horn Clauses in Chapter 7. The Learner and Teacher have to be adapted to the
formalism in question, which is the role of Chapters 6 and 8.

Example 4.14 (Sat(Γ) with regular automata). Let the formalism for representing mod-
els be regular automata, as shown in Definition 2.37. The Learner and Teacher are
not given an explicit definition so as to not obfuscate the example, but know that the
Learner will only search for smallest automata w.r.t their number of states and the
Teacher will only output counterexamples of minimal height. In the following, we rep-
resent models (tree automata) by their transitions only, as there is only one state q f of
type bool and other states can be inferred from the transitions.

52

General approach: from programs and properties to proofs

Let the input set of clauses Γ be the set of formulas defining the All0, No0, and IsEmpty
relations. The property we try to prove is IsEmpty(T) ⇐ All0(T) ∧ No0(T). Therefore
Γ is the one from Example 4.1.
The final approximation profile is α f = {(IsEmpty, {−}), (All0, {+}), (No0, {+})}.
However, with the approximation defined in Section 4.2, no clause is modified nor
deleted. Note that, in this case, deleting clauses {I1, A3, N3} would have been safe.
We give a possible execution of the Learner/Teacher loop Sat(Γ) (Definition 4.12) where,
at each step i of the execution, is given:

— the model proposed by the Learner Some(Mi) = Learner(Γ̂i) ;

— the Teacher’s counterexample Some(φ̂i) = Teacher(Mi) ;

— the clause φi of which φ̂i is an instance.

Note that states have been renamed for clarity. Any state named

— q0 recognizes only {z} ;

— q1 recognizes {s(z)} ;

— qn recognizes any natural number ;

— qs recognizes any positive natural number ;

— ql recognizes leaf , the empty tree ;

— qt0 recognizes any tree whose elements are only z ;

— qt1 recognizes any tree whose elements are only s(z) ;

— qts recognizes any tree whose elements are positive natural numbers ;

— qtn recognizes any tree ;

— q f is the only boolean state and recognizes atoms for relations All0, No0, and IsEmpty.

Note also that the transitions of every model Mi are ordered, so that the transition
presentation keeps the same structure going from step i to step i + 1. If you prefer not
having to understand each automaton but are interested in the relations they denote,
you can read only the last line of the transitions (the transitions that rewrite to the state
q f of type bool) and use the above description of states based on their name to know
which relation they denote.
Finally, note that the relations denoted by the model Mi at a given step i are not neces-
sarily better than those at a previous step j < i, for example at steps 3 and 4. The rela-
tion L(M3, IsEmpty) is the correct one, i.e. only contains the empty tree leaf , whereas
the relation L(M4, IsEmpty) is incorrect, as it is the set of trees whose values are all z.

53

General approach: from programs and properties to proofs

This is because, in this step 4, having a state recognizing only leaf costs one extra state
and is not required by the set of examples {φ̂0, φ̂1, φ̂2, φ̂3} used for inferring M4.

i Mi φi φ̂i

0 ∅ I1 IsEmpty(leaf)

1
leaf () → ql

IsEmpty(ql) → q f
A1 All0(leaf)

2
leaf () → ql

All0(ql) → q f IsEmpty(ql) → q f
N1 No0(leaf)

3
leaf () → ql

All0(ql) → q f IsEmpty(ql) → q f No0(ql) → q f
A2

All0(node(leaf , z, leaf))
⇐ All0(leaf)

4
leaf () → qt0 node(qt0 , q0, qt0) → qt0 z() → q0

All0(qt0) → q f IsEmpty(qt0) → q f No0(qt0) → q f
I2

⊥ ⇐
IsEmpty(node(leaf , z, leaf))

5
leaf () → qt0 node(qt0 , q0, qt0) → qt0 z() → q0

leaf () → ql

All0(qt0) → q f IsEmpty(ql) → q f No0(ql) → q f

N2
No0(node(leaf , s(z), leaf))

⇐ No0(leaf)

6
leaf () → qtn node(qtn , qn, qtn) → qtn z() → qn

leaf () → ql s(qn) → qn

All0(qtn) → q f IsEmpty(ql) → q f No0(qtn) → q f

N3
⊥ ⇐

No0(node(leaf , z, leaf))

7

leaf () → qt0 node(qt0 , q0, qt0) → qt0 z() → q0

leaf () → qt1 node(qt1 , q1, qt1) → qt1 s(q0) → q1

leaf () → ql

All0(qt0) → q f IsEmpty(ql) → q f No0(qt1) → q f

N2
No0(node(leaf , s(s(z)), leaf))

⇐ No0(leaf)

8

leaf () → qt0 node(qt0 , q0, qt0) → qt0 z() → q0

leaf () → qts node(qts , qs, qts) → qts s(q0) → qs

leaf () → ql s(qs) → qs

All0(qt0) → q f IsEmpty(ql) → q f No0(qts) → q f

/ Proved : M8

I1 : IsEmpty(leaf) I2 : ⊥ ⇐ IsEmpty(node(T1, E, T2))

A1 : All0(leaf)
A2 : All0(node(T1, z, T2)) ⇐ All0(T1) ∧ All0(T2) A4 : All0(T1) ⇐ All0(node(T1, z, T2))

A3 : ⊥ ⇐ All0(node(T1, s(E), T2)) A5 : All0(T2) ⇐ All0(node(T1, z, T2))

N1 : No0(leaf)
N2 : No0(node(T1, z, T2)) ⇐ No0(T1) ∧ No0(T2) N4 : No0(T1) ⇐ No0(node(T1, z, T2))

N3 : ⊥ ⇐ No0(node(T1, s(E), T2)) N5 : No0(T2) ⇐ No0(node(T1, z, T2))

54

CHAPTER 5

CONVOLUTED TREE AUTOMATA

Automata on convoluted trees is a formalism that has been introduced to generalize
regular tree automata in order to define relations on trees. Their standard definition can
be found in automata literature [7], among that of other tree-tuple languages such as
tuple automata or ground tree transducers. Convoluted (tree) automata are standard
tree automata with the exception that they are defined on an alphabet of tuples of n
symbols. Reading a term on such an alphabet amounts to reading n terms at the same
time, one per projection on the ith symbols. Such an automaton defines a set of tuples of
terms, i.e. a relation. The operation of merging those n terms into one is what is called
the convolution. The standard convolution operator amounts to overlaying the (syntax
tree of the) terms, overlaying every symbols that appear at the same position. This can
be recursively defined, starting from the root, and adding a padding symbol □ /∈ Σ
where there is an arity mismatch between symbols. This standard convolution is called
here the left convolution, in order to distinguish it from other convolutions, e.g. the right
convolution. See Example 3.8 for a visual representation of the left-convolution.

5.1 Convolution with padding

We first define an operation that is often used when dealing with terms of different
arities. It is used for fetching the subterm at a given position only if defined, and oth-
erwise returns a padding.

Definition 5.1. Let p be a pattern and π a position. Then

p[π]□ =





p[π] if π ∈ Pos(p)

□ otherwise

55

Convoluted tree automata

5.1.1 Standard left convolution

We then define the left-convolution of a n-tuple of tuples and then use it to define the
alphabet of the convolution and the convolution of terms. The left-convolution of a
n-tuple of tuples can be thought of as one step of the left-convolution of n terms.

Definition 5.2 (n-ary left-convolution of tuples with padding). The n-ary left convolu-
tion of tuples, written□L n, is defined as:

□L n ((#»e1, . . . , #»en)) = (
#»

e′1, . . . ,
#»

e′k)

with k = max
i∈[1...n]

(| #»ei |) and ∀j ∈ [1 . . . k],
#»

e′j = (#»ei [j]□)i∈[1...n]

Example 5.3 (n-ary left convolution with padding). Let #»e1 = (a1, a2, a3),
#»e2 = (b1),

#»e3 = (c1, c2), and #»e4 = (d1), which can be organised by row in this array disposition:

a1 a2 a3

b1 □ □

c1 c2 □

d1 □ □

The left convolution□L 4 (#»e1, #»e2, #»e3, #»e4) is equal to
(
(a1, b1, c1, d1), (a2,□, c2,□), (a3,□,□,□)

)
,

which corresponds to the columns of the array.

The n-ary left-convolution produces terms on an alphabet of n-ary tuple of symbols,
which is defined as follows.

Definition 5.4 (Alphabet for the convoluted terms). Let Σ a typed alphabet. Let Σ□ =

Σ ∪ {□} with □ a new symbol of a new type τ□. Then the n-ary left-convoluted alpha-
bet, written Σ□L n , has for symbols (Σ□)

n, and any (tuple of) symbol (f1, . . . , fn) ∈ Σ□L n

has type τ((f1, . . . , fn)) =□L n (#»τ 1, . . . , #»τ n) → (τ1, . . . , τn) with ∀i ∈ [1 . . . n], τ(fi) =
#»τ i → τi. A symbol (f1, . . . , fn) is sometimes written

〈
f1, . . . , fn

〉
, or simply

#»

f , for read-
ability.

Definition 5.5 (n-ary left convolution of terms). The n-ary left-convolution of terms, writ-
ten □L t

n, takes a tuple of n terms (t1, . . . , tn) on an alphabet Σ□ and returns a term

□L t
n (t1, . . . , tn) on the convoluted alphabet Σ□L n . The left-convolution of n terms is

56

Convoluted tree automata

recursively defined as:

□L t
n (f1(

#»t1), . . . , fn(
#»tn)) =

〈
f1, . . . , fn

〉
(□L t

n (
#»

t′1), . . . ,□L t
n (

#»

t′k))

with
(#»

t′1 , . . . ,
#»

t′k
)
=□L n (

#»t1 , . . . ,
#»tn)

Example 5.6 (n-ary left-convoluted terms). In this example, we use the binary left-
convolution of tuples □L 2 and its extension to terms □L t

2. The binary left-convolution
alphabet Σ□L 2 contains, among others, the following typed symbols:

— τ(
〈
□, z

〉
) = (τ□, nat)

— τ(
〈
□, s

〉
) = ((τ□, nat)) → (τ□, nat)

— τ(
〈
z, s

〉
) = ((τ□, nat)) → (nat, nat)

— τ(
〈
s, s

〉
) = ((nat, nat)) → (nat, nat)

— τ(
〈
cons, s

〉
) = ((nat, nat), (natlist, τ□)) → (natlist, nat).

Here are two examples of binary left convolution of terms:

□L t (,)s

z

s

s

s

z

=
〈
s, s

〉

〈
z, s

〉

〈
□, s

〉

〈
□, z

〉

With lex and nex as defined below,

lex = cons lex =

z cons

z nil

nex = s nex =

s

z

□L t (lex, nex)

=〈
cons, s

〉

〈
z, s

〉

〈
□, z

〉

〈
cons,□

〉

〈
z,□

〉 〈
nil,□

〉

Note that, because the alphabet Σ is typed and □ is given a fresh type τ□, T (Σ□) =

T (Σ) ∪ {□} and the n-ary left-convolution □L t
n is an isomorphism between T (Σ□)

n

and T (Σ□L n). However, we are especially interested in relations between terms, not
in relations between terms with paddings. We say that a type (τ1, . . . , τn) is τ□-free if
∀i ∈ [i . . . n], τi ̸= τ□. We have that□L t

n is also an isomorphism between tuples of terms
T (Σ)n and convoluted terms whose type is τ□-free {t | t ∈ T (Σ□L n)∧ τ(t) is τ□-free}.
For example,

〈
nil, s

〉
(
〈
□, z

〉
) has a τ□-free type and corresponds to the tuple of terms

(nil, s(z)) whereas
〈
□, z

〉
has

〈
τ□, Nat

〉
as type and corresponds to the tuple of terms

with paddings (□, z). The n-ary left-convolution of terms □L t
n can also be understood

in a more denotational manner, which often serves as definition:

Lemma 5.7. Let (t1, . . . , tn) ∈ T (Σ□)
n. Then t□ =□L t

n (t1, . . . , tn) is the tree such that
∀π ∈ N∗,

57

Convoluted tree automata

(a) π ∈ Pos(t□) ⇐⇒ (n = 0 ∧ π = ϵ) ∨ ∃i ∈ [1 . . . n]. π ∈ Pos(ti)

(b) π ∈ Pos(t□) ⇒ t□[π] =□L t
n (t1[π]□, . . . , tn[π]□)

Proof. By induction on π:

— π = ϵ:

(a): ϵ ∈ Pos(t□) is always true. Then either n = 0 or there exists i ∈ [1 . . . n] such
that ti exists and then, necessarily, ϵ ∈ Pos(ti).

(b): t□[ϵ] = t□ =□L t
n (t1, . . . , tn) =□L t

n (t1[ϵ]
□, . . . , tn[ϵ]□)

— π = π′ · j:

By induction, we have:

— π′ ∈ Pos(t□) ⇐⇒ (n = 0 ∧ π′ = ϵ) ∨ ∃i ∈ [1 . . . n]. π′ ∈ Pos(ti)

— π′ ∈ Pos(t□) ⇒ t□[π′] =□L t
n (t1[π

′]□, . . . , tn[π′]□)

By case disjunction on π′ ∈ Pos(t□):

— Suppose π′ /∈ Pos(t□). Then (by inductive property (b)) ∀i ∈ [1 . . . n], π′ /∈
Pos(ti). Then π′ · j /∈ Pos(t□) and ∀i ∈ [1 . . . n], π′ · j /∈ Pos(ti). This con-
cludes for both properties (a) and (b).

— Suppose π′ ∈ Pos(t□). By inductive property (b), we have t□[π′] =□L t
n

(t1[π
′]□, . . . , tn[π′]□). For all i ∈ [1 . . . n], let us write ti[π

′]□ as fi(
#»ti) and

(
#»

t′1 , . . . ,
#»

t′k) =□L n (
#»t1 , . . . ,

#»tn). Recall that t□[π′] = (f1, . . . , fn)(□L t
n (

#»

t′1), . . . ,□L t
n

(
#»

t′k)).

By case disjunction on j ∈ [1 . . . k]:

— Suppose j /∈ [1 . . . k]. Then π′ · j /∈ Pos(t□) and, because k = maxi∈[1...n](| fi|),
then ∀i ∈ [1 . . . n], π′ · j /∈ Pos(ti). This concludes for both properties (a)
and (b).

— Suppose j ∈ [1 . . . k]. Then t□[π] = t□[π′ · j] =□L t
n (

#»

t′j) by definition of

□L n. Also
#»

t′j = (
#»t1[j]□, . . . ,

#»tn[j]□) = (t1[π
′ · j]□, . . . , tn[π′ · j]□). There-

fore t□[π] =□L t
n (t1[π]□, . . . , tn[π]□), which concludes for property (b).

Moreover, because j ∈ [1 . . . k], then k ≥ 1 and there exists i ∈ [1 . . . n]
such that the term fi(

#»ti) = ti[π
′] has | fi| = k. So π′ · j ∈ Pos(ti), which

concludes for property (a).

58

Convoluted tree automata

From the previous lemma follows this intuitive characterisation of left-convoluted trees,
in which syntax trees are overlayed where the positions are equal.

Lemma 5.8. Let (t1, . . . , tn) ∈ T (Σ□)
n. Then t□ =□L t

n (t1, . . . , tn) is such that ∀π ∈
Pos(t□), Root(t□[π]) =

#»

f with
#»

f = (Root(ti[π]□))i∈[1...n].

Proof. By lemma 5.7, we have t□[π] =□L t
n (t1[π]□, . . . , tn[π]□). It is then immediate

that Root(t□[π]) = Root(□L t
n (t1[π]□, . . . , tn[π]□)) = (Root(t1[π]□), . . . , Root(tn[π]□)).

Tree automata can be defined on a convoluted alphabet in the standard manner (Defini-
tions 2.26, 2.28), and thus recognize convoluted terms. However, convoluted automata
are meant to represent relations, not convoluted terms, so we define R(A, q) to denote
the relation that the state q recognizes in automaton A.

Definition 5.9 (Relation of a convoluted automaton). Let A be an automaton defined
using convolution□L n and q one of its states. Then

R(A, q) = { #»t | #»t ∈ T (Σ□)
n∧□L t

n (
#»t) ∈ L(A, q)}

We usually are only interested in states whose type is τ□-free, i.e. states q such that
τ(q) = (τ1, . . . , τn) implies ∀i ∈ [i . . . n], τi ̸= τ□, as they define an (n-ary) relation
between terms of T (Σ) (without padding). Other states are only used as a necessary
intermediate.

Example 5.10 (Convoluted automata). Let A< be the automaton with states {q, q f }
and transitions {

〈
□, z

〉
() → q,

〈
□, s

〉
(q) → q,

〈
z, s

〉
(q) → q f ,

〈
s, s

〉
(q f) → q f }.

R(A<, q f) is the < relation on Peano numbers and τ(q f) = (nat, nat). For example,
the binary left-convolution of s(z) and s(s(s(z))) (from Example 5.6) is recognized by
this automaton, as shown below. The inductive recognition is shown step by step, re-
placing each subterm by the state it is recognized by. This presentation comes from the
definition of tree automata transitions as rewriting rules.
〈
s, s

〉

〈
z, s

〉

〈
□, s

〉

〈
□, z

〉

〈
s, s

〉

〈
z, s

〉

〈
□, s

〉

q

〈
s, s

〉

〈
z, s

〉

q

〈
s, s

〉

q f

q f〈
□, z

〉
() → q

−→

〈
□, s

〉
(q) → q

−→

〈
z, s

〉
(q) → q f

−→

〈
s, s

〉
(q f) → q f

−→

59

Convoluted tree automata

Convolutions and their expressivity Which relations are representable by convo-
luted tree automata highly depends on the precise datatypes definition. For example,
when using the left-convolution, the Len relation can not be represented using stan-
dard nil and cons constructors but could if the cons constructor had its arguments
swapped. This is because left-convoluting a list l and a natural number n, as in Ex-
ample 5.6, will relate n with the left-most branch of l. An alternative to constructor
modification is defining other convolutions.

5.1.2 Right and complete convolution

The right convolution, written □R n, is defined similarly to □L n but overlays terms
from the right branches, therefore adding padding to the left of terms instead of to
the right. This right convolution is effective for proving properties relating lists and
unary natural numbers, as the recursive argument of the cons constructor is overlayed
with the recursive argument of the s constructor, which is not the case with the left
convolution.

Definition 5.11 (n-ary right-convolution with padding). The right-convolution is de-
fined in a very similar fashion as the left one. The differences are written in bold text.

□R n (#»e1, . . . , #»en) = (
#»

e′1, . . . ,
#»

e′k)

with k = max
i∈[1...n]

(| #»ei |) and ∀j ∈ [1 . . . k],
#»

e′j = (#»ei [ki − k + j]□)i∈[1...n]

Example 5.12 (Right-convolution). Reusing #»e1, #»e2, #»e3, and #»e4 from Example 5.3, they can
be organised in the following array, now adding padding to the left

a1 a2 a3

□ □ b1

□ c1 c2

□ □ d1

The right convolution of these tuples□R 4 (#»e1, #»e2, #»e3, #»e4) again corresponds to the columns
of this array and is equal to

(
(a1,□,□,□), (a2,□, c1,□), (a3, b1, c2, d1)

)
.

The right-convoluted alphabet Σ□R n is defined exactly as Σ□L n , but replacing every

□L n by□R n. The same is true for the n-ary right convolution of terms□R t
n.

60

Convoluted tree automata

Example 5.13 (Right-convoluted terms). Following are two examples of binary right
convolution of terms □R t

2. Note that, albeit the tuple of symbols of Σ□R 2 are the same
as those of Σ□L 2 , their type may differ. For example, the symbol

〈
cons, s

〉
∈ Σ□R 2 has

type τ(
〈
cons, s

〉
) = ((nat, τ□), (natlist, nat)) → (natlist, nat).

□R t
2 (,)s

z

s

s

s

z

=
〈
s, s

〉

〈
z, s

〉

〈
□, s

〉

〈
□, z

〉

□R t
2 (lex, nex)

=〈
cons, s

〉

〈
z,□

〉 〈
cons, s

〉

〈
z,□

〉 〈
nil, z

〉

The left and right convolution are just two possibilities among many ways of combin-
ing a tuple of terms into one term, even when restricting to those being recursively
defined from the combination/shuffling of a tuple of tuple such as those defined be-
fore. These two convolutions, left and right, both have a common limitation: they do
not duplicate nor forget any subterm. That is, in the Definitions 5.2 and 5.11 of those
two convolutions, every element of any tuple from the input can be found exactly once
in the output. The fact that no element can be duplicated implies that they can only
define relations where it is enough to relate a single fixed branch of a term (respectively
the leftmost and rightmost branch) with another fixed fixed branch in another term.
This limitation requires to use different convolutions for different relations needing to
relate different fixed branches, e.g. HeightLB can be represented using left-convolution
but not right-convolution, and the opposite is true for HeightRB. Some other relations,
such as Height, cannot be represented using a fixed convolution strategy, as the highest
branch is not always the same.

Dropping this constraint, we can define a convolution that is quite expressive, called
complete convolution in [18]. The complete convolution has the advantage of not de-
pending on the constructor argument’s order by being able to duplicate terms, but the
drawback of generating (exponentially w.r.t their height) big convoluted terms. This
complete convolution relates every combination of different tuple’s elements, which
results in overlaying every same-depth constructor when convoluting terms.

Definition 5.14 (n-ary complete convolution with padding). The complete-convolution

61

Convoluted tree automata

is defined as:

□C n (#»e1, . . . , #»en) =
(#»

e′1, . . . ,
#»

e′k
)

with k =





0 if ∀i ∈ [1 . . . n], | #»ei | = 0

∏n
i=1 max(1, | #»ei |) otherwise

and ∀j ∈ [1 . . . k],
#»

e′j = (#»e1[π1]
□, . . . , #»en[πn]

□) with (π1, . . . , πn) the jth element of the

lexicographically ordered set {1, . . . , max(1, | #»ei |)} × . . . × {1, . . . , max(1, | #»en|)}.

Once again, the definition of the convolution alphabet Σ□C n and of the complete con-
volution of terms□C t

n follow from the definition of□C n.

Example 5.15 (n-ary complete-convoluted terms). Following are two examples of the
binary complete convolution of terms using padding, i.e. □C t

2. The symbol
〈
cons, s

〉
∈

Σ□C 2 has type τ(
〈
cons, s

〉
) = ((nat, nat), (natlist, nat)) → (natlist, nat) and the arity

of
〈
cons, cons

〉
is |

〈
cons, cons

〉
| = 4. Note how nex’s constructors have been duplicated

in the complete convolution of lex and nex.

□C t
2 (,)s

z

s

s

s

z

=
〈
s, s

〉

〈
z, s

〉

〈
□, s

〉

〈
□, z

〉

With lex and nex as defined below,

lex = cons lex =

z cons

z nil

nex = s nex =

s

z

□C t
2 (lex, nex)

=〈
cons, s

〉

〈
z, s

〉

〈
□, z

〉

〈
cons, s

〉

〈
z, z

〉 〈
nil, z

〉

5.1.3 Generalizing convolutions

One other limitation of every previously-defined convolutions (□L n, □R n, and □C n)
is that they are all of fixed arity, i.e. every tuple of symbols, and thus tuple of terms,
was of a given length n. This prevents to represent relations of different arities by the
same automaton.

Example 5.16 (fixed arity limitation). Using (for example) the left convolution, the max
relation on natural numbers can be represented by the state qmax in automaton Amax

62

Convoluted tree automata

with states {qmax, ql , qr} and transitions

⟨z, z, z⟩() → qmax ⟨s, s, s⟩(qmax) → qmax

⟨z, s, s⟩(qr) → qmax ⟨s, z, s⟩(ql) → qmax

⟨□, z, z⟩() → qr ⟨z,□, z⟩() → ql

⟨□, s, s⟩(qr) → qr ⟨s,□, s⟩(ql) → ql

The equality relation on natural numbers can be represented by the automaton with
the following transitions:

⟨z, z⟩() → qeq ⟨s, s⟩(qeq) → qeq.

These two relations cannot be defined (in different states) by a single automaton with
the convolutions defined up to now, as max is of arity 3 and eq of arity 2. We can easily
augment the convolution formalism to allow for any-arity convolution.

Definition 5.17 (Convolution with various arity). Let □· n be any n-ary convolution
among□L n,□R n, and□C n.
The any-ary convolution function□· is defined as

□· =
⋃

i∈N
□· i .

The alphabet Σ□· is also defined as

Σ□· =
⋃

i∈N

Σ□· i .

The recursive extension□· t of□· to terms is similarly defined, and is equal to

□· t=
⋃

i∈N
□· t

i .

This defines the three any-ary tuple-convolution operators□L ,□R ,□C , the three any-ary
convoluted alphabets Σ□L , Σ□R , Σ□C , and the three any-ary term-convolution opera-
tors□L t,□R t,□C t for when□· n is equal to, respectively,□L n,□R n, and□C n.

The two automata Amax and Aeq of Example 5.16, defined using□L 3 and□L 2, can now

63

Convoluted tree automata

be merged into one automaton Amaxeq defined using □L that represents four relations
(i.e. has four states) {qmax, ql , qr, qeq} by just taking the set-union of the states and tran-
sitions. However, this is not yet very satisfying as the three following relations are very
similar but nonetheless needed for the definition of max and eq:

R(qeq,Amaxeq) = {(t, t) | t ∈ Tnat(Σ)}
R(qr,Amaxeq) = {(□, t, t) | t ∈ Tnat(Σ)}
R(ql ,Amaxeq) = {(t,□, t) | t ∈ Tnat(Σ)}

Padding removing Our solution is to change the convolution method by removing
any padding, which were primarily making sense for untyped and fixed-arity convo-
lutions. The only role that the padding had was to fill the gaps of arity mismatch for
marking which term was short on subterms. However, because symbols have a type
and thus an arity, this information is redundant and can therefore be eliminated.

Example 5.18 (padding-free convoluted automaton Amaxeq). The automaton Amaxeq

can be rewritten in a padding-free version:

⟨z, z, z⟩() → qmax ⟨s, s, s⟩(qmax) → qmax

⟨z, s, s⟩(qr) → qmax ⟨s, z, s⟩(ql) → qmax

⟨z, z⟩() → qr ⟨z, z⟩() → ql

⟨s, s⟩(qr) → qr ⟨s, s⟩(ql) → ql

⟨z, z⟩() → qeq ⟨s, s⟩(qeq) → qeq

Without the use of padding, it can even be simplified to only 6 transitions and 2 states
by replacing ql and qr by qeq:

⟨z, z, z⟩() → qmax ⟨s, s, s⟩(qmax) → qmax

⟨z, s, s⟩(qeq) → qmax ⟨s, z, s⟩(qeq) → qmax

⟨z, z⟩() → qeq ⟨s, s⟩(qeq) → qeq

This formalism is more convenient and allows to factorize states and transitions.

64

Convoluted tree automata

5.2 Convolution without padding

We now formally define the left-convolution without the use of padding. The arity
of symbols may change within a tree, so this convolution must be defined on all arities
at once.

Definition 5.19 (Left-convolution without padding). The any-ary left convolution, writ-
ten ⃝L , is defined as:

⃝L ((#»e1, . . . , #»ennn)) = (
#»

e′1, . . . ,
#»

e′k)

with k = max
i∈[1...n]

(| #»ei |) and ∀j ∈ [1 . . . k],
#»

e′j = (#»ei [j]
#»ei [j]#»ei [j])i∈[1...n]∧j∈Pos(#»ei)∧j∈Pos(#»ei)∧j∈Pos(#»ei)

Once again, the differences with Definition 5.2 are written in bold text. Instead of
adding a padding when the subterm #»ei [j] is not defined, we add the condition j ∈
Pos(#»ei), making sure of their well-definedness.

Example 5.20 (Left-convolution without padding). Again using #»e1, #»e2, #»e3, and #»e4 from
Example 5.3, they can be organised in the following array, now not adding any padding
but still aligning them left.

a1 a2 a3

b1

c1 c2

d1

The left convolution ⃝L (#»e1, #»e2, #»e3, #»e4) is equal to
(
(a1, b1, c1, d1), (a2, c2), (a3)

)
, which cor-

responds to the columns of the array.

This convolution loses some information: the input tuple from which each output el-
ement came. However, knowing the arity of the input tuples is enough to reverse this
convolution operation. Therefore, because typed functions f have an arity | f |, no in-
formation is lost while convoluting terms, as shown by the existence of the function
Θ of Definition 5.25 and Lemmas 5.27 and 5.28 which show that removing padding
preserves the recognizable relations.

The definitions of the any-ary right-convolution ⃝R and complete-convolution ⃝C fol-
low the same spirit as the definition of ⃝L , i.e. it corresponds to their definition that

65

Convoluted tree automata

uses padding but without it, so we do not explicitly redefine them. We usually write
⃝· for any of ⃝L , ⃝R , and ⃝C .
We now define convoluted alphabets and convolution of terms. The alphabet for con-
voluted terms without padding are defined for all arities, so note that tuples of symbols
of the alphabet’s domain are of all sizes.

Definition 5.21 (Alphabet for the convoluted terms). Let Σ a typed alphabet and ⃝· a
convolution. The convoluted alphabet Σ⃝· has for domain

⋃
i∈N Σi⋃
i∈N Σi⋃
i∈N Σi and, for ⟨ f1, . . . , fn⟩

a (tuple of) symbols, its type is τ(⟨ f1, . . . , fn⟩) = ⃝· (#»τ 1, . . . , #»τ n) → (τ1, . . . , τn) with
∀i ∈ [1 . . . n], τ(fi) =

#»τ i → τi.

The convolutions of terms ⃝L t, ⃝R t, ⃝C t are defined as the ones with padding but using
the padding-free convolution ⃝· instead of□· n.

Definition 5.22 (convolution of terms without paddings). Let ⃝· be any of ⃝L , ⃝R , and
⃝C . The convolution of terms without padding, written ⃝· t, takes a tuple of terms
(t1, . . . , tn) on an alphabet Σ and returns a term ⃝· t(t1, . . . , tn) on the convoluted al-
phabet Σ⃝· . The convolution of terms is recursively defined as:

⃝· t (f1(
#»t1), . . . , fn(

#»tn)) =
〈

f1, . . . , fn
〉
(⃝· t(

#»

t′1), . . . ,⃝· t(
#»

t′k))

with
(#»

t′1 , . . . ,
#»

t′k
)
= ⃝· (#»t1 , . . . ,

#»tn)

Example 5.23 (Padding-free left-convoluted terms). Here is Example 5.6 with the padding-
free left convolution ⃝L t.

⃝L t(,)s

z

s

s

s

z

=
〈
s, s

〉

〈
z, s

〉

〈
s
〉

〈
z
〉

With lex and nex from Example 5.6, ⃝L t(lex, nex)

=〈
cons, s

〉

〈
z, s

〉

〈
z
〉

〈
cons

〉

〈
z
〉 〈

nil
〉

The padding-free left-convolution ⃝L t also has the effect of overlaying same-position
subterms, but without the padding symbols from terms that are not defined at a posi-
tion.

Lemma 5.24. Let (t1, . . . , tn) ∈ T (Σ)n.
Then t = ⃝L t((t1, . . . , tn)) is the tree such that ∀π ∈ N∗:

66

Convoluted tree automata

(a) π ∈ Pos(t) ⇐⇒ (n = 0 ∧ π = ϵ) ∨ ∃i ∈ [1 . . . n]. π ∈ Pos(ti)

(b) π ∈ Pos(t) ⇒ t[π] = ⃝L t((ti[π])i∈[1...n]∧π∈Pos(ti)
)

(c) π ∈ Pos(t) ⇒ Root(t[π]) =
#»

f with
#»

f = (Root(ti[π]))i∈[1...n]∧π∈Pos(ti)

Proof. This proof is similar to that of Lemma 5.7 and 5.8 so we elide it.

The representation of convolutions with or without padding are both equivalent in
expressivity. We define a function Θ to go from a padding version to the padding-free
version.

Definition 5.25 (Removing padding). Let ⃝· be any of ⃝L , ⃝R , or ⃝C .
Let Θ : (Σ□)

n → Σ⃝· be the function removing paddings from tuples of symbols:

Θ((f1, . . . , fn)) = (fi)i∈[1...n]∧ fi ̸=□

This function is extended to tuples of types:

Θ((τ1, . . . , τn)) = (τi)i∈[1...n]∧τi ̸=□

Definition 5.26 (Θ generalization). Θ can be extended to

— terms by the map generalisation:

Θ(
#»

f (#»t1 , . . . ,
#»tk)) = Θ(

#»

f)(Θ(
#»t1), . . . , Θ(

#»tk))

— states by being applied to their type:

Θ(q) with (τ(q) = τq) is q with (τ(q) = Θ(τq))

— transitions by being applied to their symbol and states:

Θ(f (q1, . . . , qk) → q) = Θ(
#»

f)(Θ(q1), . . . , Θ(qk)) → Θ(q)

— automata by being applied to their set of states and transitions:

Θ(Q, ∆) = (Θ(Q), Θ(∆))

This operation allows to transform a convoluted term that uses padding into a convo-
luted term that does not and that represents the same tuple of terms.

67

Convoluted tree automata

Lemma 5.27. Let #»t ∈ T (Σ)n. Then Θ(□L t (
#»t)) = ⃝L t(

#»t).

Proof. Let t□ =□L t (
#»t) and t = ⃝L t(

#»t).

— By Lemma 5.7 and 5.24, we have that Pos(t□) = Pos(t).

— ∀π ∈Pos(t□), Root(Θ(t□)[π])

= (by immediate induction on π) Θ(Root(t□[π]))

= (by Lemma 5.8) Θ((Root(ti[π]□))i∈[1...n])

= (by definition of Θ) (Root(ti[π]))i∈[1...n]∧π∈Pos(ti)

= (by Lemma 5.24.(c)) Root(t[π])

Therefore Θ(t□) = t.

Not using padding preserves the expressivity of automata. We prove that, for every
automaton defined using the left-convolution with padding, an equivalent automaton
using left-convolution without padding can be defined, i.e. with the same states recog-
nizing the same relation. The other direction, asserting that removing paddings does
not augment the expressivity, is more intuitive but not proven here, as the construction
may require to duplicate states (for type-related reasons) and is therefore more tedious.

Theorem 5.28 (Θ preserves relations). Let A be an automaton on alphabet Σ□L and q be one
of its states. Then R(A, q) = R(Θ(A), Θ(q)) with Θ(A) an automaton on alphabet Σ⃝L .

Proof. First, we have

R(A, q) = R(Θ(A), Θ(q))

⇐⇒ (By definition of R(·, ·))
∀ #»t ∈ T (Σ)n,

[
□L t (

#»t) ∈ L(A, q) ⇐⇒ ⃝L t(
#»t) ∈ L(Θ(A), Θ(q))

]

⇐ (By Lemma 5.27)

∀t□ ∈ Tτ(q)(Σ□L),
[
t□ ∈ L(A, q) ⇐⇒ Θ(t□) ∈ L(Θ(A), Θ(q))

]

Let t□ ∈ Tτ(q)(Σ□L), thus t□ =
#»

f (t□1, . . . , t□n) for some symbol
#»

f ∈ Σ□L and ∀i ∈
[1 . . . n], t□i ∈ T (Σ□L) with τ(t□) = τ(q). Recall that Θ(t□) = Θ(

#»

f)(Θ(t□1), . . . , Θ(t□n)).

Let us prove t□ ∈ L(A, q) ⇐⇒ Θ(t□) ∈ L(Θ(A), Θ(q)) by double implication.

68

Convoluted tree automata

⇒: Suppose t□ ∈ L(A, q). Let us prove Θ(t□) ∈ L(Θ(A), Θq) by induction on the
hypothesis t□ ∈ L(A, q).

There exists a transition
#»

f (q1, . . . , qn) → q ∈ ∆(A) such that ∀i ∈ [1 . . . n], t□i ∈
L(A, qi). By induction, ∀i ∈ [1 . . . n], Θ(t□i) ∈ L(Θ(A), Θ(qi)).

The translation of the transition Θ(
#»

f (q1, . . . , qn) → q) is Θ(
#»

f)(Θ(q1), . . . , Θ(qn)) →
Θ(q) and is a transition of Θ(A). Therefore Θ(

#»

f)(Θ(t□1), . . . , Θ(t□n)) ∈ L(Θ(A), Θ(q)),
which concludes Θ(t□) ∈ L(Θ(A), Θ(q)).

⇐: Suppose Θ(t□) ∈ L(Θ(A), Θ(q)). Let us prove t□ ∈ L(A, q) by induction on the
hypothesis Θ(t□) ∈ L(Θ(A), Θ(q)).

There exists a transition
#»

f ′(q1, . . . , qn) → q ∈ ∆(A) such that ∀i ∈ [1 . . . n], Θ(t□i) ∈
L(Θ(A), Θ(qi)) and with Θ(

#»

f) = Θ(
#»

f ′). By induction, ∀i ∈ [1 . . . n], t□i ∈
L(A, qi).

Because τ(t□) = τ(q), we have τout(
#»

f) = τ(q). Because the transition
#»

f ′(q1, . . . , qn) →
q is well-typed, we also have τout(

#»

f ′) = τ(q), so τout(
#»

f) = τout(
#»

f ′). Moreover,
Θ(

#»

f) = Θ(
#»

f ′), so
#»

f =
#»

f ′.

Therefore the transition
#»

f ′(q1, . . . , qn) → q can be rewritten as
#»

f (q1, . . . , qn) → q
and, using induction hypotheses, be used to conclude that t□ ∈ L(A, q).

Definition 2.37 explains how to see a classical tree automaton as a Herbrand model.
However, this is not interesting for convoluted automata, as making the relation sym-
bols appear as term constructors prevents from convoluting its arguments in a satis-
fying way because it makes all arguments appear as subterms of the same function.
Moreover, having a special state of type bool is of no use, as each state already repre-
sents a relation.

Definition 5.29 (Representing a Herbrand model with a convoluted automaton). A
convoluted automaton A with states Q represents one relation per state q of Q, which
can thus be associated with the Herbrand model which maps each state to its denoted
relation: qi 7→ R(A, qi).
However, we often rather need to represent a Herbrand model for some relation symbols
{R1, . . . , Rn} by a convoluted automaton. In that case, each relation symbol Ri is simply
assigned a state qi that denotes its relation, i.e. A denotes the Herbrand model Ri 7→
R(A, qi). This mapping between relation symbols and states is often, in the following,
made implicit by (re)naming the state assigned to a relation symbol R by qR.

69

Convoluted tree automata

By convention, we say that L(A, q) = R(A, q) = ∅ for any state q that is not in the set
of states Q(A). With H a Herbrand model denoted by an automaton A, we overload
the notation A |= φ to mean H |= φ.
Note that we may want to represent a relation by multiple states instead of only one
(e.g. in the case of a deterministic convoluted automaton). Then, a relation between
relation symbols and states µ ⊆ R × Q can be defined, and the corresponding Her-
brand model H is defined as R 7→ ⋃

q∈µ(R) R(A, q). In that case, we explicitly write
(A, µ) |= φ for H |= φ.

Example 5.30 (Length model). The length relation Len can be represented using the
right convolution ⃝R in the automaton A with states {qn, qLen} and transitions

〈
z
〉
() → qn

〈
s
〉
(qn) → qn

〈
nil, z

〉
() → qLen

〈
cons, s

〉
(qn, qLen) → qLen.

With φ = Len(cons(X, L), s(N)) ⇐ Len(L, N), we have A |= φ.

Finally, note that convolutions can also be seen as a shuffling (with duplication for the
complete convolution) of positions.

Lemma 5.31 (Convolution and positions). Let ⃝· be any of ⃝L , ⃝R , ⃝C . Let #»e = (#»e1, . . . , #»en)

with each #»ei a tuple. Let, for all i ∈ [1 . . . n], #»πi = (i · 1, . . . , i · | #»ei |) be the positions point-
ing to each element of #»ei from #»e . Let (

#»

e′1, . . . ,
#»

e′k) = ⃝· (#»e1, . . . , #»en) and (
»

π′
1, . . . ,

»

π′
k) =

⃝· (# »π1, . . . , # »πn).
Then, for all j ∈ [1 . . . k], writing

»

π′
j as (π1 . . . , πm), we have

#»

e′j = (#»e [π1], . . . , #»e [πm]).

Proof. For any i ∈ [1 . . . n] and j ∈ [1 . . . | #»ei |], we have #»ei [j] =
#»e [i · j] = #»e [#»πi[j]]. Be-

cause ⃝· is polymorphic w.r.t the tuples element, we immediately have ∀j ∈ [1 . . . k], ∀i ∈
[1 . . . | #»

e′j |],
#»

e′j [i] =
#»e [

»

π′
j[i]], which concludes.

70

CHAPTER 6

LEARNER/TEACHER FOR CONVOLUTED

AUTOMATA

This chapter is dedicated to the Learner and Teacher procedures using convoluted
tree automata as models. The generic procedure for satisfiability of a set of clauses (for
which the learner and teacher are defined) is presented in Section 4.3. Using convoluted
automata, the teacher’s role is to verify, given a convoluted tree automaton A and a set
of clauses Γ, whether A |= Γ. The learner’s role is to infer, given a set of ground clauses
Γ̂, a new automaton A such that A |= Γ̂, and hopefully A |= Γ.
We begin by defining the Teacher procedure in Section 6.1, then define the Learner
procedure in Section 6.2, and finally prove two theorems for the whole learner/teacher
Sat procedure in Section 6.3.

6.1 Teacher

In this section, we define the Teacher procedure. The Teacher takes as input a finite
set of clauses Γ, representing (an approximation of) the program and property to ver-
ify, and a convoluted automaton A, representing a proposed model that is intended to
prove satisfiability of Γ. If A |= Γ then Teacher(A, Γ) should return None and the verifi-
cation algorithm succeeds. If A ̸|= Γ then Teacher(A, Γ) should return Some(φ̂) where
φ̂ is a counterexample to A |= Γ, i.e. a ground instance of some clause φ ∈ Γ such that
A ̸|= φ̂. However, this problem is undecidable in general, as stated in Theorem A.10.
Therefore the procedure given here, being correct, is incomplete, i.e., it may diverge.
Teacher is based on the InhabitsA procedure which allows the checking A |= φ of a sin-
gle formula φ ∈ Γ. Teacher(A, Γ) is then defined by using one instance of the InhabitsA
procedure per formula φ ∈ Γ. Every definition throughout this chapter is valid for any
convolution ⃝· and right convolution ⃝R is used in all the examples. This abstraction
will allow us to easily adapt the whole procedure to SHoCs in Section 8.1. Observe how

71

Learner/Teacher for convoluted automata

the precise structure of transitions from tree automata is only used in Definition 6.7 and
is afterwards abstracted. This allows us to only redefine one function in order to adapt
the whole procedure to SHoCs, as discussed in Section 8.1. Every Lemma and Theorem
whose proof is omitted in this section can be found in Appendix A.1.

6.1.1 The InhabitsA procedure

The goal of this section is to devise an algorithm InhabitsA to search for counterex-
amples of a claim A |= φ. The algorithm we define is guided by the transitions of the
automaton A.
Note that, because every state of a convoluted tree automaton can be seen as the re-
lation symbol of the relation it denotes (Definition 5.29), we may as well use them as
relation symbols in first-order atoms.

Definition 6.1 (Atom with a state). An atom is the data of a state q and a tuple of pattern
(p1, . . . , pn) of compatible type, i.e. τ(q) = (τ(p1), . . . , τ(pn)). We write such an atom
as a first-order logic atom q(p1, . . . , pn). An atom is usually written ω and a set of atoms
Ω.

Notations from first-order logic can thus be used on atoms ω = q(p1, . . . , pn) and sets
of atoms Ω. That is, for A an automaton, we can write A |= ω and A |= Ω with the
same meaning as in Definition 2.25.
We now make more formal the idea of a counterexample to φ as being a substitution
that makes the body of the clause true but the head false. Recall that qR is the state that
denotes relation R (Definition 5.29) and that qc is the state denoting the complement
relation of the state q.

Definition 6.2 (Negating a clause). Let φ be the clause H ⇐ B. We write Ωφ for the set
{qc

R(
#»p) | R(#»p) ∈ H} ∪ {qR(

#»p) | R(#»p) ∈ B}.

Proposition 6.3 (Model checking as substitution searching). For any automaton A and
clause φ,

A ̸|= φ ⇐⇒ There exists a substitution σ such that A |= σ(Ωφ)

Example 6.4 (Verifying that all lists are of even length). Let φ be Even(N) ⇐ Len(L, N),
a formula stating that all lists are of even length. Let the right-convoluted ⃝R automaton

72

Learner/Teacher for convoluted automata

Ale with states {qEven, qLen, qn, qc
Even} and transitions

(A) :
〈
z
〉
() → qn (1)

〈
z
〉
() → qEven

(B) :
〈
s
〉
(qn) → qn (2) :

〈
s
〉
(qc

Even) → qEven

(C) :
〈
cons, s

〉
(qn, qLen) → qLen (3) :

〈
s
〉
(qEven) → qc

Even

(D) :
〈
nil, z

〉
() → qLen

Note that the state qLen denotes the relation Len, which related lists and their length ;
qEven denotes the relation Even, the set of all even natural numbers ; qc

Even denotes the
complement of the relation Even, the set of all odd natural numbers. Even appears in
the head of the property φ, which is the reason we need its complement encoded in A
(in qc

Even).
To check whether Ale ̸|= φ, we first translate φ into the set of atoms representing its
negation Ωφ = {qLen(L, N), qc

Even(N)}. By proposition 6.3, Ale ̸|= φ iff there exists a
substitution σ such that Ale |= σ(Ωφ).

For A a convoluted automaton and φ a property, the procedure InhabitsA(φ), trying
to check whether A |= φ or A ̸|= φ, will therefore search for a substitution σ such that
A |= σ(Ωφ). We now define this procedure.

Inhabits

Intuitively, any solution σ for an atom ω = q(p1, . . . , pn), i.e. substitution σ such that
σ(p1, . . . , pn) ∈ R(A, q), can be found by following transitions of the automaton A. A
transition

〈
f1, . . . , fn

〉
(q1, . . . , qk) → q of A can act as a typing rule whose application

to the atom q(p1, . . . , pn) generates k new atoms (one for each sub-state qj of the tran-
sition) and n new algebraic datatype constraints, the ith stating that pattern pi must
be of the form fi(

»

Xi) with
»

Xi some fresh variables. This kind of reasoning leads to the
definition of the unfolding functions, which are then used to define InhabitsA(Ω).
We first define compatibility(#»p ,

#»

f), a function that synthesizes under what condition
a tuple of patterns can be of the shape of a tuple of function symbols.

Definition 6.5 (Compatibility of patterns with symbols). Let (p1, . . . , pn) be a tuple of
patterns and

〈
f1, . . . , fn

〉
a tuple of symbols. Then compatibility((p1, . . . , pn), (f1, . . . , fn))

is the syntactic unification problem {pi
?
= fi(

»

Xi) | i ∈ [1 . . . n]} with, for all i ∈ [1 . . . n],
»

Xi some fresh variables.

73

Learner/Teacher for convoluted automata

Example 6.6 (compatibility(#»p ,
#»

f)). Let
#»

f =
〈
cons, s

〉
. Let #»p1 = (cons(N, L), N) and

#»p2 = (cons(N, L), z). Then compatibility(#»p1,
#»

f) = {cons(N, L) ?
= cons(X1, X2), N ?

=

s(X3)} is unifiable by the MGU σ = {L 7→ X2, N 7→ s(X3), X1 7→ s(X3)}. However,
compatibility(#»p2,

#»

f) = {cons(N, L) ?
= cons(X1, X2), z ?

= s(X3)} is not unifiable, as z
cannot be made equal to s(X3).

With some patterns #»p that are trivially compatible with the head symbols
#»

f of a tran-
sition r =

#»

f (#»q) → q, we can use the transition to start recognizing #»p in the state
q. That is, in order to satisfy the atom q(#»p), it is sufficient to satisfy the set of atoms
un f oldOne(#»p , r).

Definition 6.7 (un f oldOne: generation of new atoms). Let #»p = (f1(
#»p1), . . . , fn(

»pn)) be
a tuple of patterns and r =

〈
f1, . . . , fn

〉
(q1, . . . , qk) → q a transition of some automaton.

Then un f oldOne(#»p , r) = {qj(
#»

p′j) | j ∈ [1 . . . k]} with (
#»

p′1, . . . ,
#»

p′k) = ⃝· (#»p1, . . . , # »pn).

Example 6.8 (un f oldOne). Let #»p = (cons(X, nil), s(N)) be a tuple of patterns and r =〈
cons, s

〉
(qn, qLen) → qLen be a transition. Then un f oldOne(#»p , r) = {qn(X), qLen(nil, N)}.

In more details, we have, reusing notations from the definition, that n = k = 2,
f1 = cons, f2 = s, #»p1 = (X, nil), #»p2 = (N), q1 = qn, q2 = qLen. Note also that, be-
cause ((X), (nil, N)) = ⃝R (((X, nil)), (N)), we have

#»

p′1 = (X) and
#»

p′2 = (nil, N).

Reasoning about the unfolding of a single atom does not take into account that there
may be shared variables in a set of atoms Ω. Therefore, we define the conjoint unfold-
ing of atoms by a transition each. Note that in the following definition, contrary to
definition 6.7, the patterns may not be able to match the transition’s function symbols
shape, so it returns an optional value.

Definition 6.9 (un f olds: Unfolding a set of atoms with fixed transitions).
Let T = {(ω1, r1), . . . , (ωn, rn)} be a set of pairs of an atom and a transition. We write,
for every i ∈ [1 . . . n], the atom ωi as qi(

#»pi), the transition ri as
#»

fi (
#»qi) → q′i, and let the

unification problem Ei = compatibility(#»pi,
#»

fi). Then, with E =
⋃

i∈[1...n] Ei, we define

un f olds(T) =





Some(
⋃

i∈[1...n] Ωi, σδ) if σδ = MGU(E) exists and, ∀i ∈ [1 . . . n],

Ωi = un f oldOne(σδ(
#»pi), ri) and qi = q′i ;

None otherwise.

Example 6.10 (un f olds). Let

74

Learner/Teacher for convoluted automata

— ω1 = qLen(L, N) and r1 =
〈
cons, s

〉
(qn, qLen) → qLen ;

— ω2 = qLen(L, N) and r2 =
〈
nil, z

〉
() → qLen ;

— ω3 = qc
Even(N) and r3 = ⟨s⟩(qEven) → qc

Even ;

— T{1,3} = {(ω1, r1), (ω3, r3)} and T{2,3} = {(ω2, r2), (ω3, r3)}.

Then

— un f olds(T{1,3}) = Some(Ω{1,3}, σ{1,3}) with σ{1,3} = {L 7→ cons(L1, L2), N 7→
s(N1)} and Ω{1,3} = {qn(L1), qLen(L2, N1), qEven(N1)}.

In more details, we have E1 = compatibility((L, N), r1) = {L ?
= cons(L1, L2), N ?

=

s(N1)}, E3 = compatibility((N), r3) = {N ?
= s(N3)} and MGU(E1 ∪ E3) =

σ{1,3}. Also, Ω1 = un f oldOne(σ{1,3}(ω1), r1) = {qn(L1), qLen(L2, N1)} and Ω3 =

un f oldOne(σ{1,3}(ω3), r3) = {qEven(N1)}, both constituting Ω{1,3}.

— un f olds(T{2,3}) = None because using transition r2 on atom ω2 forces N to be of
the shape z and using transition r3 on atom ω3 forces N to be of the shape s(N1),
so no MGU exists.

Lemma 6.11 (un f olds). Let Ω = {ω1, . . . , ωn} be a set of atoms, T = {(ω1, r1), . . . , (ωn, rn)}
be a set of pairs of an atom and a transition of some automaton A, assigning a transition to
each atom ωi of Ω. Suppose un f olds(T) = Some(Ω′, σδ). Then for all substitution σ such
that A |= σ(Ω′), we have A |= σ(σδ(Ω)).

Now that unfolding a set of atoms that had a transition assigned to each is defined
(un f olds), we can define the set of possible unfoldings of a set of atoms in an automa-
ton.

Definition 6.12 (un f oldsA: All unfoldings of a set of atoms in A). Let Ω = {ω1, . . . , ωn}
be a set of atoms and A be an automaton. Then

un f oldsA(Ω) = {(Ω′, σδ) | ∀i ∈ [1 . . . n], ∃ri ∈ ∆(A),
un f olds({(ω1, r1), . . . , (ωn, rn)}) = Some(Ω′, σδ).}

Definition 6.13 (InhabitsA). Let A be a convoluted automaton and Ω a set of atoms.
InhabitsA(Ω) is a non-deterministic algorithm defined as:

1. Let σ0 := ∅, Ω0 := Ω, and i := 0.

2. If Ωi = ∅, then return Some(σi).

75

Learner/Teacher for convoluted automata

3. CHOOSE (Ωi+1, σδ) ∈ un f oldsA(Ωi).
If no such choice can be made (i.e. un f oldsA(Ωi) = ∅), then return None.
Then let σi+1 := σδ ◦ σi, i := i + 1, and go back to instruction 2.

InhabitsA is a non-deterministic algorithm. We write Inhabitsdet
A for a determinisation

of InhabitsA where the choices are implemented as a breadth-first search until the re-
turned value is a Some(_) or all branches return None. That is, Inhabitsdet

A returning
Some(_) in i steps implies that the same execution can be done in InhabitsA and that
any other execution of InhabitsA returning Some(_) in j steps is such that i ≤ j. Also,
if there exists an execution of InhabitsA that returns Some(_) in i steps, then Inhabitsdet

A
returns Some(_) in j ≤ i steps. We call positive instance a set of atoms Ω for which there
exists an execution of InhabitsA(Ω) that returns Some(_), or equivalently for which the
execution Inhabitsdet

A (Ω) returns Some(_).

Example 6.14. This example is a complete execution of Inhabitsdet
Ale

(Ωφ) with Ale and
φ = Even(N) ⇐ Len(L, N) defined in Example 6.4.
The initialisation sets Ω0 = Ωφ = {qLen(L, N), qc

Even(N)}.
The execution does not stop at instruction 2 because Ω0 ̸= ∅, so let us consider
un f oldsAle(Ω0). This was mostly Example 6.10. Indeed, the choice of transition rω for
each atom ω can be restricted to those defining the state of the atom ω, as otherwise
un f olds will only return None. With this in mind, there is one potentially compati-
ble transition for the atom qc

Even(N) and two for qLen(L, N). Relying on example 6.10,
our only choice is to select transition

〈
cons, s

〉
(qn, qLen) → qLen for qLen(L, N) and

⟨s⟩(qEven) → qc
Even for qc

Even(N). Thus un f oldsAle(Ω0) = {(Ω1, σ0→1)} with σ0→1 =

{L 7→ cons(L1, L2), N 7→ s(N1)} and Ω1 = {qn(L1), qLen(L2, N1), qEven(N1)}. σ1 is
defined as σ0→1 ◦ σ0 = σ0→1.
We have Ω1 ̸= ∅, so the execution does not stop at step 1 (recall that the procedure
started at step 0), so let us consider un f oldsAle(Ω1).
The only four possibilities of transitions choices are:

a) Applying transition

—
〈
z
〉
() → qn on qn(L1),

—
〈
z
〉
() → qEven on qEven(N1), and

—
〈
nil, z

〉
() → qLen on qLen(L2, N1).

b) Applying transition

76

Learner/Teacher for convoluted automata

—
〈
z
〉
() → qn on qn(L1),

—
〈
s
〉
(qc

Even) → qEven on qEven(N1), and

—
〈
cons, s

〉
(qn, qLen) → qLen on qLen(L2, N1)

c) Same as a), but apply
〈
s
〉
(qn) → qn on qn(L1) instead.

d) Same as b), but apply
〈
s
〉
(qn) → qn on qn(L1) instead.

Thus un f oldsAle(Ω1) = {(Ωa)
2 , σ

a)
1→2), (Ω

b)
2 , σ

b)
1→2), (Ω

c)
2 , σ

c)
1→2), (Ω

d)
2 , σ

d)
1→2)} with

a) Ωa)
2 = ∅ and σ

a)
1→2 = {L1 7→ z, L2 7→ nil, N1 7→ z}

b) Ωb)
2 = {qn(L21), qLen(L22, N11), qc

Even(N11)} and
σ

b)
1→2 = {L1 7→ z, L2 7→ cons(L21, L22), N1 7→ s(N11)}

c), d) Similar to a) and b).

Because Inhabitsdet
Ale

is implemented as a breadth-first search, its execution will try these
four combinations until one of them returns Some(_). It first tries the case a), so Ω2 =

Ωa)
2 = ∅ and σ2 = σ

a)
1→2 ◦ σ1 = {L 7→ cons(z, nil), N 7→ s(z)}. Because the set of atoms

Ω2 is empty, the execution stops and returns σ2.

Note that the found substitution σ2 makes sense for disproving the property Even(N) ⇐
Len(L, N), as it witnesses the existence of a list of non-even length.

Theorem 6.15 (InhabitsA correctness and relative completeness). Let A be an automaton
and Ω a set of atoms.

— Correctness: If InhabitsA(Ω) terminates with Some(σ), then A |= σ(Ω).

— Relative completeness: If there exists a substitution σ such that A |= σ(Ω), then
there exists a terminating execution of InhabitsA(Ω) returning Some(_).

Note that the completeness is relative: no termination guarantee is given when there
does not exists such a substitution, which is the focus of Section 6.1.1.

The substitutions returned by InhabitsA describe counterexamples whose height can
be framed by the step i at which the algorithm stopped, which later helps to prove the
relative completeness of the Sat procedure.

Lemma 6.16 (InhabitsA height boundedness). If InhabitsA(Ω) terminates at step i with
Some(σ), then i ≤ ht(σ(Ω)) ≤ i + ht(Ω).

77

Learner/Teacher for convoluted automata

We now present two sound optimizations which significantly improve the proving and
disproving power of the proof search procedure. Using those optimizations makes this
procedure usable and efficient in practice (see experiments in Section 9.2). The first one
is a loop detection, allowing the procedure to prune the search space and stop on more
negative instances, and the second one is the splitting of independent atoms from a set
of atoms, allowing the procedure to lower its unnecessary combinatorics.

Pruning the search tree

The InhabitsA procedure is for now very inefficient at proving the non-existence of a
substitution. This first optimisation consists in pruning the search tree in order to avoid
the following situation.

Example 6.17 (Pruning is necessary). A very simple unsatisfiable set of atoms is the
following, stating that N is both even and odd: Ω0 = {qEven(N), qc

Even(N)}.
During the execution of InhabitsAle(Ω0), the only element in un f oldsAle(Ω0) is (Ω1, σ1)

with σ1 = {N 7→ N1} and Ω1 = {qEven(N1), qc
Even(N1)}, which corresponds to using

transitions
〈
s
〉
(qEven) → qEvenc on atom qEvenc(N) and

〈
s
〉
(qEvenc) → qEven on atom

qEven(N). We see that Ω1 is very similar to Ω0, in fact identical modulo renaming. The
execution of Inhabitsdet

Ale
(Ω0) thus runs forever, with every Ωi being equivalent.

The search space is, for almost all sets of atoms, infinite. Without pruning, it would
be impossible to cover the whole search space, and therefore negative instances would
(almost) all never terminate.
Pruning consists in, during an execution InhabitsA(Ω), returning None as soon as the
current set of atoms Ωi is harder than (or equivalent to) a set of atoms Ωj with j < i.
See lines 2 and 3 of the final InhabitsA algorithm from Definition 6.29 for a precise
formulation of this pruning extension. Pruning the search tree allows, in some cases,
to finitely ensure that no satisfying substitution exists.
We begin by formally defining what as easier set of atoms is (Definition 6.18) and a
simple characterization of them using substitutions (Lemma 6.19).

Definition 6.18 (Easier set of atoms). A set of atoms Ωa is said to be easier than Ωb,
written Ωa ≤ Ωb, whenever, for any first-order model M,

Assigns(M, Ωb) ̸= ∅ =⇒ Assigns(M, Ωa) ̸= ∅.

78

Learner/Teacher for convoluted automata

Lemma 6.19 (Characterisation of easier sets of atoms). Let Ωa and Ωb two sets of atoms.
Then

Ωa ≤ Ωb ⇐⇒ there exists a substitution σ such that σ(Ωa) ⊆ Ωb.

Now, the following lemma and corollaries states that, given two sets of atoms Ωa ≤ Ωb,
an execution InhabitsA(Ωb) can be simplified into a similar execution of InhabitsA(Ωa).

Lemma 6.20 (Easier relation is preserved by unfolding). Let some automaton A and two
sets of atoms Ωa and Ωb such that Ωa ≤ Ωb. Then, for every (Ω′

b, σb) ∈ un f oldsA(Ωb), there
exists (Ω′

a, σa) ∈ un f oldsA(Ωa) such that Ω′
a ≤ Ω′

b.

Now, we state that pruning branches (returning None) in InhabitsA(Ω) when having
to solve a harder set of atom Ωinew than an earlier set of atoms Ωiold is safe, i.e. keeps its
minimal positive executions. The following figure illustrates how to shorten an execu-
tion in which there exists iold and inew such that iold < inew and Ωiold ≤ Ωinew . The larger
(green) triangle represents the whole execution of InhabitsA(Ω) ; the medium (yellow)
triangle represents the execution starting from step iold ; the smallest (purple) triangle
represents the execution starting from step inew. Shortening the execution consists in
replacing the medium triangle by the smallest one. Note that, in the shorten execution,
the smallest triangle is not whole. This is because the pruning extension considers easier
sets of atoms, so Ωinew may thus have a smaller execution than Ωiold . This corresponds
to Lemma 6.21.

Lemma 6.21 (Safety of pruning). Suppose that an execution of InhabitsA(Ω) returns Some(_)
in i steps and is such that there exists iold, inew ∈ [0 . . . i − 1] with iold < inew and Ωiold ≤
Ωinew . Then there exists an other execution of InhabitsA(Ω) that returns Some(_) at some step
j < i.

Given an execution of InhabitsA(Ω) that returns Some(_), applying Lemma 6.21 while
possible yields the following corollary.

79

Learner/Teacher for convoluted automata

Corollary 6.22 (Iterative pruning). Suppose that an execution of InhabitsA(Ω) returns
Some(_) in i steps. Then there exists an execution of InhabitsA(Ω) that returns Some(_)
in j ≤ i steps such that, for any iold and inew with 0 ≤ iold < inew ≤ j, we have Ωiold ̸≤ Ωinew .

Corollary 6.23. Extending InhabitsA to return None as soon as Ωj ≤ Ωi for some j < i does
not change the smallest positive executions. In particular, the breadth-first search is equivalent
w.r.t positive instances.

Example 6.24 (Pruning of the search tree). Getting back to Example 6.17, we have Ω0 =

{qEven(N), qc
Even(N)} and Ω1 = {qEven(N1), qc

Even(N1)}. With σ = {N 7→ N1}, we have
σ(Ω0) ⊆ Ω1, so Ω0 ≤ Ω1. That is, this execution (and any other) of InhabitsA(Ω0)

would return None with the pruning extension.
As for the execution of Inhabitsdet

Ale
(Ω0) with Ω0 = {qLen(L, N), qc

Even(N)} from Exam-
ple 6.14, it would not have changed with the pruning. However, if the procedure chose
(Ωb)

2 , σ
b)
1→2) in un f oldsAle(Ω1) instead of (Ωa)

2 , σ
a)
1→2) at step 1, then we would have

had Ω2 = Ωa)
2 = {qn(L21), qLen(L22, N11), qc

Even(N11)}. In that case, with σ = {L 7→
L22, N 7→ N11}, we have σ(Ω0) ⊆ Ω2, so Ω0 ≤ Ω2 and the execution Inhabitsdet

Ale
(Ω0)

would have pruned this branch of the search and got back to choosing differently in
un f oldsAle(Ω1).

Independent atoms

As can be seen at step i = 1 of Example 6.14, there is more entanglement than neces-
sary in the InhabitsA procedure. Indeed, with Ω1 = {qn(L1), qLen(L2, N1), qEven(N1)},
the atom qn(L1) shares no variable with the others, so its resolution is independent of
the resolution of qLen(L2, N1) and qEven(N1). These two last atoms, however, cannot be
separated, as we need to ensure that the chosen value for N1 is the same for both atoms.
This independence is not yet used in the InhabitsA algorithm and the resulting unnec-
essary combinatorics can be seen in the four possible unfoldings un f oldsAle(Ω1) =

{(Ωa)
2 , σ

a)
1→2), (Ω

b)
2 , σ

b)
1→2), (Ω

c)
2 , σ

c)
1→2), (Ω

d)
2 , σ

d)
1→2)} from Example 6.14 where the atom

qn(L1) ∈ Ω1 shared no variable with the others two and gets needlessly entangled with
their unfolding, thus creating four redundant cases a), b), c), d). To improve on this, we
separate Ω into independent sub-problems and solve them individually. We therefore
need a notion of independence that would allow for this separate solving,

Definition 6.25 (Independent sets of atoms). Let Ωa, Ωb be two sets of atoms. Ωa and
Ωb are said to be independent, written Ωa||Ωb, if for any first-order model M and

80

Learner/Teacher for convoluted automata

assignments λa ∈ Assigns(M, Ωa) and λb ∈ Assigns(M, Ωb), we have that λab =

λa ∪ λb is well-defined (i.e. is a function) and that λab ∈ Assigns(M, Ωa ∪ Ωb).

Finding a most precise partitioning of Ω into independent sub-problems is not imme-
diate. Indeed, two sets of atoms Ωa and Ωb which share variables may not really de-
pend on each other. E.g. if they share only one variable X such that, for every model M
and assignments λa ∈ Assigns(M, Ωa) and λb ∈ Assigns(M, Ωb), we have λa(X) =

λb(X), then λab = λa ∪ λb is an assignment and we have λab ∈ Assigns(M, Ωa ∪ Ωb).
However, not sharing any variable is a safe, easy-to-compute, and efficient approxima-
tion of independence.

Proposition 6.26 (Approximation of independent sets of atoms). Let Ωa, Ωb be two sets
of atoms. Then

Vars(Ωa) ∩ Vars(Ωb) = ∅ ⇒ Ωa||Ωb

Definition 6.27 (Split(Ω)). Let Ω be a set of atoms. We define a dependency relation
D ⊆ Ω × Ω as D(ω1, ω2)

.
= Vars(ω1) ∩ Vars(ω2) ̸= ∅. Since D is symmetric, its re-

flexive and transitive closure D∗ is an equivalence relation. This equivalence relation
is such that two distinct equivalence classes do not share any variable. We define the
function Split(Ω) to return the equivalence classes of D∗, which are independent sub-
sets of atoms of Ω.

The InhabitsA procedure can use this splitting at each step. Each set of atom Ωi is split
using Split(Ωi), and each subset of Split(Ωi) is independently solved, in order to lose
some unnecessary combinatorics. A precise algorithm is given in Definition 6.29.

Example 6.28 (Split(Ω1)). During the execution of the InhabitsAle from Example 6.14,
we had Ω1 = {qn(L1), qLen(L2, N1), qEven(N1)}. Splitting Ω1 yields two independent
subsets: Split(Ω1) = {{qn(L1)}, {qLen(L2, N1), qEven(N1)}}. The solving of {qn(L1)}
can now be made independent of that of {qLen(L2, N1), qEven(N1)}.

InhabitsA final algorithm

Here is the algorithm InhabitsA that is extended with the pruning of the search space
and the splitting of independent atoms. Because independent atoms are split, the non-
deterministic algorithm can no longer keep one set of atoms Ωi and must use sets of
sets of atoms. To avoid this additional difficulty, we prefer to write InhabitsA recur-
sively. An additional argument h (for history) has been added and corresponds to the
list of sets of atoms that led to the current call of InhabitsA(Ω, h).

81

Learner/Teacher for convoluted automata

Definition 6.29 (InhabitsA(Ω, h)). Let A be a convoluted automaton and Ω a set of
atoms. InhabitsA(Ω, h) is a non-deterministic recursive algorithm defined as:

1. If Ω = ∅, then return Some(∅).

2. If there exists Ωold ∈ h such that Ωold ≤ Ω then return None

3. Let h′ = Ω :: h

4. CHOOSE (Ω′, σδ) ∈ un f oldsA(Ω).
If no such choice can be made (when un f oldsA(Ω) = ∅), then return None.

5. Let {Ω′
1, . . . , Ω′

k} = Split(Ω′)

6. If there exists Ω′
j ∈ Split(Ω′) such that InhabitsA(Ω′

j, h′) = None, then return
None, else, for all j ∈ [1 . . . k], let Some(σj) = InhabitsA(Ω′

j, h′).

7. Return Some((σ′
1 ∪ . . . ∪ σ′

k) ◦ σδ).

This algorithm is the same as Definition 6.13 except for

— The recursive formulation, which therefore builds the resulting substitution from
the leaves up to the initial call instead of iteratively from the initial call to the
leaves. Notations σi and Ωi no longer have meaning with this implementation.

— The splitting of atoms, which leads to having multiple recursive calls to InhabitsA,
see instructions 5 and 6 and the join of solutions at instruction 7. This is safe and
well-defined, as the splitting of atoms yields independent sets of atoms.

— The history tracking and the branch pruning of instruction 2 and 3, which pre-
serves the refutational completeness and the minimal solutions.

This extended InhabitsA algorithm, or more precisely its breadth-first version, is the
one the Teacher procedure use.

6.1.2 Teacher definition and theorems

We now define the Teacher procedure. Recall that the Teacher takes as input a fi-
nite set of clauses Γ and an automaton A. If A |= Γ then Teacher(A, Γ) should return
None. Otherwise, if A ̸|= Γ, then Teacher(A, Γ) should return Some(φ̂) where φ̂ is a
counterexample to A |= Γ, i.e. a ground instance of some clause φ ∈ Γ such that A ̸|= φ̂.
Because the substitutions that InhabitsA return do not necessarily yield ground coun-
terexamples, we need a way to convert a non-ground formula into a ground formula.

82

Learner/Teacher for convoluted automata

Definition 6.30 (Smallest grounding). The smallest grounding of a variable X, written
Grd(X), is a substitution σ such that: (a) σ(X) is ground (b) for any other substitution
σ′ such that σ′(X) is ground, ht(σ(X)) ≤ ht(σ′(X)).

Note that a term may have several smallest grounding. We exploit the minimality of
groundings in the proof of Lemma 6.33. Smallest grounding extends to pattern, tuple,
atom, set of atom, clause, and is possible because we only consider inhabited algebraic
datatypes.

Definition 6.31 (Teacher). Let A be an automaton and Γ be a finite set of clauses.
Teacher(A, Γ) is defined as

1. In parallel, run one instance Inhabitsdet
A (Ωφ) for each formula φ ∈ Γ and en-

force the depth of recursive calls (the value i) to be the same among instances of
Inhabitsdet

A that have not yet terminated.

2. If some instance Inhabitsdet
A (Ωφ) returns Some(σ), then let σ′ = Grd(σ(Ωφ)), φ̂ =

σ′(σ(φ)), and return Some(φ̂).

If all instances have returned None, then return None.

We now have the following following theorem as a rather direct consequence of The-
orem 6.15. Note that completeness is still relative, as no termination is claimed in the
case of A |= Γ.

Theorem 6.32 (Teacher correctness and relative completeness). Let A be a convoluted
automaton and Γ be a set of clauses. Then

— Correctness: If Teacher(A, Γ) terminates with Some(φ̂), then φ̂ is a ground instance
of some formula φ ∈ Γ and A ̸|= φ̂, so A ̸|= Γ.

— Relative completeness: If A ̸|= Γ then Teacher(A, Γ) terminates with Some(φ̂) for
some ground formula φ̂.

Proof.

Both properties can be proven by the following equivalence chain:

83

Learner/Teacher for convoluted automata

Teacher(A, Γ) terminates with Some(_)
iff (by the Teacher procedure)

there exists φ ∈ Γ and a substitution σ such that Inhabitsdet
A (Ωφ) terminates with Some(σ)

iff (By Theorem 6.15)
there exists φ ∈ Γ and a substitution σ such that A |= σ(Ωφ)

iff (By Proposition 6.3)
there exists φ ∈ Γ such that A ̸|= φ

iff
A ̸|= Γ.

The assertion that if Teacher(A, Γ) = Some(φ̂) then φ̂ is a ground instance of some
formula φ ∈ Γ immediately comes from the definition of Teacher, and that A ̸|= φ̂ from
Proposition 6.3.

The height bound on solutions returned by InhabitsA (Lemma 6.16) can be lifted to the
Teacher procedure by the following Lemma 6.33.

Lemma 6.33 (Teacher height boundedness). If Teacher(A, Γ) = Some(φ̂) then for any
other counterexample φ̂′ of A |= Γ, ht(φ̂) ≤ ht(φ̂′) + dh with dh only depending on Γ.

6.2 Learner

The learner’s procedure is responsible for inferring a model, here a convoluted au-
tomaton, from examples or finding a contradiction in them. It takes as input a finite
set Γ̂ of ground clauses and returns None if Γ̂ is contradictory and Some(A) otherwise,
with A being an automaton satisfying Γ̂. This input set of examples is made from one
counterexample to each previous automaton proposed by the learner.

To learn an automaton, this procedure first generates an initial automaton WΓ̂, which is
an automaton that recognizes every tuple of terms

#»t for which there exists an atom
R(#»t) in the set of examples Γ̂ in different states. The procedure then produces a sim-
ple set of first-order constraints EΓ̂ that are meant to be given to a finite-model finder.
These constraints either are unsatisfiable, in which case Γ̂ is unsatisfiable too, or admit
a model. Finally, in case the constraints admit a (smallest) model, the transitions of the
initial automaton WΓ̂ can be rewritten using this model in order to make states recog-
nize more terms, making regularity appear, and thus propose a meaningful automaton

84

Learner/Teacher for convoluted automata

A such that A |= Γ̂ in the hope that A |= Γ, with Γ the set of clauses on which the
whole learner/teacher procedure was started on.

Definition 6.34 (Initial automaton). The initial automaton WΓ̂ of a given finite set of
ground clauses Γ̂ is the smallest automaton (up to state renaming) recognizing exactly
the terms appearing in Γ̂ in a different state for each. That is, for any atom R(#»t) of any
φ ∈ Γ̂, there exists a state q in WΓ̂ such that R(WΓ̂, q) = { #»t }.

This initial automaton construction is carried out by classical automaton algorithms [7].

Example 6.35 (Initial automaton for Len). Suppose the Learner/Teacher procedure
was started on the clauses defining the Len relation (Definition 4.3) using the right-
convolution ⃝R . We observe the procedure after the learner and teacher already had
two exchanges, so the learner has accumulated the two previous teacher’s output,
namely the following examples: Γ̂ex = {Len(nil, z), Len(cons(z, nil), s(z)) ⇐ Len(nil, z)}.

The corresponding initial automaton is WΓ̂ex
= (Q, ∆) with Q = {ql0 , ql1 , qz} and ∆ =

{
〈
nil, z

〉
() → ql0 ,

〈
cons, s

〉
(qz, ql0) → ql1 ,

〈
z
〉
() → qz}.

The relation that these states denote are: R(WΓ̂ex
, ql0) = {(nil, z)}, R(WΓ̂ex

, qz) =

{(z)}, and R(WΓ̂ex
, ql1) = {(cons(z, nil), s(z))}.

Note that the state qz recognizes the term
〈
z
〉

which does not appear (as root) in Γ̂ but
is necessary to recognize (cons(z, nil), s(z)) in ql1 .

The initial automaton WΓ̂ can then be generalised by merging states into equivalence
classes, each class representing a new state. Moreover, each relation that must be learned,
i.e. relations appearing in Γ̂, must be assigned a subset of these equivalence classes for
representing a Herbrand model (see Definition 5.29). Merging states of WΓ̂ leads to ad-
ditional terms being recognized and makes regularity appear. We search for a merging
that minimises the number of states of WΓ̂ while ensuring that the resulting automaton
satisfies Γ̂.

Definition 6.36 (State merging problem). Given a finite set of ground clauses Γ̂, we
define a set of constraints on a first-order signature of constants and unary predicates.

The first-order signature contains one constant q for each state q of WΓ̂ and one unary
predicate R for each relation R that appears in Γ̂.

The constraints given to the finite-model finder are EΓ̂ = Cτ ∪ C f ∪ Cdet, defined as
follows.

85

Learner/Teacher for convoluted automata

— Cτ is a set of disequalities ensuring that merged states all have the same type:

Cτ =
{
(q1 ̸= q2)

∣∣ q1, q2 ∈ Q(W) ∧ τ(q1) ̸= τ(q2)
}

— C f mirrors Γ̂ but, instead of relations being applied to a tuple of terms
#»t , relations

are applied to the state q that recognizes this tuple of terms in WΓ̂.

C f =
{

R1(q1) ∨ . . . ∨ Rk(qk) ⇐ Rk+1(qk+1) ∧ . . . ∧ Rn(qn)
∣∣

R1(
#»t1) ∨ . . . ∨ Rk(

#»tk) ⇐ Rk+1(
»tk+1) ∧ . . . ∧ Rn(

#»tn) ∈ Γ̂
}

with, for each i ∈ [1 . . . n], qi is the state of WΓ̂ such that R(WΓ̂, qi) = { #»ti }.

— Cdet is a set of equality constraints ensuring that merging states still results in a
deterministic automaton:

Cdet =
{
(q = q′) ⇐ (q1 = q′1) ∧ . . . ∧ (qk = q′k)

∣∣
#»

f (q1, . . . , qk) → q ∈ ∆(WΓ̂) ∧
#»

f (q′1, . . . , q′k) → q′ ∈ ∆(WΓ̂)
}

A (minimal) solution to a state merging problem EΓ̂ can be computed by a finite model
finder and is the data of (i) a finite domain D that represents a new set of states (ii) a
function merge : Q(WΓ̂) → D that assigns an element of D to each state q of WΓ̂ (iii) a
function that assigns a subset of D to each predicate R, i.e. a relation µ ⊆ R(Γ̂) ×
D. This relation µ serves to indicate which relation is represented by which states, as
discussed in Definition 5.29. A solution is written as a triple (D, merge, µ).
The transitions of the initial automaton can then be rewritten by replacing every state
q by merge(q).

Definition 6.37 (Generalisation of the initial automaton). Given a solution (D, merge, µ)

to the state merging problem EΓ̂, we generalise the initial automaton WΓ̂ by apply-
ing the merge function to every one of its states: merge(WΓ̂) = (D, ∆) with ∆ =

{ #»

f (merge(q1), . . . , merge(qk)) → merge(q) | #»

f (q1, . . . , qk) → q ∈ ∆(WΓ̂)}.
Every relation R appearing in Γ̂ is represented by the set of states µ(R) in merge(WΓ̂).

A given minimisation problem does not necessarily have a solution, as it will be the
case for a contradictory set of ground constraints Γ̂.

Definition 6.38 (Minimise). Given a finite set of ground clauses Γ̂, the Minimise func-
tion is defined as:

Minimise(Γ̂) =





Some(merge(WΓ̂), µ) if (D, merge, µ) is a minimal solution to EΓ̂

w.r.t the domain size |D|;
None otherwise (if EΓ̂ has no model).

86

Learner/Teacher for convoluted automata

Example 6.39 (Generalisation of the initial automaton). Continuing Example 6.35, we
now define the minimisation problem EΓ̂ex

.
The signature has constant symbols {ql0 , ql1 , qz} and predicate symbols {Len}.
The constraints Cτ = {ql0 ̸= qz, ql1 ̸= qz} are stating that qz cannot be merged with ql0
nor ql1 because they are not of the same type.
The constraints C f = {Len(ql0), Len(ql1) ⇐ Len(ql0)} are stating that Len is denoted
by both the state ql0 and, following the implication, ql1 .
The constraints Cdet = ∅ are empty, as no two transitions of WΓ̂ex

share the same head
symbols.
We have EΓ̂ex

= Cτ ∪ C f ∪ Cdet.
The smallest first-order model of these constraints EΓ̂ex

is a two-elements set D =

{ql , qn} with merge(ql0) = merge(ql1) = ql, merge(qz) = qn, and µ(Len) = {ql}. Let
A = merge(WΓ̂ex

), so Minimise(Γ̂ex) = Some(A, µ).
The generalized automaton A has two states {ql , qn} and three transitions {

〈
nil, z

〉
() →

ql ,
〈
z
〉
() → qn,

〈
cons, s

〉
(qz, ql) → ql} and defines (using µ) an almost-correct relation

for Len: the set of pairs (l, n) of a list of zeros together with its size. The only missing
rule is

〈
s
〉
(qn) → qn, which would be added by the learner in the learning step that

follows because of the constraint it receives: Len(cons(s(z), nil), s(z)) ⇐ Len(nil, z).

We now prove correctness of this approach together with a minimality property.
We begin by Lemma 6.40 which asserts a completeness result of this approach. This
completeness roughly expresses that any (complete and deterministic) automaton can
be obtained by carefully merging the initial automaton.

Lemma 6.40 (State merging completeness). Let Γ̂ be a satisfiable finite set of ground clauses
and A a deterministic and complete automaton with a relation µ ⊆ R(Γ̂)× Q(A) such that
(A, µ) |= Γ̂. Then there exists a function merge : Q(WΓ̂) → Q(A) such that (Q(A), merge, µ)

is a solution to the problem EΓ̂ = Cτ ∪ C f ∪ Cdet.

Proof. Let us first construct the solution (Q(A), merge, µ), i.e. define the function merge:
Let q′ be any state of WΓ̂ and let

#»t be the tuple of terms such that R(WΓ̂, q′) = { #»t }.
Let q be the (by completeness and determinism of A) state such that

#»t ∈ R(A, q). We
now define merge(q′) to be q.
Let us now prove that (Q(A), merge, µ) satisfies EΓ̂.

— Only same-type states have been merged, so it immediately satisfies Cτ.

87

Learner/Teacher for convoluted automata

— Let φq = R1(q1) ∨ . . . ∨ Rk(qk) ⇐ Rk+1(qk+1) ∧ . . . ∧ Rn(qn) be a constraint from
C f and let φ = R1(

#»t1) ∨ . . . ∨ Rk(
#»tk) ⇐ Rk+1(

»tk+1) ∧ . . . ∧ Rn(
#»tn) be the clause

that φq mirrors.

Verifying that φq is satisfied by (Q(A), merge, µ) consists of verifying that merge(q1) ∈
µ(R1) ∨ . . . ∨ merge(qk) ∈ µ(Rk) ⇐ merge(qk+1) ∈ µ(Rk+1) ∧ . . . ∧ merge(qn) ∈
µ(Rn).

The construction of the merge function gives that, for any i ∈ [1 . . . n], merge(qi)

is the one and only (by determinism of A) state such that
#»ti ∈ R(A, merge(qi)).

Verifying that φq is satisfied by (Q(A), merge, µ) is therefore equivalent to check-
ing (A, µ) |= R1(

#»t1)∨ . . .∨ Rk(
#»tk) ⇐ Rk+1(

»tk+1)∧ . . .∧ Rn(
#»tn), which is (A, µ) |=

φ.

Because (A, µ) |= Γ̂, we have (A, µ) |= φ and thus φq is satisfied by (Q(A), merge, µ).

— Let (q = q′) ⇐ (q1 = q′1) ∧ . . . ∧ (qk = q′k) be a constraint from Cdet. This con-
straint comes from having two transitions

#»

f (q1, . . . , qk) → q and
#»

f (q′1, . . . , q′k) →
q′ in WΓ̂ and amounts to verify that merge(q) = merge(q′) ⇐ merge(q1) =

merge(q′1)∧ . . .∧merge(qk) = merge(q′k). Seeing that
#»

f (merge(q1), . . . , merge(qk)) →
merge(q) and

#»

f (merge(q′1), . . . , merge(q′k)) → merge(q′) are transitions of A, de-
terminism of A proves the constraint.

Theorem 6.41 (Correctness). Let Γ̂ be a finite set of ground clauses. Then Γ̂ is contradictory
iff Minimise(Γ̂) = None. Moreover, if Minimise(Γ̂) = Some(A, µ), then (A, µ) |= Γ̂.

Proof.

— Suppose Minimise(Γ̂) = Some(A, µ), so A = merge(WΓ̂) for (D, merge, µ) a min-
imal solution to the constraints EΓ̂ = Cτ ∪ C f ∪ Cdet.

Let φ = R1(
#»t1) ∨ . . . ∨ Rk(

#»tk) ⇐ Rk+1(
»tk+1) ∧ . . . ∧ Rn(

#»tn) be a clause of Γ̂ and
let φq = R1(q1) ∨ . . . ∨ Rk(qk) ⇐ Rk+1(qk+1) ∧ . . . ∧ Rn(qn) be the clause mirror-
ing φ in C f . The constraint φq being satisfied by (D, merge, µ) gives merge(q1) ∈
µ(R1) ∨ . . . ∨ merge(qk) ∈ µ(Rk) ⇐ merge(qk+1) ∈ µ(Rk+1) ∧ . . . ∧ merge(qn) ∈
µ(Rn).

Note that merging states only augment the language of each state, i.e. for any
state q ∈ Q(WΓ̂), R(WΓ̂, q) ⊆ R(merge(WΓ̂), merge(q)). That is, for all i ∈
[1 . . . n], #»ti ∈ R(A, merge(qi)). Because A is deterministic and that for all i ∈

88

Learner/Teacher for convoluted automata

[1 . . . n], #»ti ∈ R(A, merge(qi)), we have that (A, µ) |= Ri(
#»ti) ⇐⇒ merge(qi) ∈

µ(Ri). Therefore (A, µ) |= Γ̂.

— Suppose Minimise(Γ̂) = Some(A, µ). Because (A, µ) |= Γ̂, then Γ̂ is satisfiable.

— Suppose that Γ̂ is satisfiable. Because Γ̂ is finite and ground, it admits a Herbrand
model whose relations have a finite interpretation. Any finite Herbrand model
can be represented by a (complete and deterministic) convoluted automaton A
with some µ to make the link between states and relations, i.e. (A, µ) |= Γ̂. By
Lemma 6.40, there exists a solution (Q(A), merge, µ) of the set of constraints EΓ̂.
Therefore Minimise(EΓ̂) returns Some(A′, µ) for some convoluted automaton A′.

Theorem 6.42 (Minimality). Let Γ̂ be a finite set of ground clauses and suppose Minimise(Γ̂) =
Some(A, µ). Then, for any complete and deterministic automaton A′ such that A′ |= Γ̂, we
have |A| ≤ |A′|.

Proof. Let µ′ = {(R, qR) | R ∈ R(Γ̂)} be the implicit link between states and relations
in A′, and thus because A′ |= Γ̂ we have (A′, µ′) |= Γ̂. From Lemma 6.40, it is possible
to construct a solution (Q(A′), merge, µ′) from (A′, µ′) for the set of constraints EΓ̂.
Because the automaton defined from this solution has states Q(A′), it has the same
size as A′. Moreover, Minimise returns the smallest solution in the number of states
(cardinality of the domain), so |A| ≤ |A′|.

The output of the Minimise function is a tuple of an automaton A and the link µ be-
tween relations and states. In the following, we do not want to have to carry this link
µ so as to simplify manipulation, i.e., we want to have exactly one state to represent
one relation. From an automaton A and a function µ, we can complete A into A′ by
adding the following ϵ-transitions: ∆ϵ = {q → qR | R ∈ dom(µ) ∧ q ∈ µ(R)}. These
ϵ-transitions can then be replaced by non-ϵ-transitions using classical tree automata
procedures [7]. This completed automaton A′ denotes the same Herbrand model as
(A, µ).

Definition 6.43 (Learner). Let Γ̂ be a finite set of ground clauses. Learner(Γ̂) is defined
as:

Learner(Γ̂) =





Some(A′) if Minimise(E) = Some(A, µ)

None otherwise

89

Learner/Teacher for convoluted automata

with A′ the automaton A to which ∆ϵ, the set of ϵ-transitions needed for each rela-
tion R to be represented in a state qR, have been added and transformed into non-ϵ-
transitions.

Example 6.44 (Learner(Γ̂ex)). Continuing Example 6.39, the automaton A is extended
with the ϵ-transitions {ql → qLen}. The resulting automaton A′, after transforming
ϵ-transitions, has one new state qLen and two new transitions:

〈
nil, z

〉
() → qLen and〈

cons, s
〉
(qz, ql) → qLen.

6.3 Assembling the learner and teacher: Sat theorems

The Learner/Teacher procedure is generically defined in Section 4.3. With the con-
voluted automata defined in Chapter 5, the teacher defined in Section 6.1, and the
learner defined in Section 6.2, we finally have a complete instantiation of the Sat pro-
cedure. We now state the two main theorems of Sat. This first theorem states that false
properties are always (theoretically) found.

Theorem 6.45 (Refutational completeness). Let Γ a finite set of contradictory clauses. Then
Sat(Γ) terminates with “Disproved: Γ̂" with Γ̂ a finite subset of the ground instantiations of Γ.

Proof. Let Grd(Γ) be the set of ground instances of Γ. Because we consider the theory
of algebraic datatypes and because Γ is contradictory, Grd(Γ) is contradictory too. By
first-order logic compactness theorem, we know that a set of formulas is contradictory
iff there exists a finite subset of contradictory formulas, so let F ⊆ Grd(Γ) be such a set.
Let H = maxφ̂∈F(ht(φ̂)) be the height of a highest clause in F. Let dh be the value
defined from Γ as mentioned in the proof of Lemma 6.33. Let Cl(F) = {φ̂ | φ̂ ∈
Grd(Γ) ∧ ht(φ̂) ≤ H + dh}. Cl(F) is finite and also contradictory, as F ⊆ Cl(F).
For any step i of Sat(Γ) such that Learner(Γi) = Some(Ai), we have Ai ̸|= F and so let h
be the height of a smallest counterexample of Ai |= F. By Theorem 8.6, Teacher(Ai, Γ) =
Some(φ̂) with φ̂ a ground instance of some formula φ ∈ Γ such that ht(φ̂) ≤ h + dh.
Thus φ̂i ∈ Cl(F).
Because every counterexample φ̂i that the teacher outputs is contained in Cl(F) and of
Lemma 4.13, the ground clauses Γ̂|Cl(F)| accumulated by the learner at step |Cl(F)|
would necessarily be such that F ⊆ Γ̂|Cl(F)|. Therefore there exists a step iunsat ∈
[0 . . . |Cl(F)|] such that Γ̂iunsat is unsatisfiable, and the Sat(Γ) procedure stops at this
step with “Disproved: Γ̂iunsat".

90

Learner/Teacher for convoluted automata

For this second theorem, recall that satisfiability of Γ is undecidable, so Sat can not
be complete. Sat(Γ) may not terminate for two reasons. The first is that Γ may be
satisfiable but not admit a convoluted automaton, in which case Sat will run indefi-
nitely. The second is that even if a satisfying Ai is proposed by the learner, the call to
Teacher(Ai, Γ) may not terminate. However, we do have a relative completeness theo-
rem.

Theorem 6.46 (Relative completeness). Let Γ be a finite set of clauses. If there exists an
automaton A such that A |= Γ, then there exists a step i ∈ N in which Ai, the learner’s
automaton output at this step, is such that Ai |= Γ.

Proof. In this proof, we call size of a convoluted automaton the number of states that it
defines. Suppose that Γ admits an automaton satisfying it, i.e. an automaton A′ such
that A′ |= Γ. Let N be the size of a complete and deterministic automaton A such that
A |= Γ. Any first-order model of Γ is also a model of Grd(Γ) and of every subset of it, so,
for any step i of the Sat procedure, A |= Γ̂i (with Γ̂i the set of examples accumulated
at step i). Therefore any smallest deterministic and complete automaton A′ such that
A′ |= Γ̂i is smaller or equal than N. Because of the minimality of the Minimise function
(Theorem 6.42), any automaton A′ with (A′, µ′) = Minimise(Γ̂i) is of size smaller or
equal than N. Then, with k = |R(Γ)| being the number of relations in Γ, we know that
the automaton A′′ with Some(A′′) = Learner(Γ̂i) is of size smaller or equal than N + k.
Because the number of automata of any fixed size is finite (modulo states names), we
know that the number of automata (that do not satisfy Γ and) that are smaller or equal
than N + k is finite.
Because of lemma 4.13, we know that the learner never outputs the same automaton
twice. We also know that the learner always terminates and, as long as the learner
proposes automata that do not satisfy Γ, the teacher terminates too (Theorem 6.32).
Therefore the learner will end up proposing an automaton satisfying Γ.

91

CHAPTER 7

SHALLOW HORN CLAUSES (SHOCS)

This section formally defines a SHoC as a syntactic restriction of a strict Horn
clause. A set of SHoCs are used to represent a set of relations using inductive seman-
tics, i.e. least fixpoint. The form of SHoCs make them particularly suited for our needs,
as they allow to easily represent many relations that are defined in a simple recursive
manner. Moreover, they enjoy many closure properties and can be inferred from ex-
amples. The restrictions of SHoCs are reminiscent of tree automata and one SHoC can
be rather directly compared to one transition of a convoluted tree automaton, which is
covered in Section 7.4. We begin by defining them in Section 7.1, introducing ϵ-clauses
in Section 7.2, then defining their closure and decision properties in Section 7.3, and
finally discussing their expressivity and comparing them with other formalisms in Sec-
tion 7.4.

7.1 SHoCs definition

We begin by introducing some vocabulary for describing clauses, then define a
SHoC and a SHoCs, and finally discuss the motivation for each particular (syntactic)
restriction of Horn clauses to obtain SHoCs.

Definition 7.1 (Linearity, flatness, shallowness). A pattern or atom f (#»p) is

— linear if every variable appears at most once in it ;

— flat if #»p is a tuple of variables (note that a constant (| f | = 0) is flat) ;

— shallow if #»p is a tuple of flat patterns.

Example 7.2. For instance f (X, g(Y)) is linear but not flat (because g(Y) is not a vari-
able) nor shallow (because a variable X is not flat), f (X, X) is flat but not linear, and
f (g(X), h(Y, Z)) is linear and shallow.

92

Shallow Horn Clauses (SHoCs)

Definition 7.3 (Shallow Horn Clause – SHoC). A Shallow Horn Clause is a strict Horn
clause such that:

(a) the head atom H is linear and shallow,

(b) all atoms of the body B are flat,

(c) the clause has no existential variables, i.e. Vars(B) ⊆ Vars(H).

Definition 7.4 (Shallow Horn Clauses – SHoCs). A SHoCs is a finite set of SHoC.

A SHoCs define relations inductively using the smallest fixpoint semantics, in accor-
dance with Proposition 2.23. We write L(S, R) for the relation denoted by R in S and
overload the notation S |= φ for H |= φ, with H the Herbrand model denoted by (the
least fixpoint of) S. For uniformity with convoluted automata, we also sometimes write
R(S, R) for L(S, R).

Example 7.5 (SHoCs for the relation Len). The Len relation, defined in Definition 4.3
using standard first-order semantics, can be represented by the following SHoCs that
contains two clauses:

Len(nil, z) Len(cons(E, L), s(N)) ⇐ Len(L, N)

SHoC definition motivation The strictness of the SHoCs allows to see each of them
as an induction rule, and a SHoCs as an inductively-defined set of relations, see Defi-
nition 2.23. Shallow heads and flat bodies in SHoCs work together and greatly limits
the expressivity of such clauses ; they only allow relations that do not need to keep the
value of some parameter while exploring the others recursively. The absence of exis-
tential variables is what allows to have a simple top-down membership procedure, as
the procedure does not need to find a value (i.e. prove the existence) for any existential
variable. Note also that the body is not required to be linear. This allows to recognize
relations that do not only need to build upon terms but also compare them (e.g. the Shal
relation from Definition 4.3). One last important detail is that there may be variables in
the head that do not appear in the body. This allows SHoCs to enjoy a form of gener-
icity which permits to represent relations in a more compact way than tree automata.
This has already been illustrated by the definition of HeightLB by SHoCs in Example
7.28 and by left-convoluted automaton in Example 7.31. The automaton for HeightLB
has 6 transitions whereas the SHoCs has 2 clauses. Now, consider the relation Len(l, n)
relating lists with their size. A SHoCs for this relation is given in Example 7.5. Similarly

93

Shallow Horn Clauses (SHoCs)

as the SHoCs for HeightLB, this SHoCs does not constrain the structure of elements in
the list. Thus, this SHoCs is valid for lists of elements of any type. This results in a more
generic and more compact representation than what tree automata can do for regular
languages [30, 15, 19, 27] and for regular relations [29], where the complete structure
of elements of the list has to be described explicitly by transitions.
Due to the particular form of SHoCs, we can have another notation for them, using
positions instead of variables. This notation makes them harder to read but simplifies
some definitions, so it is only used in these situations. Because the head of SHoCs is
linear and shallow and every variable of the body appears in the head, a variable only
indicates which argument of which function of the head it appears in. Each variable
may then be replaced by a position i · j, with i pointing at the head function and j
pointing at the argument within the ith function.

Definition 7.6 (Projector notation for SHoCs). Any SHoC

R(f1(X(1,1), . . . , X(1,| f1|)), . . . , fn(X(n,1), . . . , X(n,| fn|))) ⇐ B

can be equivalently written as

R(f1, . . . , fn) ⇐ σ(B)

with σ = {X(i,j) 7→ i · j | i ∈ [1 . . . n] ∧ j ∈ [1 . . . | fi|]}.

Example 7.7. The clause Shal(node(T1, E, T2), s(N)) ⇐ Shal(T1, N) ∧ Shal(T2, N) can
be written as Shal(node, s) ⇐ Shal(1 · 1, 2 · 1) ∧ Shal(1 · 3, 2 · 1).

We write R(S) = {R | ∃[R(#»p) ⇐ B] ∈ S} for the set of relation symbols that a SHoCs
S defines.

7.2 ϵ-clauses and their elimination

In order to ease the definition of operations such as union or intersection of SHoCs,
we introduce a new type of clauses, called ϵ-clauses. The ϵ-clauses are similar to ϵ-
transitions of automata that define transitions between states without recognizing any
symbol. However, though ϵ-clauses simplify the definition of some operations on SHoCs,
they are not valid SHoCs because their heads do not contain any function symbols, i.e.,

94

Shallow Horn Clauses (SHoCs)

they are flat. Thus, we need a procedure to generate an equivalent SHoCs without
ϵ-clauses, similar to the removal of ϵ-transition in tree automata. For SHoCs, we call
this procedure Extend and it is defined below. The Extend procedure is close to the
unfolding rule from [28].

Definition 7.8 (ϵ-clause and ϵ-definition). An ϵ-clause is a strict Horn clause H ⇐ B
such that a) H and B are flat and linear, and b) Vars(H) = Vars(B).
Given a relation symbol R and a SHoCs S, an ϵ-definition (of R) for S is a set Cϵ

R of
ϵ-clauses of the form R(

#»

X) ⇐ B and such that R does not appear in S nor in B.

Definition 7.9 (Extend(S, Cϵ
R)). Let S be a SHoCs and suppose that no two clauses

in S share variables (or else they can be renamed, as they are bound to a (universal)
quantifier). Let Cϵ

R be an ϵ-definition for S. Then

Extend(S, Cϵ
R) = S ∪

⋃

φ∈Cϵ
R

Extφ

where ExtR(
#»

X)⇐R1(
»

X1)∧...∧Rk(
»

Xk)
is the following set of SHoCs:

{
σ(R(

#»

X) ⇐ B1 ∪ . . . ∪ Bk)
∣∣∣
[∧

j∈[1...k]

(Rj(
#»pj) ⇐ Bj) ∈ S

]
∧
[
σ = MGU(U)

]}

with U = { # »

Xj
?
= #»pj | j ∈ [1 . . . k]}.

Example 7.10 (ϵ-definition and Extend(S, Cϵ
R)). Let S be a SHoCs with clauses:

R1(h(X)) ⇐ A(X) R1(h(X)) ⇐ B(X)

R2(f (X), g(Y)) ⇐ C(X) R2(f (X), h(Y)) ⇐ D(X)

Let Cϵ
R be the ϵ-definition {R(X, Y) ⇐ R1(X) ∧ R2(Y, X)}. The set Extend(S, Cϵ

R) con-
tains S and the two new SHoCs:

R(h(X), f (Y)) ⇐ A(X) ∧ D(Y) R(h(X), f (Y)) ⇐ B(X) ∧ D(Y)

Lemma 7.11 (Elimination of ϵ-clauses preserves language). Let S be a SHoCs and Cϵ
R be

an ϵ-definition for S. Let S′ = Extend(S, Cϵ
R). Then

[L(S ∪ Cϵ
R, R) = L(S′, R)] ∧ [∀R′ ∈ R(S), L(S, R′) = L(S′, R′)].

Proof. Let
#»t = (t1, . . . , tn) ∈ T (Σ)n a tuple of n terms

95

Shallow Horn Clauses (SHoCs)

First, note that L(S∪Cϵ
R, R) is well-defined, as every clause of Cϵ

R is a strict Horn clause.
This corresponds to the intuitive notion of an ϵ-definition, with (t1, . . . , tn) ∈ L(S ∪
Cϵ

R, R) ⇐⇒ there exists (R(X1, . . . , Xn) ⇐ R1(
»

X1) ∧ . . . ∧ Rk(
»

Xk)) ∈ Cϵ
R with ∀j ∈

[1 . . . k], σ̂(
»

Xk) ∈ L(S, Rj) with σ̂ = {Xi 7→ ti | i ∈ [1 . . . n]}.
Also ∀R′ ∈ R(S), L(S, R′) = L(S′, R′) is immediate, as every clause coming from Cϵ

R

has R as head relation with R /∈ R(S).
Now, we prove L(S ∪ Cϵ

R, R) = L(S′, R).

— L(S ∪ Cϵ
R, R) ⊆ L(S′, R): Suppose

#»t ∈ L(S ∪ Cϵ
R, R). Because R does not ap-

pear in S,
#»t is recognized by a clause of Cϵ

R. More formally, there exists a clause
R(X1, . . . , Xn) ⇐ R1(

»

X1)∧ . . .∧ Rk(
»

Xk) in Cϵ
R such that, when writing σ̂ = {Xi 7→

ti | i ∈ [1 . . . n]}, we have ∀j ∈ [1 . . . k], S |= σ̂(Rj(
»

Xj)), i.e. σ̂(
»

Xj) ∈ L(S, Rj). Note
that σ̂((X1, . . . , Xn)) = (t1, . . . , tn).

For any j ∈ [1 . . . k], because σ̂(
»

Xj) ∈ L(S, Rj), there exists a clause φj = Rj(
#»pj) ⇐

Bj such that σ̂(
»

Xj) is of the shape #»pj and, with σj = MGU(σ̂(
»

Xj)
?
= #»pj), S |=

σj(Bj). Because the variables from the clauses are universally quantified, we can
assume them different from any other. Therefore there exists a substitution σ′ =
MGU({σ̂(

»

Xj)
?
= #»pj | j ∈ [1 . . . k]}) such that for all j ∈ [1 . . . k], S |= σ′(Bj).

From the existence of σ′, there exists σ = MGU({ # »

Xj
?
= #»pj | j ∈ [1 . . . k]}) a

substitution that can be extended into σ̂ by letting σ̂ = σ; σ′. We now have, for all
j ∈ [1 . . . k], that S |= σ′(σ(Bj)).

By definition we have σ(R(
#»

X) ⇐ B1 ∪ . . . ∪ Bk) ∈ ExtR(
#»

X)⇐R1(
»

X1)∧...∧Rk(
»

Xk)
. Be-

cause for all j ∈ [1 . . . k] we have S |= σ′(σ(Bj)) and σ′(σ(
#»

X)) =
#»t , we have

σ̂(
#»

X) =
#»t ∈ L(S′, R).

Moreover, because every tuple of patterns #»pj from the head of SHoCs is shal-
low, we have, for any (X, p) ∈ σ, p is shallow. Moreover, because of constraint
Vars(H) = Vars(B) of Definition 7.8, we have dom(σ) = Vars(

#»

X). Therefore
σ(R(

#»

X) ⇐ B1 ∪ . . . ∪ Bk) ∈ ExtR(
#»

X)⇐R1(
»

X1)∧...∧Rk(
»

Xk)
is a SHoC.

— L(S ∪ Cϵ
R, R) ⊇ L(S′, R): Suppose

#»t ∈ L(S′, R). Because R does not appear in
S,

#»t is recognized by (at least) a clause φ ∈ ExtR(
#»

X)⇐R1(
»

X1)∧...∧Rk(
»

Xk)
for some

ϵ-clause R(
#»

X) ⇐ R1(
»

X1) ∧ . . . ∧ Rk(
»

Xk) ∈ Cϵ
R.

By definition we have φ = σ(R(
#»

X) ⇐ B1 ∪ . . . ∪ Bk) with, for all j ∈ [1 . . . k],
(Rj(

#»pj) ⇐ Bj) ∈ S and σ = MGU({ # »

Xj
?
= #»pj | j ∈ [1 . . . k]}).

Because φ recognizes
#»t in R, we have that

#»t = σ̂(
#»

X) is of the shape σ(
#»

X), i.e.

96

Shallow Horn Clauses (SHoCs)

σ can be extended into σ̂ using σ′ by σ̂ = σ; σ′. Moreover, for all j ∈ [1 . . . k],
S |= σ̂(Bj). For every j ∈ [1 . . . k], because there exists a clause (Rj(

#»pj) ⇐ Bj) ∈ S,
we have σ̂(

»

Xj) ∈ L(S, Rj). Therefore
#»t ∈ L(S ∪ Cϵ

R, R).

Finally, we extend ϵ-clauses so that using them becomes more practical.

Definition 7.12 (More expressive ϵ-clauses). ϵ-clauses are made more expressive by
loosening the constraint Vars(H) = Vars(B) into Vars(H) ⊇ Vars(B) for any ϵ-clause
H ⇐ B. The extension is immediate as, for any type τ, SHoCs can encode the predicate
Anyτ that recognizes any term of type τ, defined as: {Anyτ(f (

#»

X)) ⇐ ⊤ | f ∈ Σ ∧
τout(f) = τ ∧ #»

X are fresh variables}.

7.3 Closure properties and decision procedures of SHoCs

This section defines the intersection, union, complement, and cylindrification of
SHoCs that reflect the associated language operations. We show that SHoCs are not
closed by projection. We also show that the membership problem is decidable but
emptiness is not.
First, note that a set {S1, . . . , Sn} of SHoCs can always be combined into one by taking
the set-union S1 ∪ . . . ∪ Sn of the clauses composing them, possibly with some renam-
ing if two SHoCs define different relations with the same name.

Definition 7.13 (Set-union of clauses of SHoCs). Let S1 and S2 two SHoCs. Then, if
R(S1) ∩ R(S2) = ∅, then S = S1 ∪ S2 is a SHoCs such that R(S) = R(S1) ∪ R(S2)

and ∀i ∈ {1, 2}, ∀R ∈ R(Si), L(S, R) = L(Si, R).

We therefore focus on defining operations w.r.t a single SHoCs.

Definition 7.14 (Closure by intersection of relations). Let S be a SHoCs and R′ ⊆ R(S)
a subset of same-type relations. The intersection of R′ in a fresh relation symbol R is a
SHoCs S∩R′ defined as

S∩R′ = Extend(S, Cϵ
R) with Cϵ

R = {R(
#»

X) ⇐
∧

R′∈R′
R′(

#»

X)}.

97

Shallow Horn Clauses (SHoCs)

Definition 7.15 (Closure by union of relations). Let S be a SHoCs and R′ ⊆ R(S) a
subset of same-type relations. The union of R′ in a fresh relation symbol R is a SHoCs
S∪R′ defined as

S∪R′ = Extend(S, Cϵ
R) with Cϵ

R = {R(
#»

X) ⇐ R′(
#»

X) | R′ ∈ R′}.

Theorem 7.16 (Intersection and union). Let S be a SHoCs with R′ ⊆ R(S) a subset of
same-type relations. We have L(R, S∩R′) =

⋂
R′∈R′ L(R′, S) and L(R, S∪R′) =

⋃
R′∈R′ L(R′, S).

Proof. Immediate from the intersection and union definitions and Lemma 7.11.

Definition 7.17 (Complement specification). Let S be a SHoCs defining the set of rela-
tions R. The complement of S is a SHoCs Sc such that ∀R ∈ R,L(R, Sc) = L(R, S).

When S is clear from context, we may simply write Rc to refer to R in Sc.

Definition 7.18 (Complement construction). Let S be a SHoCs. For a given relation R
of type (τ1, . . . , τn), let F(R) = {(f1, . . . , fn) | ∀i ∈ [1 . . . n], fi ∈ Σ ∧ τout(fi) = τi} be
the set of tuples of constructors (f1, . . . , fn) whose output type is (τ1, . . . , τn). Then, the
complement of S is defined as

Sc =
⋃

R∈R(S),
#»

f ∈F(R)

{
R(

#»

f) ⇐ B′ ∣∣ B′ ∈ Flip({B | (R(
#»

f) ⇐ B) ∈ S})
}

with Flip : P(P(A)) → P(P(A)), with A the set of all atoms, the set of all possible
sets made by selecting one atom per body (or unordered cartesian product):

Flip({B1, . . . , Bk}) = {{ω1, . . . , ωk} | (ω1, . . . , ωk) ∈ B1 × . . . × Bk}

Theorem 7.19. We have that ∀R ∈ R,L(R, Sc) = L(R, S).

Proof. Let us show that ∀ #»t ,
#»t ∈ L(R, Sc) ⇐⇒ #»t /∈ L(R, S) by induction on

ht(#»t). Let
#»t ∈ T (Σ)n a tuple of terms. We write

#»t = (f1(
#»t1), . . . , fn(

#»tn)) and
#»

f =

98

Shallow Horn Clauses (SHoCs)

(f1, . . . , fn).

#»t ∈ L(R, S)

⇐⇒ By definition of L(·, ·)
There exists a clause R(

#»

f) ⇐ B ∈ S (using the projector notation) such that for all atoms

of the shape R′(π1, . . . , πk) in B we have (
#»t [π1], . . . ,

#»t [πk]) ∈ L(R′, S).

⇐⇒ By definition of Flip

For any B′ ∈ Flip({B | (R(
#»

f) ⇐ B) ∈ S}), there exists an atom

R′(π1, . . . , πk) in B′ such that (
#»t [π1], . . . ,

#»t [πk]) ∈ L(R′, S).

⇐⇒ By induction

For any B′ ∈ Flip({B | (R(
#»

f) ⇐ B) ∈ S}), there exists an atom

R′(π1, . . . , πk) in B′ such that (
#»t [π1], . . . ,

#»t [πk]) /∈ L(R′, Sc).

⇐⇒ By definition of Sc

There exists no clause R(
#»

f) ⇐ B ∈ Sc such that for all atoms of the shape

R′(π1, . . . , πk) in B we have (
#»t [π1], . . . ,

#»t [πk]) ∈ L(R′, Sc).

⇐⇒ By definition of L(·, ·)
#»t /∈ L(R, Sc)

Example 7.20 (Complement). Let Ssh be the SHoCs

Shal(leaf , z) Shal(leaf , s(N)) Shal(node(T1, E, T2), s(N)) ⇐ Shal(T1, N) ∧ Shal(T2, N)

The complement Sc
sh of Ssh is:

Shalc(node(T1, E, T2), z)
Shalc(node(T1, E, T2), s(N)) ⇐ Shalc(T1, N) Shalc(node(T1, E, T2), s(N)) ⇐ Shalc(T2, N)

With notations from the definition, here are the details of the computation, where R =

Shal and F(R) = {(leaf , z), (leaf , s), (node, z), (node, s)}.

— For
#»

f = (node, s), we have:

— Let E1 = {B | R(
#»

f) ⇐ B ∈ S}, i.e., E1 = {{Shal(T1, N), Shal(T2, N)}}
— Then, Flip(E1) = {{ω} | (ω) ∈ B} with B = {Shal(T1, N), Shal(T2, N)}, so

Flip(E1) = {{Shal(T1, N)}, {Shal(T2, N)}}.

99

Shallow Horn Clauses (SHoCs)

— This yields the two clauses whose head is Shalc(node(T1, E, T2), s(N)).

— For
#»

f = (leaf , z) or
#»

f = (leaf , s), we have:

— Let E2 = {B | R(
#»

f) ⇐ B ∈ S}, i.e., E2 = {∅}
— We have Flip(E2) = ∅, so there is no clause with Shal(leaf , z) nor Shal(leaf , s)

as a head.

— For
#»

f = (node, z), we have:

— Let E3 = {B | R(
#»

f) ⇐ B ∈ S}, i.e., E3 = ∅

— We have Flip(E3) = {∅} because the neutral element of the cartesian prod-
uct is {∅}.

— Thus, there is a clause Shalc(node(T1, E, T2), z).

Lemma 7.21 (Removing 0-ary atoms). Let S be a SHoCs. Then there exists an equivalent
SHoCs (defining the same relations) S′ such that, for any clause H ⇐ B in S′, there exists no
atom whose relation is of arity 0, i.e. of the form R(), in B.

Proof. Given a SHoCs S, it is simple to determine whether a given 0-ary relation symbol
R has an empty language. Indeed, because of the constraints regarding the definition of
a SHoC, any clause whose head’s relation is R is of the form R() ⇐ R1() ∧ . . . ∧ Rk().
Therefore, a finite fixed point allows to partition 0-ary relations into those with an
empty language and the others (whose language is {()}). Then, every 0-ary whose
language is not empty can be removed from the body of clauses, as they do not add
any constraint. On the other hand, every clause that contains a 0-ary relation symbol
in their body whose language is empty can be entirely removed, as they can never be
satisfied.
The resulting SHoCs defines the exact same relations and meets the no 0-ary relation
in bodies criterion.

Definition 7.22 (Cylindrification of SHoCs). The k-th cylindrification of type τ of a
relation R′ in a SHoCs S, written Injτ

k (R′, S), is defined as a fresh relation R as

Extend(S, Cϵ
R) with Cϵ

R = {R(X1, . . . , Xk−1, X, Xk, . . . , Xn) ⇐ R′(X1, . . . , Xn)}

The resulting SHoCs S′ is such that

L(S′, R) = {(t1, . . . , tk−1, t, tk, . . . , tn) | (t1, . . . , tk, . . . , tn) ∈ L(S, R′) ∧ t ∈ Tτ(Σ)}.

100

Shallow Horn Clauses (SHoCs)

Definition 7.23 (Projection of a relation). The ith projection of a relation r is the relation
Proji(r) such that Proji(r) = {(t1, . . . , ti−1, ti+1, . . . , tn) | (t1, . . . , ti, . . . , tn) ∈ r}.

Theorem 7.24 (SHoCs are not closed by projection). There exists at least one SHoCs S and
relation symbol R ∈ R(S) such that Proji(L(S, R)) cannot be represented by a SHoCs.

Negative projection closure, by Naoki Kobayashi.

Let us define the tree tn by t0 = e and tn + 1 = c(anbne, tn).

101

Shallow Horn Clauses (SHoCs)

On Projection of SHoCs

Naoki Kobayashi

October 31, 2024

Let us define the tree Tn by:

T0 = e

Tn+1 = c(anbne, Tn).

Here, anbne abbreviates the unary tree

a(· · · a(︸ ︷︷ ︸
n

b(· · · b(︸ ︷︷ ︸
n

e) · · ·).

The relation:
R = {(anbne, Tn) | n ≥ 0}

is definable by the following SHoCs.

R(e, e).

R(a(X), c(Y,Z)) ⇐= S(X,Y) ∧R(Y,Z).

S(a(X), a(Y)) ⇐= S(X,Y).

S(b(X), e) ⇐= E(X).

S(b(X), b(Y)) ⇐= S1(X,Y).

S1(b(X), b(Y)) ⇐= S1(X,Y).

S1(b(X), e) ⇐= E(X).

E(e).

Here, the relations LS , LS1 , E respectively defined by S, S1, E are:

LS = {(ambn+1e, ambne) | m,n ≥ 0}
LS1

= {(bn+1e, bne) | n ≥ 0}
LE = {e}.

However, the projection of R to the first element, i.e., the language {anbne |
n ≥ 0} is not definable by SHoCs, as the unary predicates on unary trees
definable by SHoCs must be regular.

1

102

Shallow Horn Clauses (SHoCs)

Decision problems

Theorem 7.25 (SHoCs emptiness problem is undecidable). For S a SHoCs and R a rela-
tion, the SHoCs emptiness problem is to decide whether L(R, S)=∅. This problem is undecid-
able.

The proof uses an encoding of Minsky machines into SHoCs. See Appendix A.2 for
details.

Theorem 7.26 (SHoCs membership problem is decidable). For S a SHoCs, #»t a tuple of
terms, and R a relation, the SHoCs membership problem is to decide whether #»t ∈ L(R, S).
This problem is decidable.

Proof. Let us consider the InhabitsA procedure defined for SHoCs from Section 8.1.
Lemma A.3 is still valid, as any other Lemma on the teacher procedure, when using
SHoCs. Notice that, for any substitution σ, σ(

#»t) = #»t , as
#»t is a tuple of (ground) terms.

Lemma A.3 therefore states that, if InhabitsA({R(#»t)}) returns Some(_) in i steps, then
i ≤ ht(#»t). Moreover, by Theorem 6.15, we can use Inhabitsdet

A with an upper-bound of
ht(#»t) + 1 on the number of steps to decide whether

#»t ∈ L(R, S).

7.4 Expressivity of SHoCs

We illustrate the expressivity of SHoCs with the relations from the examples. The
relations IsEmpty, All0, and No0 can be represented by, respectively, RisEmpty, Rall0, and
Rno0 in the following SHoCs, where R0 and Rs are additional predicates recognizing,
respectively, only z and all positive natural numbers.

Example 7.27 (SHoCs for the relations IsEmpty, All0, and No0).
R0(z) Rs(s(X)) RisEmpty(leaf) Rall0(leaf) Rno0(leaf)
Rall0(node(T1, E, T2)) ⇐ R0(E) ∧ Rall0(T1) ∧ Rall0(T2)

Rno0(node(T1, E, T2)) ⇐ Rs(E) ∧ Rno0(T1) ∧ Rno0(T2)

The following set of SHoCs with relations Rleq, Rhe, and RheRB represent, respec-
tively, the models for Leq, Height, and HeightRB to prove property ϕ3. The additional
relation Shal is necessary to express Height as a SHoCs. Recall that the atom Shal(t, n)
is true if tree t is of height smaller or equal to n.

103

Shallow Horn Clauses (SHoCs)

Example 7.28 (SHoCs for the relations Rleq, Rhe, RheRB, and Shal).

Rleq(z, z)
Rleq(z, s(X))

Rleq(s(X), s(Y)) ⇐ Rleq(X, Y)

Rhe(leaf , z).
Rhe(node(T1, E, T2), s(N))

⇐ Rhe(T1, N) ∧ Shal(T2, N)

Rhe(node(T1, E, T2), s(N))

⇐ Shal(T1, N) ∧ Rhe(T2, N)

Shal(leaf , z)
Shal(leaf , s(N))

Shal(node(T1, E, T2), s(N))

⇐ Shal(T1, N) ∧ Shal(T2, N)

RheLB(leaf , z)
RheLB(node(T1, E, T2), s(N))

⇐ RheLB(T1, N)

Note that Rleq is not used in the definition of Rlen but Shal is used instead. This is be-
cause, in a SHoCs, the variables of the body must be contained in the variables from
the head, which forbids to fetch the heights of both subtrees, compare them using
Rleq, and forget the smallest. Note that all of the above-defined relations can also be
defined using a complete-convolution automaton. However, their definition (except
for Rleq) using complete-convolution automata is bloated with useless states and too
big to be practical, which is the reason complete-convolution is not used. There also
exists relations that can be defined by SHoCs but not by convoluted automata, e.g.
{ f (t, t) | t ∈ T (Σ)}, which is defined using the equality predicate on terms (always
definable in SHoCs) and the single clause f (X, Y) ⇐ Eq(X, Y).

7.4.1 SHoCs and convoluted automata

SHoCs are more expressive than convoluted tree automata because any convoluted
tree automaton has an equivalent SHoCs and some SHoCs-definable relations such as
{ f (t, t) | t ∈ T (Σ)} cannot be represented by a convoluted tree automaton using any
of the previously-defined convolution.

Here is the translation of convoluted tree automata into SHoCs. We use the projector
notation for SHoCs of Definition 7.6.

Definition 7.29 (Convoluted automata as SHoCs). Let ⃝· be any of ⃝L , ⃝R , ⃝C . Let A be
a ⃝· -convoluted automaton on alphabet Σ⃝· with transitions ∆. Then SA is defined as

SA =
{

Rq(f1, . . . , fn) ⇐ Rq1(
»π1) ∧ . . . ∧ Rqk(

»πk)
∣∣ ⟨ f1, . . . , fn⟩(q1, . . . , qk) → q ∈ ∆

}

104

Shallow Horn Clauses (SHoCs)

with (# »π1, . . . , # »πk) = ⃝· ((1 · 1, . . . , 1 · | f1|), . . . , (n · 1, . . . , n · | fn|))

Note that the tuple (1 · 1, . . . , 1 · | f1|), . . . , (n · 1, . . . , n · | fn|) simply corresponds to the
positions of subterms for the tuple of functions (f1, . . . , fn).

Lemma 7.30. Let ⃝· be any of ⃝L , ⃝R , ⃝C . Let A be a convoluted automaton on alphabet
Σ⃝· with transitions ∆. Let SA be the SHoCs defined from A. Let q be a state from A. Then
R(A, q) = L(SA, Rq).

Proof. Let
#»t ∈ T (Σ)n with

#»t = (f1(
#»t1), . . . , fn(

#»tn)). Let us prove by induction on
ht(#»t) that

#»t ∈ R(A, q) ⇐⇒ #»t ∈ L(SA, Rq):

#»t ∈ R(A, q)

⇐⇒ By definition of R(·, ·)
⃝· t (

#»t) ∈ L(A, q)

⇐⇒ By definition of L(·, ·)
There exists a transition⟨ f1, . . . , fn⟩(q1, . . . , qk) → q such that, with

(
#»

t′1 , . . . ,
#»

t′k) = ⃝· (#»t1 , . . . ,
#»tn),∀j ∈ [1 . . . k],

#»

t′j ∈ R(A, qj)

⇐⇒ By definition of SA, induction, and Lemma 5.31

There exists a clause⟨Rq(f1, . . . , fn)⟩ ⇐ Rq1(
»

π′
1), . . . , Rqj(

»

π′
j) such that, with

(
»

π′
1, . . . ,

»

π′
k) = ⃝· ((1 · 1, . . . , 1 · | f1|), . . . , (n · 1, . . . , n · | fn|)),

∀j ∈ [1 . . . k], (#»t [
»

π′
j[1]], . . . ,

#»t [
»

π′
j[|

»

π′
j|]]) ∈ R(SA, Rqj)

⇐⇒ By definition of L(·, ·) for SHoCs
#»t ∈ L(SA, Rq)

Example 7.31. Let A be the left-convoluted automaton (on Σ⃝L) recognizing the HeightLB
relation in a state qLen with the six following transitions:

〈
leaf , z

〉
() → qLen

〈
node, s

〉
(qLen, qn, qt) → qLen〈

leaf
〉
() → qt

〈
node

〉
(qt, qn, qt) → qt

〈
z
〉
() → qn

〈
s
〉
(qn) → qn

105

Shallow Horn Clauses (SHoCs)

Its SHoCs translation, using projector notation, is:

R f (leaf , z) R f (node, s) ⇐ R f (1 · 1, 2 · 1) ∧ Rn(1 · 2) ∧ Rt(1 · 3)

Rt(leaf) Rt(node) ⇐ Rt(1 · 1) ∧ Rn(1 · 2) ∧ Rt(1 · 3)

Rn(z) Rn(s) ⇐ Rn(1 · 1)

Using the standard notation, we obtain the following SHoCs:

R f (leaf , z)

Rt(leaf)

Rn(z)

R f (node(X1, X2, X3), s(Y1)) ⇐ R f (X1, Y1) ∧ Rn(X2) ∧ Rt(X3)

Rt(node(X1, X2, X3)) ⇐ Rt(X1) ∧ Rn(X2) ∧ Rt(X3)

Rn(s(X1)) ⇐ Rn(X1)
This is not the smallest SHoCs that recognizes this relation heightLB, relating a tree to
the height of its leftmost branch, but this is the one corresponding to the automaton A.

7.4.2 SHoCs and CS-programs

There exists a variety of clause-based formalism to represent languages. The closest
one from SHoCs is that of CS-programs [28]. A CS-program is a finite set of CS-clauses,
which are strict Horn clauses whose body is flat and linear. A CS-program is also inter-
preted by the least fixed-point semantics. The expressivity of SHoCs and CS-programs
are incomparable. The Height and Shal examples cannot be represented using a CS-
program because of bodies linearity: CS-programs can only build relations from bot-
tom to top but can not compare two subterms (needed for Height and Shal). On the
other hand, since the head of CS-programs is not required to be shallow, it allows them
to precisely represent some relations where symbols need to be stacked in the head of
the clause. This is the case for the double function (Example 7.32) which is out of the
scope of SHoCs but in the scope of CS-programs.

Example 7.32. Let Double(n, m) be the relation s.t. m = 2 × n, defined by the CHCs:

Double(z, z) Double(s(N), s(s(M))) ⇐ Double(N, M)

N = M ⇐ Double(X, N) ∧ Double(X, M)

Note that the set consisting of the first two clauses is a valid CS-program for Double.
The relation Double cannot be recognized by a SHoCs. First, note that the first clause
Double(s(N), s(s(M))) ⇐ Double(N, M) is not a SHoC because of the double s sym-
bol in the head. Then, the idea of the proof is very close to that of the word language

106

Shallow Horn Clauses (SHoCs)

anbn not being recognizable by a finite string automaton. For a SHoCs to recognize
Double we would need predicate symbols to record how many s symbols have been
read on the first parameter while the head symbols for the two parameters were both
s and then, once z is encountered for the first parameter, check that this number of s’s
is the same for the remainder of the second parameter. For instance, a possible SHoCs
representing the finite relation {

(
s(s(z)), s(s(s(s(z))))

)
} in R is

R(s(X), s(Y)) ⇐ R1(X, Y) R1(s(X), s(Y)) ⇐ R2(X, Y) R2(z, s(Y)) ⇐ R′
1(Y)

R′
1(s(X)) ⇐ R′

0(X) R′
0(z) .

However, representing the Double relation for all natural numbers would require in-
finitely many predicate symbols and therefore an infinite SHoCs, which is forbidden.

7.4.3 SHoCs and relational alternating automata

SHoCs are equivalent to a direct relational extension of alternating tree automata that
is proposed in this subsection. The definition of alternating tree automata and related
notions, such as that of an accepting run, can be found in [7]. We restate it here, in a
somewhat different vocabulary, for making the difference in the extension clearer.

Definition 7.33 (Alternating tree automata). An alternating tree automaton A over Σ
is the data of a set of states Q and of a mapping ∆ from Q × ΣΣΣ to B+(Q × NNN) with
B(X) being the set of positive (using only conjunction and disjunction) propositional
formulas on the set of atoms X . Moreover, for any atom (q′, j) of ∆(q, f), we enforce
j ∈ [1 . . . | f |].

Intuitively, the condition for recognizing a term f (t1, . . . , tn) in a state q is that the
children t1, . . . , tn, denoted by their index in the tuple, satisfy the formula ∆(q, f).

Without loss of generality, suppose that every alternating tree automata is in DNF, i.e.
such that if ∆(q, f) = φ then φ is in D(isjonctive) N(ormal) F(orm).

Definition 7.34 (Language recognized by an alternating tree automaton). The language
recognized by a state q in an alternating automaton A can be inductively defined as:

L(A, q) =
⋃

f∈Σ

L f

107

Shallow Horn Clauses (SHoCs)

with, when writing ∆(q, f) as
∨m

j=1
∧kj

k=1(q(j,k), i(j,k)),

L f =
⋃

i∈[1...m]

⋂

k∈[1...ki]

{t | Root(t) = f ∧ t[i(j,k)] ∈ L(A, q(j,k))}

Alternating tree automata have the same expressivity as classical tree automata but can
be more compact. We now define their direct relational extension. The differences with
the non-relational definition is that, in the formulas, instead of pointing to a subterm
tj of a term f (t1, . . . , tn) by its index j, it points at a tuple of subterms, each of the form
t(i,j), of a tuple of terms (f1(t(1,1), . . . , t(1,| f1|)), . . . , fn(t(n,1), . . . , t(n,| fn|))) by a tuple of
couples of indices (i, j). These differences are written in bold.

Definition 7.35 (Relational Alternating Tree Automata (RATA)). A relational alter-
nating tree automaton A over Σ is the data of a set of states Q and of a mapping
∆ from Q × Σ∗ to B+(Q × (N × N)∗(N × N)∗(N × N)∗) with only a finite number of images that are
different from ⊥. Moreover, for any atom (q′, (i, j)(i, j)(i, j)) of ∆(q, (f1, . . . , fn)(f1, . . . , fn)(f1, . . . , fn)), we enforce
i ∈ [1 . . . n] ∧ j ∈ [1 . . . | fi|]i ∈ [1 . . . n] ∧ j ∈ [1 . . . | fi|]i ∈ [1 . . . n] ∧ j ∈ [1 . . . | fi|].

SHoCs and RATA are equivalent formalisms, apart from a slight notation difference.

Theorem 7.36. For any SHoCs S, there exists a RATA AS such that, for any relation symbol
R, L(S, R) = L(AS, R). The converse is also true.

Proof.

— Given a SHoCs S (using the projector notation of Definition 7.6), we can define
the following mapping:

∆S(R,
#»

f) =
∨

(R(
#»

f)⇐B)∈S

B

This transition function is in DNF and immediately defines an RATA AS such
that, for any relation symbol R, L(S, R) = L(AS, R).

— Given a RATA A with mapping ∆ in DNF, we can define the following SHoCs:

S∆ =
⋃

∆(R,
#»

f)=B1∨...∨Bk

{R(
#»

f) ⇐ Bj | j ∈ [1 . . . k]}

This SHoCs SA is equivalent to A.

108

Shallow Horn Clauses (SHoCs)

109

CHAPTER 8

LEARNER/TEACHER FOR SHOCS

This chapter is dedicated to the Learner and Teacher procedures using Shallow
Horn Clauses as models. The generics procedure for satisfiability of a set of clauses (for
which the learner and teacher are defined) is presented in Section 4.3. For the teacher,
we reuse quite everything from the teacher defined on convoluted tree automata in
Section 6.1. The learner, however, is different, as the procedure defined on automata
makes use of the static nature of the convolution, i.e. the initial automaton can be com-
puted and then any (complete and deterministic) automaton can be found by merging
its states, which is not the case for SHoCs.
Every proof and theorem of the teacher using convoluted automata (Section 6.1) is
preserved when using SHoCs. We do not re-state nor re-prove them, as the idea is
the same. The correctness, termination, and minimality properties for the learner on
SHoCs are given because the learner definition changes. Finally, the correctness and
relative completeness of the whole Learner/Teacher procedure that are stated and
proven in Section 6.3 are also preserved, as the theorems for convoluted automata are
mirrored in this SHoCs setting.

8.1 Teacher

The teacher that is defined on automata (Chapter 6.1) can easily be used for SHoCs too,
as the formalisms are quite close in essence.
Convoluted automata like SHoCs are the data of a set of transitions/clauses (using
states/relations). Each of those transitions/clauses are the data of a state/relation sym-
bol, a tuple of function symbols, and of substates/subatoms. In the case of convoluted
automata, it is the chosen convolution which dictates how to use those substates. In
the case of SHoCs, it is explicitly written in the atoms of the body.
The Section 6.1 can therefore be understood as using SHoCs instead of convoluted
automata, with the only difference being the un f oldOne function that needs to be re-

110

Learner/Teacher for SHoCs

defined. Note that the intention is the same: progress one step into recognizing an atom
R(#»p) using a compatible transition (now clause) R(

#»

f) ⇐ B.

Definition 8.1 (un f oldOne: generation of new atoms).
Let #»p = (f1(p(1,1), . . . , p(1,| f1|)), . . . , fn(p(n,1), . . . , p(n,| fn|))) be a tuple of patterns and
φ = R(f1, . . . , fn) ⇐ B a clause of some SHoCs (using the projector notation). Then

un f oldOne(#»p , φ) = {R′(p(i1,j1), . . . , p(im ,jm)) | R′((i1, j1), . . . , (im, jm)) ∈ B}

Example 8.2 (un f oldOne with SHoCs). Let us consider the SHoCs from Example 7.28
and let φ = Height(node(T1, E, T2), s(N)) ⇐ Height(T1, N) ∧ Shal(T2, N) one of its
clauses. Let #»p = (p1, p2) with p1 = node(node(leaf , z, leaf), s(z), leaf) and p2 = s(s(z)).
Then

un f oldOne(φ, #»p) = {Height(node(leaf , z, leaf), s(z)), Shal(leaf , s(z))}.

8.2 Learner

The learner receives a finite set of ground clauses Γ̂ from the teacher. This set is a
counterexample to every previous SHoCs proposed by the learner. Starting from Γ̂, the
objective of the learner is to build a new SHoCs satisfying Γ̂. If Γ̂ is contradictory, then
the teacher has found a real counterexample to the property and Learner(Γ̂) returns
None. If Γ̂ is satisfiable, then Learner(Γ̂) = Some(S) with S a SHoCs such that S |= Γ̂.
We will furthermore ensure that S is minimal w.r.t the number of relations defined in
S among all possible SHoCs that satisfy Γ̂.
Finding a new SHoCs S is implemented as a constraint solving problem in the Answer
Set Programming (ASP) paradigm with support for so-called choice rules. We use the
solver Clingo [13]. From Γ̂, the learner builds a set of constraints C(Γ̂) defining all the
possible choices to build a valid SHoCs satisfying Γ̂. Then, all the constraints of C(Γ̂)
are given to the ASP solver which returns one solution, if it exists. In our definition of
C(Γ̂), we use the choose-one keyword to ask the ASP solver to pick exactly one atom
in a set and check that it is not in contradiction with the other constraints of C(Γ̂).
For instance, to satisfy the two constraints choose-one{x > 1, x < 1} and choose-
one{x > 5, x = 5}, the solver can pick x > 1 from the first constraint and either x > 5

111

Learner/Teacher for SHoCs

or x = 5 from the second. A contrario, picking x < 1 from the first constraint leads to a
contradiction with any of the two possibilities for the second constraint.
To guarantee (relative) completeness of the learner-teacher loop, solving C(Γ̂) is done
incrementally by considering first the smallest solutions w.r.t their number of relation
symbols. We write istep for the number of new relation symbols in the inferred SHoCs,
i.e., relation symbols that are not already present in Γ̂. The constraints C(Γ̂) are checked
for satisfiability, starting with istep = 0, and istep is incremented as long as the con-
straints are unsatisfiable. This process can be bounded by an upper-bound on istep.
Our upper-bound for istep is the number of subterms appearing in Γ̂. Using this upper-
bound is sound because, with one relation symbol to recognize exactly one subterm, it
becomes immediate to create a SHoCs recognizing all positive atoms occurring in the
input set of (ground) counterexamples. If a solution for the constraints have not been
found within this upper-bound, then they are unsatisfiable.

Definition 8.3 (Constraints generated by the learner C(Γ̂)). Let Γ̂ be a finite set of
ground clauses. C(Γ̂) is the set of constraints generated by the following rules:

(a) For each i in [1 . . . istep], choose-one type for the relation Rnew
i among the tuples

of types of sub-terms of Γ̂.

(b) For each φ̂ ∈ Γ̂ with φ̂ = R1(
#»t1) ∨ . . . ∨ Rn(

#»tn) ∨ ¬R′
1(

#»t ′
1) ∨ ¬R′

k(
#»tk),

choose-one literal that needs to be true, i.e. choose one R′
i(

#»t ′
i) to be false or one

Ri(
#»ti) to be true.

(c) For each R(#»t) that must be true a new SHoC is be created. If
#»t is of the form

(f1(
#»t1), . . . , fp(

#»tp)), the head of the new SHoC will be R(f1(
»

X1), . . . , fp(
»

Xp)).

(d) For each new SHoC φ = R(#»p) ⇐ B that is being created, construct its body
B, i.e., choose which atoms R′(

#»

X) are to be in B. For any relation R′ and type-
compatible variables

#»

X among Vars(#»p), the following constraint is generated:
choose-one {R(

#»

X) ∈ B, R(
#»

X) /∈ B}, therefore choosing a subset of possible
atoms to constitute the body B.

(e) For each SHoC φ = R(#»p) ⇐ B that has been created because some atom R(#»t)
needed to be true, add the constraint that every atom of un f oldOne(R(#»t), φ,)
must also be true.

(f) Add the constraint that no atom R′(
#»t ′) that must be false is made true by some

SHoC.

112

Learner/Teacher for SHoCs

The following example illustrates the main steps of the learning algorithm.

Example 8.4 (Learning the Leq relation). Let istep = 0 and let Γ̂ be the set of the follow-
ing 5 ground examples:

(1) Rleq(z, z) (2) Rleq(z, s(z))
(4) Rleq(s(z), z) ⇐ Rleq(s(s(z)), s(z))

(3) Rleq(s(z), s(z)) ⇐ Rleq(z, z)
(5) f alse ⇐ Rleq(s(z), z)

Since istep = 0, Rule (a) does not apply. Rule (b) divides all the atoms of the 5 ground ex-
amples into two sets: those who should be true and those who should be false. For (1)
and (2), there is a unique possibility, i.e., Rleq(z, z) and Rleq(z, s(z)) need to be true.
For (3), the constraint to add to C(Γ̂) is choose-one{Rleq(s(z), s(z)),¬Rleq(z, z)}. Later,
when solved by the ASP solver, this choice operator will have only one possible solu-
tion since Rleq(z, z) is already true. In the same way, solving the additional choose-one
constraints for (4) and (5) has only one solution and yields the positive atoms: Rleq(z, z),
Rleq(z, s(z)), Rleq(s(z), s(z)), and the negative ones: Rleq(s(z), z), Rleq(s(s(z)), s(z)). Rule (c)
generates one SHoC for every atom that must be true, by replacing sub-terms with
variables and introducing bodies B1, B2, B3 to be determined:

— φ1 = Rleq(z, z) ⇐ B1

— φ2 = Rleq(z, s(X)) ⇐ B2

— φ3 = Rleq(s(X1), s(X2)) ⇐ B3

Rule (d) completes C(Γ̂) with constraints on all Bi. For B1 this constraint is choose-
one{∅}. For B2, this constraint is choose-one{∅, {Rleq(X, X)}}. For B3, four choose-
one constraints are generated, one for each atom of Rleq(X1, X1), Rleq(X1, X2), Rleq(X2, X1),
and Rleq(X2, X2). This yields 16 possible different bodies, including ∅, {Rleq(X1, X2)},
{Rleq(X1, X2), Rleq(X2, X1)}, When solving these constraints, the ASP solver can
choose B1 = B2 = B3 = ∅. With this choice, constraints added to C(Γ̂) by step 5
are trivially satisfied because no new atom is forced to be true. However, the ASP
solver cannot choose B3 = ∅, because constraints added by step 6 yields a contradic-
tion, i.e., Rleq(s(s(z)), s(z)) is made true by φ3 but it belongs to the set of false atoms.
Hence, the ASP solver must change some of its choices. One possible change is to de-
fine B3 = {Rleq(X1, X2)}. The clause φ3 becomes Rleq(s(X1), s(X2)) ⇐ Rleq(X1, X2).
Since it was created to recognize Rleq(s(z), s(z)), this forces Rleq(z, z) to be in the set
of atoms that need to be true but, since it is already there, nothing changes. With this
last SHoC S, every atom that must be true is still made true by some clause, and no
atom that must be false is now made true by any SHoC. Thus, the learner has found

113

Learner/Teacher for SHoCs

a model for Γ̂ so it returns Some({φ1, φ2, φ3}). Note that in this simple example the
learner converged in one step, without having to increment istep = 0. Having istep > 0
would result in introducing istep additional relation symbols.

Theorem 8.5. The learner always terminates.

Proof. Because we use an upper-bound on istep, the learner procedure terminates if the
constraint solving for any fixed istep terminates.
Let some fixed istep. We argue that the number of choices to be made is bounded, and
therefore all of the search space can be explored in a finite time.
There are three types of choices in the constraints. Two are clearly finite: (a) The choice
of the types of the new relations (constraint (a)). Each relation can take one type from a
finite set of possible types. (b) The choice of one literal that needs to be true per example
of Γ̂ (constraint (b)).
The third type of choice is that of the body of the SHoC created for each atom R(#»t) that
needs to be true (constraint (d)). For the body atoms (constraint (d)), there is one binary
choice, whether to include the atom or not, per relation and compatible variables. One
SHoC creation thus only needs a finite number of choices.
However, note that each SHoC φ =

de f H ⇐ φ created by the need of an atom R(#»t) to
be true leads to the need of every atom from un f oldOne(R(#»t), φ) to be true too (con-
straint (e)). The procedure still terminates, as ht(un f oldOne(R(#»t), φ)) < ht(R(#»t)), so
any atom that is set to be true by the creation of φ is of strictly lower height than R(#»t),
so this retroactive "loop" can only go for at most ht(Γ̂).

Theorem 8.6 (Learner correctness, completeness, minimality). Let Γ̂ be a finite set of
examples. If Γ is satisfiable, then Learner(Γ̂) = Some(S) with S |= Γ̂ and such that S is
minimal among SHoCs that satisfy Γ̂ w.r.t the number of relations. If Γ is unsatisfiable, then
Learner(Γ̂) = None.

Proof. A satisfiable, finite, ground set of formulas Γ̂ has a first-order Herbrand struc-
ture with a finite number of true atoms. Any first-order Herbrand structure with a
finite number of true atoms can be represented by a SHoCs by introducing additional
intermediate relation symbols to ensure that all clauses are shallow (and becomes a
SHoC). Hence, if the set Γ̂ is satisfiable then there exists a SHoCs satisfying it such that
its number of relations in no more than the number of subterms appearing in Γ, which
is the bound used for istep.

114

Learner/Teacher for SHoCs

To satisfy Γ̂, at least one literal of each clause φ ∈ Γ̂ must be true. Choosing such
literals is the role of constraint (b). Having the generated SHoCs to satisfy every chosen
positive literal in ensured by constraints (c) and (e). Constraint (c) creates a SHoC for
each chosen positive literal, so we know that each atom that must be true leads to the
creation of a SHoC to recognize it. Ensuring that the created SHoC indeed recognizes
the atom is the role of constraint (e). Having the generated SHoCs to not satisfy any
chosen negative literal is directly ensured by constraint (f). Therefore if Learner(Γ̂) =

Some(S), we have S |= Γ̂. The minimality is a consequence of the incremental solving.
Conversely, if Γ̂ = None, then no matter the choice of literal, no SHoCs can verify Γ̂, so
Γ̂ is unsatisfiable.

115

CHAPTER 9

IMPLEMENTATION AND EXPERIMENTS

We implemented the verification procedure, i.e. the model representation, teacher,
and learner, for both convoluted tree automata and SHoCs. This implementation is
available at https://gitlab.inria.fr/tlosekoo/auto-forestation.git. This imple-
mentation has been evaluated against examples coming from different sources, as well
as some examples that we crafted ourselves. The focus is on algebraic datatypes and
recursive functions.

9.1 Implementation

The implementation defines terms, tree automata, convolutions, SHoCs, both learners,
the teacher, and the model-inference procedure. The teacher follows rather closely the
breadth-first search of the procedure from Chapter 6.1. The learner delegates learning
of SHoCs to the finite-model finder Clingo [13], as described in Section 8.2.
The total number of lines of codes is around 15.000. A significant portion is dedicated
to re-implement standard data structures and algorithms. The implementation spans
several packages which aim to be reusable:

inout: for simplifying reading and writing from and to system files ;

misc: the infamous miscellaneous package defining many basic data structures (pairs,
extended lists, extended sets, extended maps, ...), list operations, and standard mathe-
matical functions ;

printing: that defines parameterized printing of many standard data structures;

term: defining typed alphabet, terms, patterns, substitutions, unification, and func-
tions manipulating those data structures;

clause: defining first-order clauses, their manipulation, and their simplification;

program_to_clauses: defining the translation from SMTLIB programs into clauses and
the clauses approximation presented in 4.2 ;

116

https://gitlab.inria.fr/tlosekoo/auto-forestation.git

Implementation and experiments

io_clingo: defining an API to interact with the Clingo solver;

tree_tuple_formalisms: defining both convoluted tree automata and shallow Horn clauses,
together with operations to manipulate them;

model_checking: defining the teacher and its enhancements described both in Chap-
ter 6 and in Section 9.1.1.

model_inference: defining the learner for both convoluted automata and SHoCs (Chap-
ters 6 and 8) and also defines the Sat procedure described in Section 4.3.

9.1.1 Teacher

The teacher, in addition to implementing the pruning and splitting into independent
atoms proposed in Section 6.1.1, optimizes the search with a canonization of sets of
atoms, the use of memoisation, simplification of sets of atoms, and a few heuristics to
choose the order of the breadth-first search. As there is a lot of redundancy in the proof
search, memoisation avoids re-computing the unfolding of a set of atoms. However,
memoisation alone is not very useful, as even equivalent sets of atoms are often differ-
ent because of variable names. This is the reason for using canonization, which helps
equivalent sets of atoms to have the same internal representation.

Definition 9.1 (Canonization of a set of atoms). Let Ω be a set of atoms. Suppose an
order of the alphabet, then terms and tuple of terms can be ordered, so patterns can be
preordered as well as sets of atoms. A set of atom Ω is thus given one linear extension
of this preorder. This linear order on Ω yields a linear order on its variables Vars(Ω)

by e.g. a depth-first exploration.
Every variable in Ω is then replaced by a variable named Xi, with i its position in the
variable order.

Example 9.2. Let Ω = {Len(L, s(N)), Len(L, s(N′)), Even(N)}. The preorder we de-
fine on atoms would be {Even(N)} < {Len(L, s(N)), Len(L, s(N′))}. This preorder
yields the order on variables N < L < N′. The set of atoms Ω is thus canonized as
{Len(X2, s(X1)), Len(X2, s(X3)), Even(X1)}.

Note that this canonization is not perfect, i.e. there exists equivalent sets of atoms that
are canonized differently. Literature on graph isomorphism [31] can be of use for im-
proving the canonization.

117

Implementation and experiments

We now define the simplification of a set of atoms Ω, which allows to remove re-
dundant constraints while preserving and reflecting satisfiability (and the depth of
the counterexamples). For this, it is sufficient to search for a substitution σ such that
σ(Ω) ⊆ Ω. Indeed, suppose Ωa and Ωb two equisatisfiable sets of atoms (Ωa ≤ Ωb and
Ωb ≤ Ωa using Definition 6.18). Then, by Lemma 6.19, there exists two substitutions
σab and σba such that σab(Ωa) ⊆ Ωb and σba(Ωb) ⊆ Ωa. By letting σaba = σba ◦ σab, we
have σaba(Ωa) ⊆ Ωa.

Definition 9.3 (Simplification of a set of atoms). Let Ω be a set of atoms. A simplifica-
tion of Ω is a set of atoms σ(Ω) for σ a substitution such that σ(Ω) ⊆ Ω.

We search for a renaming σ yielding a smallest subset σ(Ω). For simplicity, we restrict
the search for such a substitution σ to those mapping variables to variables, i.e. a re-
naming of variables. A precise algorithm is not given here but is implemented quite
efficiently by noticing that, for any solution σ, σ ◦ σ is an at-least-as-good solution.

Example 9.4. Let Ω = {Len(L, s(N)), Len(L, s(N′)), Even(N)}. The substitution σ =

{N 7→ N, L 7→ L, N′ 7→ N} is such that σ(Ω) = {Len(L, s(N)), Even(N)} ⊆ Ω.
Note that, if Ω also contains an atom R(N′) for some other relation R, then this same
substitution σ would (fortunately) not yield a subset of Ω.

Finally, memoisation is done by keeping track of sets of atoms Ω and their already com-
puted unfoldings un f oldsA(Ω). More precisely, memoisation links a simplified and
canonized set of atom to the splitting into independent atoms of each of its unfoldings.
Memoisation is shared by all instances of Inhabitsdet

A that run in parallel in Teacher, as
relations are represented by the same model and thus have the same unfoldings.

9.1.2 Learner

The learner delegates the model finding to Clingo [13], a finite-model finder. For tree
automata, this corresponds to the merging of states under constraints, while for SHoCs
it completely infers the model.
The learner for tree automata is practically implemented as explained in Section 6.2.
However, for SHoCs, we restrict the shape of the SHoCs that the learner can infer in
order to reduce its algorithmic complexity. These syntactic restrictions slightly reduce
expressivity of SHoCs but have close to no effect on the procedure as a whole. This
immediately has no effect on the teacher procedure, as it is defined and proven for

118

Implementation and experiments

any SHoCs. The Learner theorem 8.6 is preserved, except that inferred SHoCs S are
minimal among those that meet these syntactic restrictions. The Sat procedure theorems
(6.46 and 6.45) are not impacted either, except for Theorem 6.46 that undergo the same
amendment than Theorem 8.6, namely that the learner’s output SHoCs Si are among
those meeting these syntactic restrictions.

Definition 9.5 (Syntactic restrictions of SHoCs for faster learning). Let R(#»p) ⇐ B be
a SHoC generated by the learner.

1. For any R′(
#»

X) ∈ B,
#»

X are in the same order as in the depth-first traversal of #»p

2. For any distinct pair R′(
»

X′) ∈ B and R′′(
»

X′′) ∈ B,
»

X′ ̸= # »

X′′

3. For any R′(
#»

X) ∈ B, every X ∈ #»

X comes from a different pattern p of #»p .

4. For any R′(
#»

X) ∈ B, |R′| ≤ |R|.

Compared to unrestricted SHoCs, some relations may need additional intermediate
relations to be represented and some relations simply can not be represented anymore,
such as { f (t, t) | t ∈ T (Σ)}. In practice, however, these four restrictions do not have
much of an impact on the inferred SHoCs for our benchmarks, apart from making the
procedure quicker.
An other heuristic we use is thanks to the #minimize constraint that Clingo proposes.
This constraint allows to ask to select, among valid models of minimal size, a model
which minimizes a given function. We use this constraint to prioritize SHoCs with
fewer clauses and without too much entanglement between relations.
Finally, we have a last easy optimisation. The input set of ground examples Γ̂ that the
teacher receives may have implication constraints that can be statically resolved e.g. in
Example 6.35, where Γ̂ex = {Len(nil, z), Len(cons(z, nil), s(z)) ⇐ Len(nil, z)} can be
simplified into Γ̂ex = {Len(nil, z), Len(cons(z, nil), s(z))}.

9.2 Benchmarks

To benchmark the Learner/Teacher procedure using either convoluted tree automata
or SHoCs, we use examples coming from [19], where regular sets are sufficient to carry
out the proof, examples coming from [10, 6] where convoluted tree automata are nec-
essary, and add some new examples which are out of the scope of convoluted tree
automata, such as the property ϕ3 from the introductory example of Section 1.1. All of

119

Implementation and experiments

our experimental results are available at https://tlosekoo.gitlabpages.inria.fr/
auto-forestation/index.html All programs are defined as SMTLIB functions and are
transformed into constrained clauses by our tool. On each example, the result of this
translation as well as the found models can be consulted in the execution log of the
tool.
We present how to read to execution log of our solver on the example (length_reverse_eq.smt2),
which asserts that len (rev L) = len L.

Example 9.6 (Reading the solver trace).
The first section of the trace recalls the parameters that were used for the model-
inference:

Inference procedure has parameters:

Timeout: Some(60.) (sec)

Approximation method: remove functionality constraint where possible

The second section shows the clauses defining the program and the properties, after
presenting the typed alphabet.

Learning problem is:

env: {

elt -> {a, b} ; eltlist -> {cons, nil} ; nat -> {s, z}

}

definition:

{

(append, F:

{

append(nil, l2, l2) <= True

append(cons(h1, t1), l2, cons(h1, _a)) <= append(t1, l2, _a)

}

eq_eltlist(_d, _e) <= append(_b, _c, _d) /\ append(_b, _c, _e)

)

(reverse, F:

{

reverse(nil, nil) <= True

120

https://tlosekoo.gitlabpages.inria.fr/auto-forestation/index.html
https://tlosekoo.gitlabpages.inria.fr/auto-forestation/index.html
http://people.irisa.fr/Thomas.Genet/AutoForestation//benchmarks/smtlib/true/length_reverse_eq.smt2

Implementation and experiments

reverse(cons(h1, t1), _f) <= append(_g, cons(h1, nil), _f) /\ reverse(t1, _g)

}

eq_eltlist(_i, _j) <= reverse(_h, _i) /\ reverse(_h, _j)

)

(length, F:

{

length(nil, z) <= True

length(cons(x, ll), s(_k)) <= length(ll, _k)

}

eq_nat(_m, _n) <= length(_l, _m) /\ length(_l, _n)

)

}

properties:

{

eq_nat(_o, _p) <= length(_q, _p) /\ length(l1, _o) /\ reverse(l1, _q)

}

The following section states which relation can be over/under-approximated, and re-
calls the whole set of clauses from the approximated program and the properties.

over-approximation: {append, length, reverse}

under-approximation: {}

Clause system for inference is:

{

append(nil, l2, l2) <= True

length(nil, z) <= True

reverse(nil, nil) <= True

reverse(cons(h1, t1), _f) <= append(_g, cons(h1, nil), _f) /\ reverse(t1, _g)

append(cons(h1, t1), l2, cons(h1, _a)) <= append(t1, l2, _a)

eq_nat(_o, _p) <= length(_q, _p) /\ length(l1, _o) /\ reverse(l1, _q)

length(cons(x, ll), s(_k)) <= length(ll, _k)

}

121

Implementation and experiments

Finally, the solving result is given by (a) the total time for the proof or counterexample
generation ; (b) in the case of a successful proof, the solver provides the final SHoCs
(which has been split relation by relation).
Note that SHoCs for equalities are omitted because they are canonical. This is the case
here for the equality relation for elt, eltlist, and nat.

Solving took 34.501535 seconds.

Yes: |_

_r_1 ->

{

_r_1(cons(x_0_0, x_0_1), cons(x_1_0, x_1_1)) <= _r_1(x_0_1, x_1_1)

_r_1(nil, cons(x_1_0, x_1_1)) <= _r_3(x_1_1)

}

;

_r_2 ->

{

_r_2(cons(x_0_0, x_0_1)) <= True

}

;

_r_3 ->

{

_r_3(nil) <= True

}

;

append ->

{

append(cons(x_0_0, x_0_1), cons(x_1_0, x_1_1), cons(x_2_0, x_2_1)) <= _r_1(x_0_1, x_2_1)

append(cons(x_0_0, x_0_1), cons(x_1_0, x_1_1), cons(x_2_0, x_2_1)) <= _r_2(x_1_1)

append(cons(x_0_0, x_0_1), nil, cons(x_2_0, x_2_1)) <= True

append(nil, cons(x_1_0, x_1_1), cons(x_2_0, x_2_1)) <= reverse(x_1_1, x_2_1)

append(nil, nil, nil) <= True

}

;

122

Implementation and experiments

length ->

{

length(cons(x_0_0, x_0_1), s(x_1_0)) <= length(x_0_1, x_1_0)

length(nil, z) <= True

}

;

reverse ->

{

reverse(cons(x_0_0, x_0_1), cons(x_1_0, x_1_1)) <= reverse(x_0_1, x_1_1)

reverse(nil, nil) <= True

}

--

Equality SHoCs are defined for: {elt, eltlist, nat}

_|

After giving the final solver’s answer, the detail of each step of the Learner/Teacher
loop is given, much like the Example 4.14.
The log for our procedure using convoluted automata looks similar. Here is the right-
convoluted automaton proving this same property. Please do not try to decipher it too
hard, this is just given as a motivation for SHoCs’ ease of use.

Model:

|_

{

append ->

{{{

Q={q_gen_10, q_gen_102, q_gen_103, q_gen_110, q_gen_111, q_gen_129,

q_gen_131, q_gen_17, q_gen_22, q_gen_23, q_gen_24},

Q_f={q_gen_10, q_gen_102},

Delta=

{

<cons>(q_gen_23, q_gen_129) -> q_gen_129

<cons>(q_gen_23, q_gen_22) -> q_gen_129

<nil>() -> q_gen_22

<a>() -> q_gen_23

123

Implementation and experiments

() -> q_gen_23

<cons, cons>(q_gen_111, q_gen_110) -> q_gen_110

<nil, cons>(q_gen_23, q_gen_22) -> q_gen_110

<a, a>() -> q_gen_111

<a, b>() -> q_gen_111

<b, a>() -> q_gen_111

<b, b>() -> q_gen_111

<cons, cons>(q_gen_111, q_gen_131) -> q_gen_131

<nil, cons>(q_gen_23, q_gen_129) -> q_gen_131

<cons, cons>(q_gen_111, q_gen_17) -> q_gen_17

<nil, nil>() -> q_gen_17

<cons, nil, cons>(q_gen_111, q_gen_131) -> q_gen_10

<cons, nil, cons>(q_gen_111, q_gen_17) -> q_gen_10

<nil, cons, cons>(q_gen_111, q_gen_17) -> q_gen_10

<nil, nil, cons>(q_gen_23, q_gen_129) -> q_gen_10

<nil, nil, nil>() -> q_gen_10

<cons, cons, cons>(q_gen_24, q_gen_102) -> q_gen_102

<cons, cons, cons>(q_gen_24, q_gen_103) -> q_gen_102

<cons, nil, cons>(q_gen_111, q_gen_110) -> q_gen_102

<nil, nil, cons>(q_gen_23, q_gen_22) -> q_gen_102

<cons, cons, cons>(q_gen_24, q_gen_10) -> q_gen_103

<nil, cons, cons>(q_gen_111, q_gen_110) -> q_gen_103

<nil, cons, cons>(q_gen_111, q_gen_131) -> q_gen_103

<a, a, a>() -> q_gen_24

<a, b, a>() -> q_gen_24

<b, a, b>() -> q_gen_24

<b, b, b>() -> q_gen_24

}

Datatype: <eltlist, eltlist, eltlist>

Convolution form: right

}}}

; length ->

{{{

Q={q_gen_1, q_gen_14},

Q_f={q_gen_1},

124

Implementation and experiments

Delta=

{

<a>() -> q_gen_14

() -> q_gen_14

<cons, s>(q_gen_14, q_gen_1) -> q_gen_1

<nil, z>() -> q_gen_1

}

Datatype: <eltlist, nat>

Convolution form: right

}}}

; reverse ->

{{{

Q={q_gen_0, q_gen_100, q_gen_12, q_gen_28, q_gen_29},

Q_f={q_gen_0},

Delta=

{

<cons>(q_gen_29, q_gen_28) -> q_gen_28

<nil>() -> q_gen_28

<a>() -> q_gen_29

() -> q_gen_29

<cons, cons>(q_gen_12, q_gen_0) -> q_gen_0

<nil, nil>() -> q_gen_0

<cons, cons>(q_gen_12, q_gen_100) -> q_gen_100

<cons, nil>(q_gen_29, q_gen_28) -> q_gen_100

<nil, cons>(q_gen_29, q_gen_28) -> q_gen_100

<a, a>() -> q_gen_12

<a, b>() -> q_gen_12

<b, a>() -> q_gen_12

<b, b>() -> q_gen_12

}

Datatype: <eltlist, eltlist>

Convolution form: right

}}}

125

Implementation and experiments

}

--

Equality automata are defined for: {eq_elt, eq_eltlist, eq_nat}

_|

General results

On a total of 174 examples, our solver using convoluted automata proves 78 dis-
proves 30, and timeouts on 66 after 30 seconds. Using SHoCs, it proves 106, disproves
31, and timeouts on 37 after 30 seconds. Further increasing the timeout does not have
much of an impact. The 78 positive and negative examples verified by using convo-
luted automata can also be verified using SHoCs, except that some of them need more
time. Our solver succeeds on 24 out of the 79 first-order Isaplanner examples in less
than 5s. Our approach and [33] are rather complementary on our benchmarks as they
succeed on different (not disjoint) sets of examples. This can be observed on the Isa-
Planner benchmark where our technique fails on most of examples that [33] handles
(i.e. 4, 5, 29, 30, 39, 50, 62, 67, 71, 86) and succeeds on examples on which they do not
report any success (i.e. 10, 11, 17, 18, 20, 21, 22, 23, 24, 25, 31, 32, 33, 34, 45, 65, 68, 69).

Spacer [17], Eldarica [20], and RInGen [32] are powerful general purpose SMT
solvers with some ADT support. However, this support for ADTs does not cover rela-
tional properties and, unsurprisingly, those solvers do not perform well on positive ex-
amples of this benchmark. We used a 60s timeout for Spacer, Eldarica (with a RInGen
pre-processing), and RInGen (with CVC4 finite model finding). The following table
sums up the results for positive and negative examples.

SHoCs Convoluted automata Spacer Eldarica RInGen

Positive (143) 106 78 15 9 36

Negative (32) 31 30 4 31 31

Since RInGen is based on regular model inference [27], it succeeds on benchmarks
having a regular model but fails on examples needing relational information. More
precisely, a non-relational solver such as [19] can also handle a restricted form of re-
lations: the finite union of languages L1 × . . . × Ln where ∀i ∈ [1 . . . n], Li is a reg-
ular language. This allows to prove properties with a limited form of relation. For

126

Implementation and experiments

instance, using a non-relational regular solver, it is possible to prove the property
less z (len L1) ⇒ less z (len (append L1 L2)). For the tuple of variables (L1, L2) to
cover all the possible cases, it is enough to consider the two languages Lnil × Llists

and LCons+ × Llists where Lnil = {Nil} and LCons+ = Llists \ Lnil. With the first lan-
guage, the property is true because the left-hand side of the implication is false. With
the second language LCons+ ×Llist, both the left and right-hand side of the implication
are true. One of the simplest problem which cannot be proved using a non-relational
solver is cons(N, L) ̸= L, as proving such a property cannot be done using a finite union
of products of regular languages.

Finally, as discussed in Section 3.1, the syntactic proof system defined by Unno et
al. [35] also targets (among others) algebraic properties of functional programs. As an-
nounced, we compare it with our approach on some examples. Their solver performs
differently, as the approach is significantly different, and succeeds on many interesting
relational properties that are both positive and negative. It is harder to compare to ours
as it does not take SMTLIB as input format. However, we wrote the examples of the
Section 9.2.1 in Caml, which it accepts. On these examples, their solver succeeds on
properties 1, 6, and 8, but timeouts on the others. On the other hand, their solver is
capable to prove min (plus N1 N2) N2 = N2 whereas ours can not, as the relation plus
can not be represented by a SHoCs.

9.2.1 Zoom in on some benchmarks

We first present some properties that can and cannot be proven using convoluted
automata and then using SHoCs. The properties that can be proven using convoluted
automata can also be proven using SHoCs, but convoluted automata are still surpris-
ingly efficient for some properties.

Convoluted automata

Convoluted automata allow to prove many relational properties that could not be
proven by aforementioned non-relational solvers. Because the properties of our bench-
marks were mostly either on same-type relations or on lists and natural numbers, the
right-convolution was the most efficient convolution. Left-convolution is not adapted
for most of the list-based examples and complete-convolution revealed to be too costly
in practice though it theoretically allows to prove properties on functions manipulat-

127

Implementation and experiments

ing binary trees. Finally, on examples where using a non-relational model suffices to
prove the property, our solving technique is often flexible enough to find such a model,
with an efficiency comparable to non-relational solvers.
We present in this section some examples on which our solver, using tree automata,
succeeds and fails. For these examples, variables named E represent elements of a two-
element domain {a, b}, L represent lists over this two-element domain, and T binary
trees over this two-element domain.
The Sat procedure using the right-convolution allows to prove the following positive
properties:

— len L = len (reverse L)

— pre f ix L1 (append L1 L2)

— len L = len (insertionSort L)

It also is able to find a counterexample on the following negative properties:

— N < (double N)

— (delete_one X L) = (delete_all X L) ⇒ (count X L) = 1

Finally, here are some examples on which our solver does not terminate due to trying to
represent a relation for which a right-convoluted automaton is not expressive enough:

— N1 + N2 = N2 + N1

— size T1 < size (node N T1 T2)

— heightRB T ≤ height T

— f lip (f lip T) = T

Note that lists and trees of the above-mentioned properties are over a two-element do-
main. These positive properties can also theoretically be proven on an infinite domain,
such as natural numbers, still by using right-convolution. However, because convo-
luted automata must consider the terms up to their leaves, this increases the verifica-
tion cost and makes it unpractical.
The Sat procedure does not solve any of the above examples when using left-convolution
due to a lack in expressiveness. Using the complete-convolution compensates this lack
of expressiveness (except for properties N1 + N2 = N2 + N1 and size T1 < size (node N T1 T2)),
but still does not allow to prove any of the above positive properties due to generating
too-big terms.

128

Implementation and experiments

Shallow Horn Clauses

In this section, we show some examples on which our solver, using SHoCs, suc-
ceeds and fails. For these examples, variables named N represent natural numbers, L
represent lists over natural numbers, and T binary trees over natural numbers. For a
detailed SMTLIB implementation of functions and properties of examples, see the files
linked by their name.

Successful positive examples

1. len L1 ≤ len (append L1, L2) (append_length_leq_nat.smt2)

2. height T ≤ size T (tree_nat_depth_leq_size.smt2)

3. heightRB T ≤ height T (tree_height_heightRB.smt2)

4. subtree T1 T2 ∧ subtree T2 T3 ⇒ subtree T1 T3 (tree_strict_subtree_trans.smt2)

5. len L = len (insertionSort L) (isaplanner_prop20.smt2)

6. f lip (f lip T) = T (tree_flip_twice.smt2)

7. len L = len (reverse L) (length_reverse_eq_nat.smt2)

8. pre f ix L1 (append L1 L2) (prefix_append.smt2)

Although the property 1 is in the scope of convoluted tree automata, our solver only
proves it on lists on natural numbers when using SHoCs. As mentioned in Chapter 7,
models represented with SHoCs are generic. In the case of this property, the SHoCs
proving it for nat list and for lists of a′s and b′s are the same. The property 2 is out
of the scope of convoluted automata with either left- or right-convolution and also
takes advantage of the genericity of SHoCs. Interestingly, the solver builds an over-
approximation of the Height relation which is sufficient to prove ϕ3. When functions
are translated into relations, ϕ3 becomes HeightRB(T, N)∧Height(T, M) ⇒ Less(N, M),
where HeightRB and Height occurs only on the left-hand side of the implication and
using over-approximations for these relations for proving this property is safe. The
property 3 is the property ϕ3 from Section 1.1. Properties 4 and 5 are other challeng-
ing properties. In particular, since insertionSort is defined using an intermediate func-
tion, proving this property using, e.g., automatic induction would require to guess and
prove non-trivial intermediate lemmas.

129

http://people.irisa.fr/Thomas.Genet/AutoForestation//benchmarks/smtlib/true/append_length_leq_nat.smt2
http://people.irisa.fr/Thomas.Genet/AutoForestation//benchmarks/smtlib/true/tree_nat_depth_leq_size.smt2
http://people.irisa.fr/Thomas.Genet/AutoForestation//benchmarks/smtlib/true/tree_height_heightRB.smt2
http://people.irisa.fr/Thomas.Genet/AutoForestation//benchmarks/smtlib/true/tree_strict_subtree_trans.smt2
http://people.irisa.fr/Thomas.Genet/AutoForestation//benchmarks/smtlib/true/isaplanner_prop20.smt2
http://people.irisa.fr/Thomas.Genet/AutoForestation//benchmarks/smtlib/true/tree_flip_twice.smt2
http://people.irisa.fr/Thomas.Genet/AutoForestation//benchmarks/smtlib/true/length_reverse_eq_nat.smt2
http://people.irisa.fr/Thomas.Genet/AutoForestation//benchmarks/smtlib/true/prefix_append.smt2

Implementation and experiments

Successful negative examples On the following properties our solver is able to find
a counterexample.

— N < (double N) (nat_double_is_le.smt2)

— (delete_one X L) = (delete_all X L) ⇒ (count X L) = 1 (list_delete_all_count.smt2)

Unsuccessful positive examples On the following properties, our solver does not
terminate due to trying to represent a relation for which the SHoCs are not expressive
enough.

— (delete_one X L) = (delete_all X L) ⇒ (count X L) ≤ 1 (list_delete_all_count.smt2)

— N1 + N2 = N2 + N1 (plus_commutative.smt2)

— mem X L ⇒ mem X (reverse L) (mem_reverse.smt2)

— size T1 < size (node T1 N T2) (tree_size_le_node.smt2)

Finally, those experiments also reveal that the learner may find a correct model that
our (incomplete) teacher may fail to accept. This can be observed in the log of the
example (tree_height_max_node.smt2), which states that (height (node T1 N T2)) =

(s (max (height T1) (height T2))), where the last SHoCs proposed by the teacher
for height is exactly the SHoCs of Section 7.4 but it is not accepted by the teacher.
This property can be proven by splitting the height function into two parts, see exam-
ple (tree_shallow_taller_node.smt2).

130

http://people.irisa.fr/Thomas.Genet/AutoForestation//benchmarks/smtlib/false/nat_double_is_le.smt2
http://people.irisa.fr/Thomas.Genet/AutoForestation//benchmarks/smtlib/false/list_delete_all_count.smt2
http://people.irisa.fr/Thomas.Genet/AutoForestation//benchmarks/smtlib/true/list_delete_all_count.smt2
http://people.irisa.fr/Thomas.Genet/AutoForestation//benchmarks/smtlib/true/plus_commutative.smt2
http://people.irisa.fr/Thomas.Genet/AutoForestation//benchmarks/smtlib/true/mem_reverse.smt2
http://people.irisa.fr/Thomas.Genet/AutoForestation//benchmarks/smtlib/true/tree_size_le_node.smt2
http://people.irisa.fr/Thomas.Genet/AutoForestation//benchmarks/smtlib/true/tree_height_max_node.smt2
http://people.irisa.fr/Thomas.Genet/AutoForestation//benchmarks/smtlib/true/tree_shallow_taller_node.smt2

CHAPTER 10

CONCLUSION AND PERSPECTIVES

10.1 Conclusion

Summary The goal of this thesis was to automatically prove relational properties
on tree-manipulating functional programs. We presented two formalisms to repre-
sent tree-tuple languages: convoluted tree automata, known in the literature only with
padding, and shallow Horn clauses that we proposed in this thesis. The program
and its properties are first translated from the high-level language SMTLIB to a set
of clauses. This set of clauses is then relaxed using our approximation framework.
Convoluted tree automata and SHoCs have then been used to represent models of
this set of clauses describing both the (approximated) program and the properties. The
generic Learner/Teacher procedure for inferring a model of a set of clauses has been
instantiated twice, using convoluted automata and then SHoCs. In both cases, the pro-
cedure is correct, and relatively complete. We implemented these procedures, together
with practical improvements, and benchmarked them against relational properties on
recursively-defined functions. The benchmarks confirm the adequacy of model exhi-
bition as a promising verification technique for a certain type of relational properties
and the efficiency of the procedures defined in this thesis. These contributions show
that the inference of a finite representation of Herbrand models to prove satisfiability
of a set of clauses can be effective compared to state-of-the-art techniques.

Takeaway Convoluted automata can indeed be used to represent recursive functions
to aid automated proof and can be practically inferred. With the right-convolution,
our implementation successfully represented approximations of functions such as len,
append, heightRB, height, insert_sort that are sufficient to prove some non-trivial re-
lational properties. Shallow Horn clauses are a more generic formalism to represent
recursive functions. They are strictly more expressive than tree automata and convo-
luted tree automata. Moreover, they can also be inferred from examples and are able

131

Conclusion and perspectives

to more-precisely represent those relations. Generally, SHoCs are very efficient at rep-
resenting relations that can be defined by recursive calls to immediate children of its
parameters without needing to store data.

Comparison with automatic induction Model exhibition behaves very differently
from syntactic proof and the properties that these two paradigms can prove are rather
different. The model inference method is often more effective than automatic induction
as soon as intermediary lemmas are required to syntactically prove the property. For
example, proving that the insertion sort preserves the length of its input is hard with
automatic induction, as the insertion sort uses intermediate functions and requires in-
termediate lemmas. Many such properties can be found in the benchmarks or in Sec-
tion 9.2.1. However, for this model inference method to work, a sufficient approxima-
tion of the relation must be representable using the model formalism, and we must be
able to validate the model against the properties, which is not always the case. For ex-
ample, our implementation is powerful enough to prove that flipping a tree twice is the
identity, i.e. f lip (f lip (T)) = T, but not that flipping a tree twice preserves its height,
i.e. height (f lip (f lip (T))) = height T, which should be an immediate consequence for
syntactic proofs.

Comparison with SMT-solvers SMT-solvers that support algebraic datatypes, such
as Spacer, Eldarica, or RInGen, perform well on non-relational properties. However,
their non-relational model representation fails to prove relational properties. Thus,
they fail on most of the benchmarks proposed in this thesis, as shown in Section 9.2.

10.2 Perspectives

Teacher improvement The current teacher can be improved. For example, the prop-
erty height (f lip (f lip (T))) = height T cannot be automatically proven although an
exact representation of height and f lip is represented in the final SHoCs that the learner
builds (which is necessarily the case because we know that there exists a SHoCs that
represents these functions and because of the Learner/Teacher relative completeness
Theorem 6.46).
Currently, the teacher searches for a substitution by a breadth-first search approach 1.

1. In practice we implemented a few heuristics but do not deviate much from the breadth-first search

132

Conclusion and perspectives

This is convenient for proving its (relative) completeness but not necessary. Similarly
to SMT-solvers, a conflict-driven clause learning algorithm (with, here, a bound on the
explored depth) could significantly improve the capabilities of the Teacher. More gen-
erally, there may exist more efficient ways of checking the clauses against a convoluted
tree automaton or SHoCs.

Clause approximation Our approximation of the set of clauses representing both
the program and properties is not satisfying. Whether it be by modification of the
set of clauses or by a different interpretation of them, approximation should be im-
proved. Indeed, we analyse the clauses to know which relation can be approximated
and how, but our approximation method then only over-approximates relations de-
fined from boolean functions, and can not over-approximate other relations not under-
approximate. Moreover, our method allows some over-approximations but not all of
them. For example, the relation {(t, n) | t is a tree of height n} ∪ {(lea f , s(z))} is a cor-
rect over-approximation of the Height relation but cannot be obtained using our clause-
modification method. A better approximation framework would allow for any over-
approximation and any under-approximation (when it is safe to over-/under- approx-
imate). Moreover, it may be worth trying to have one over-approximation and one
under-approximation per relation.

Support for other theories Currently, this method can only handle the theory of re-
cursive algebraic datatypes, which is limiting when trying to prove real-world pro-
grams. Support for an other theory, for example computer integers, seems to fit into
this framework when using SHoCs. The SHoC formalism would need to allow theory-
specific variables in its head and theory-specific predicates in its body. The teacher
would need to be extended by using a SMT-solver for the theory when the unfolding
of an atom contains such a theory-specific predicate. The learner could use a predefined
set of predicates on this theory to be used in the body of its inferred models. Moreover,
some theory-specific predicates should also be labeled as "deconstructors", allowing
to use variables that were not in the head, as otherwise the SHoC constraint that ev-
ery variable from the body appears in the head is too restricting. Each theory-specific
head variable could then be used in exactly one deconstructor, which corresponds pre-
cisely to our treatment of algebraic datatypes. For example, the binary −1 relation,
relating an known integer n to n − 1, can be labeled as a deconstructor, as the con-

133

Conclusion and perspectives

straint −1(N, N′) allows to uniquely determine N′ from N (and reduces its size). The
Double relation could then be realised with the predefined theory-specific predicates
and deconstructors is0, −1, and −2:

Double(X, Y) ⇐ is0(X) ∧ is0(Y)
Double(X, Y) ⇐ Double(X′, Y′) ∧−1(X, X′) ∧−2(Y, Y′).

The HeightRB relation can also be written using proper integers by

HeightRB(lea f , N) ⇐ is0(N)

HeightRB(node(T1, E, T2), N) ⇐ −1(N, N′) ∧ HeightRB(T2, N′).

Polymorphism Polymorphism is currently not handled by this solver. Relying on
the whole polymorphic program, a polymorphic function can be instantiated on ev-
ery datatype it is applied to, thus allowing to prove it using monomorphic techniques,
which is not very satisfying. A possible future work is to reuse techniques for reduc-
ing the proof of a polymorphic program to that of a monomorphic one [3]. Moreover,
SHoCs allow for polymorphism by allowing variables from the head to not appear in
the body, as showed in Example 7.5.

134

BIBLIOGRAPHY

[1] Clark Barrett, Pascal Fontaine, and Cesare Tinelli, The Satisfiability Modulo Theo-
ries Library (SMT-LIB), www.SMT-LIB.org, 2016.

[2] Clark Barrett, Igor Shikanian, and Cesare Tinelli, « An abstract decision proce-
dure for a theory of inductive data types », in: Journal on Satisfiability, Boolean
Modeling and Computation 3.1-2 (2007), pp. 21–46.

[3] Jean-Philippe Bernardy, Patrik Jansson, and Koen Claessen, « Testing polymor-
phic properties », in: Programming Languages and Systems: 19th European Sympo-
sium on Programming, ESOP 2010, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus, March 20-28, 2010.
Proceedings 19, Springer, 2010, pp. 125–144.

[4] Jean Berstel, Transductions and context-free languages, vol. 38, Teubner Studien-
bücher : Informatik, Teubner, 1979, ISBN: 3519023407, URL: https://www.worldcat.
org/oclc/06364613.

[5] Nikolaj Bjørner et al., « Horn clause solvers for program verification », in: Fields
of Logic and Computation II, Springer, 2015, pp. 24–51.

[6] Koen Claessen et al., TIP and IsaPlanner benchmarks, https://tip-org.github.
io/, 2015.

[7] Hubert Comon et al., Tree Automata Techniques and Applications, 2008, p. 262, URL:
https://hal.inria.fr/hal-03367725.

[8] Loris D’Antoni and Margus Veanes, « The power of symbolic automata and trans-
ducers », in: Computer Aided Verification: 29th International Conference, CAV 2017,
Heidelberg, Germany, July 24-28, 2017, Proceedings, Part I 30, Springer, 2017, pp. 47–
67.

[9] Max Dauchet and Sophie Tison, « The theory of ground rewrite systems is decid-
able », in: [1990] Proceedings. Fifth Annual IEEE Symposium on Logic in Computer
Science, IEEE, 1990, pp. 242–248.

135

https://www.worldcat.org/oclc/06364613
https://www.worldcat.org/oclc/06364613
https://tip-org.github.io/
https://tip-org.github.io/
https://hal.inria.fr/hal-03367725

BIBLIOGRAPHY

[10] Lucas Dixon and Jacques Fleuriot, « IsaPlanner: A Prototype Proof Planner in
Isabelle », in: CADE’03, vol. 2741, Springer, 2003, pp. 279–283.

[11] Maarten H. van Emden and Robert A. Kowalski, « The Semantics of Predicate
Logic as a Programming Language », in: J. ACM 23.4 (1976), pp. 733–742.

[12] Pranav Garg et al., « ICE: A robust framework for learning invariants », in: Inter-
national Conference on Computer Aided Verification, Springer, 2014, pp. 69–87.

[13] Martin Gebser et al., Answer Set Solving in Practice, Synthesis Lectures on Artifi-
cial Intelligence and Machine Learning, Morgan & Claypool Publishers, 2012.

[14] Thomas Genet, « Termination criteria for tree automata completion », in: Journal
of Logical and Algebraic Methods in Programming 85.1 (2016), pp. 3–33.

[15] Thomas Genet, Timothée Haudebourg, and Thomas Jensen, « Verifying Higher-
Order Functions with Tree Automata », in: International Conference on Foundations
of Software Science and Computation Structures, Springer, 2018, pp. 565–582.

[16] Erich Grädel, « Automatic structures: twenty years later », in: Proceedings of the
35th Annual ACM/IEEE Symposium on Logic in Computer Science, 2020, pp. 21–34.

[17] Arie Gurfinkel, « Program Verification with Constrained Horn Clauses », in: CAV’22,
vol. 13371, LNCS, Springer, 2022, pp. 19–29.

[18] Timothée Haudebourg, « Automatic Verification of Higher-Order Functional Pro-
grams using Regular Tree Languages », PhD thesis, Univ. Rennes1, 2020.

[19] Timothée Haudebourg, Thomas Genet, and Thomas Jensen, « Regular Language
Type Inference with Term Rewriting », in: Proceedings of the ACM on Programming
Languages 4.ICFP (2020), pp. 1–29.

[20] Hossein Hojjat and Philipp Rümmer, « The ELDARICA Horn Solver », in: FM-
CAD’18, https://github.com/uuverifiers/eldarica/, IEEE, 2018, pp. 1–7.

[21] Neil D Jones, « Flow analysis of lazy higher-order functional languages », in: Ab-
stract Interpretation of Declarative Languages, 1987, pp. 103–122.

[22] Neil D Jones and Nils Andersen, « Flow analysis of lazy higher-order functional
programs », in: Theoretical Computer Science 375.1-3 (2007), pp. 120–136.

[23] Neil D Jones and Steven S Muchnick, « Flow analysis and optimization of LISP-
like structures », in: Proceedings of the 6th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages, 1979, pp. 244–256.

136

https://github.com/uuverifiers/eldarica/

BIBLIOGRAPHY

[24] Bakhadyr Khoussainov and Anil Nerode, « Automatic Presentations of Struc-
tures », in: International Workshop on Logic and Computational Complexity, Springer,
1994, pp. 367–392.

[25] Gerwin Klein et al., « seL4: Formal verification of an OS kernel », in: Proceedings
of the ACM SIGOPS 22nd symposium on Operating systems principles, 2009, pp. 207–
220.

[26] Naoki Kobayashi, Ryosuke Sato, and Hiroshi Unno, « Predicate abstraction and
CEGAR for higher-order model checking », in: Proceedings of the 32nd ACM SIG-
PLAN conference on Programming language design and implementation, 2011, pp. 222–
233.

[27] Yurii Kostyukov, Dmitry Mordvinov, and Grigory Fedyukovich, « Beyond the
elementary representations of program invariants over algebraic data types », in:
PLDI’21, ed. by Stephen N. Freund and Eran Yahav, ACM, 2021, pp. 451–465.

[28] Sébastien Limet and Gernot Salzer, « Tree tuple languages from the logic pro-
gramming point of view », in: Journal of Automated Reasoning 37 (2006), pp. 323–
349.

[29] T. Losekoot, T. Genet, and T. Jensen, « Automata-based Verification of Relational
Properties of Functions over Data Structures », in: FSCD’23, vol. 260, LIPIcs, 2023.

[30] Yuma Matsumoto, Naoki Kobayashi, and Hiroshi Unno, « Automata-based ab-
straction for automated verification of higher-order tree-processing programs »,
in: Asian Symposium on Programming Languages and Systems, Springer, 2015, pp. 295–
312.

[31] Brendan D McKay et al., « Practical graph isomorphism », in: (1981).

[32] Regular Invariant Generator, https://github.com/Columpio/RInGen, 2021.

[33] Takumi Shimoda et al., « Symbolic Automatic Relations and Their Applications
to SMT and CHC Solving », in: International Static Analysis Symposium, Springer,
2021, pp. 405–428.

[34] Takeshi Tsukada and Hiroshi Unno, « Software model-checking as cyclic-proof
search », in: Proceedings of the ACM on Programming Languages 6.POPL (2022),
pp. 1–29.

137

https://github.com/Columpio/RInGen

BIBLIOGRAPHY

[35] Hiroshi Unno, Sho Torii, and Hiroki Sakamoto, « Automating induction for solv-
ing horn clauses », in: International Conference on Computer Aided Verification, Springer,
2017, pp. 571–591.

138

APPENDIX A

APPENDIX

A.1 Omitted proofs for the Teacher

This section is a collection of lemmas and proofs for the Teacher procedure and of
definitions used only in them.

Definition A.1 (Set of patterns of atoms). We write Patterns(q(p1, . . . , pn)) = {p1, . . . , pn}
the set of patterns of an atom q(p1, . . . , pn) and Patterns(Ω) =

⋃
ω∈Ω Patterns(ω) for

the set of patterns that appear in a set of atoms Ω.

The unfolding of a tuple of patterns along a transition only uses direct children. This
intuition is transcribed in the following Proposition A.2.

Proposition A.2 (un f oldOne patterns). Let #»p be a tuple of patterns and r a transition of
some automaton such that un f oldOne(#»p , r) is defined. Then

Patterns(un f oldOne(#»p , r)) ⊆ {p[π] | p ∈ #»p ∧ π ∈ Pos(p) ∧ |π| = 1}

Lemma 6.11 (un f olds). Let Ω = {ω1, . . . , ωn} be a set of atoms, T = {(ω1, r1), . . . , (ωn, rn)}
be a set of pairs of an atom and a transition of some automaton A, assigning a transition to
each atom ωi of Ω. Suppose un f olds(T) = Some(Ω′, σδ). Then for all substitution σ such
that A |= σ(Ω′), we have A |= σ(σδ(Ω)).

Proof. Suppose A |= σ(Ω′) and let ωi = qi(
#»pi) ∈ Ω. We now prove that A |= σ(σδ(ωi)).

Let ri =
〈

f1, . . . , fn
〉
(#»q) → q′i be the transition associated to ωi in T. Because un f olds(T)

returned Some(Ω′, σδ), we know that that q′i = qi and that σδ(
#»pi) is of the shape

(f1(
#»

p′1), . . . , fn(
»

p′n)), as σδ is a unifier of compatibility(#»pi, (f1, . . . , fn)). This means that
ri can be applied to recognize σδ(

#»pi) in qi or, more precisely, that for any substitution σ,
A |= σ(σδ(ωi)) is implied by A |= σ(un f oldOne(σδ(

#»pi), ri)). We conclude by noticing
un f oldOne(σδ(

#»pi), ri) ⊆ Ω′ and A |= σ(Ω′).

139

Appendix

Lemma A.3 (InhabitsA ground bounded termination). Let Ω be a set of atoms and A a
convoluted automaton. If there exists a substitution σ such that Vars(σ(Ω)) = ∅ and A |=
σ(Ω), then there exists an execution of InhabitsA(Ω) which stops in at most ht(σ(Ω)) steps
by returning Some(_).

Proof. Let σ be a substitution such that Vars(σ(Ω)) = ∅ and A |= σ(Ω).
Let P(i) be the property that there exists an execution of InhabitsA(Ω) that either
(a) terminated with Some(_) before step i or else (b) reached step i and such that
there exists a substitution σ′ with Vars(σ′(Ωi)) = ∅, A |= σ′(Ωi), and ht(σ′(Ωi)) ≤
ht(σ(Ω))− i. Recall that Ωi and σi are the set of atoms and substitution built at step i
of the InhabitsA execution.
Then, P(i) can be proven by induction on i:

— i = 0 : Immediate by satisfying the (b) condition by taking σ′ = σ.

— i > 0 : Suppose P(i) true.

If there exists an execution of InhabitsA(Ω) that terminates with Some(_) before
reaching step i, then it also does so before reaching step i + 1 so P(i + 1) is true.

Otherwise, suppose that there exists an execution of InhabitsA(Ω) that reaches
step i and such that there exists a substitution σ′ with Vars(σ′(Ωi)) = ∅, A |=
σ′(Ωi), and ht(σ′(Ωi)) ≤ ht(σ(Ω))− i.

Now, either Ωi = ∅ and then the execution terminates at this step i with Some(σi)

and so P(i + 1) is true, or else Ωi ̸= ∅. In the case Ωi ̸= ∅, using all induction
hypotheses, there then exists a transition rω for each atom ω ∈ Ωi such that, with
T = {(ω, Rω) | ω ∈ Ωi}, un f olds(T) = Some(Ωi+1, σδ), with Ωi+1 admitting a
substitution σ′′ such that σ′ = σδ ◦ σ′′, Vars(σ′′(Ωi+1)) = ∅, A |= σ′′(Ωi+1), and
ht(σ′′(Ωi+1)) < ht(σ′(Ωi)). So P(i + 1) is true.

Now, let i = 1 + ht(σ(Ω)). Because P(i) is true, we know that there exists an execu-
tion of InhabitsA(Ω) that either returned Some(_) at some step (strictly) before i, so
at at most step i − 1 = ht(σ(Ω)), or that reached step i and such that there exists a
substitution σ′ with, among other properties, ht(σ′(Ωi)) ≤ ht(σ(Ω)) − i. However,
ht(σ(Ω)) − i < 0, so no such substitution σ′ can exist. Therefore this execution of
InhabitsA(Ω) returned Some(_) in at most ht(σ(Ω)) steps.

Theorem 6.15 (InhabitsA correctness and relative completeness). Let A be an automaton
and Ω a set of atoms.

140

Appendix

— Correctness: If InhabitsA(Ω) terminates with Some(σ), then A |= σ(Ω).

— Relative completeness: If there exists a substitution σ such that A |= σ(Ω), then
there exists a terminating execution of InhabitsA(Ω) returning Some(_).

Proof. Relative completeness is immediate from Lemma A.3 and the fact that we im-
pose to any datatype to be inhabited .
Intuitively, correctness stems from the fact that each new set of atoms Ωi+1 comes from
Ωi by applying one transition to each atom and keeping track of the corresponding
substitution σi+1, so a proof that Ωi+1 can be satisfied in A can be transformed into a
proof that Ωi can be satisfied in A.
More formally, let an execution of InhabitsA(Ω) be. For any i ∈ N, let the property
P(i) be "If the execution reached step i, then for any substitution σ, A |= σ(Ωi) implies
A |= σ(σi(Ω))". We prove P(i) by induction on the number i of steps taken:

— i = 0 : P(0) states that for every substitution σ, A |= σ(Ω) implies A |= σ(Ω).

— i > 0 : Suppose the execution reached step i and P(i) is true. Then either it
terminates at step i and never reaches step i + 1, so P(i + 1) immediately holds,
or else it reaches step i + 1. Suppose that the execution reached step i + 1, so
we have Some(Ωi+1, σδ) ∈ un f olds(T) for T = {(ω, rω) | ω ∈ Ωi} with every
rω some transition of the automaton A, and σi+1 = σδ ◦ σi. By Lemma 6.11, we
have that for any substitution σ, A |= σ(Ωi+1) implies A |= σ(σδ(Ωi)). By using
the induction hypothesis P(i) on substitution σ ◦ σδ, we have A |= σ(σδ(Ωi))

implies A |= σ(σδ(σi(Ω))). Chaining these two implications yields that for any
substitution σ, A |= σ(Ωi+1) implies A |= σ(σi+1(Ω)), so P(i + 1) holds.

The following Lemma states that patterns that are expected to be found in Ωi, for i a
step of the algorithm, are among the subpatterns at depth i in those of σi(Ωi).

Lemma A.4 (InhabitsA patterns). Let an execution of InhabitsA(Ω). If the execution reached
step i, then

Patterns(Ωi) ⊆ {p[π] | p ∈ Patterns(σi(Ω)) ∧ π ∈ Pos(p) ∧ |π| = i}

Proof. Let us name this property P(i) and prove it by induction on the step i.

— i = 0 : P(0) ⇐⇒ Patterns(Ω0) ⊆ {p[ϵ] | p ∈ Patterns(Ω)}

141

Appendix

— i > 0 : Suppose that the execution of InhabitsA(Ω) has reached step i and P(i)
true. Then either it terminates at step i and never reaches step i+ 1, so P(i+ 1) im-
mediately holds, or else it reaches step i + 1. Suppose that the execution reached
step i + 1, so we have Some(Ωi+1, σδ) ∈ un f olds(T) for T = {(ω, rω) | ω ∈ Ωi}
with every rω some transition of the automaton A, and σi+1 = σδ ◦ σi.

Let ω′ of the form q′(
#»

p′) in Ωi+1. By definition of un f olds(T), we have that there
exists an atom ω of shape q(#»p) in Ωi such that ω′ ∈ un f oldOne(σδ(ω), rω) for
rω the transition associated to ω in T. By Proposition A.2, we have Patterns(ω′) ⊆
{p[π] | p ∈ σδ(

#»p)∧π ∈ Pos(σδ(
#»p))∧ |π| = 1}. We therefore have Patterns(Ωi+1) ⊆

{p[π] | p ∈ σδ(Patterns(Ωi)) ∧ π ∈ Pos(p) ∧ |π| = 1}.

Using the induction hypothesis P(i), we have Patterns(Ωi+1) ⊆ {p[π] | p′ ∈
Patterns(σi(Ω)) ∧ π′ ∈ Pos(p′) ∧ |π′| = i ∧ p ∈ σδ(p′[π′]) ∧ π ∈ Pos(p) ∧ |π| =
1}, which simplifies to Patterns(Ωi+1) ⊆ {p[π] | p ∈ Patterns(σδ(σi(Ω))) ∧ π ∈
Pos(p) ∧ |π| = i + 1}. This concludes the proof of P(i + 1).

Lemma 6.16 (InhabitsA height boundedness). If InhabitsA(Ω) terminates at step i with
Some(σ), then i ≤ ht(σ(Ω)) ≤ i + ht(Ω).

Proof. Let an execution of InhabitsA(Ω) be.
Let L(i) be the property "If the execution reaches step i, then i ≤ ht(σi(Ω))".
Let U(i) be the property "If the execution reaches step i, then ht(σi(Ω)) ≤ i +

ht(Ω)".

— The property L(i) derives from lemma A.4. Indeed, suppose that the execution
reaches step i. If i = 0, then L(0) ⇐⇒ 0 ≤ ht(σ0(Ω)) is immediate. Else,
let ω = q(#»p) ∈ Ωi−1, as we know Ωi−1 ̸= ∅ for the execution reached step i.
Because of Lemma A.4 applied on step i − 1, we know that any pattern p of #»p
can be written as p′[π] for some pattern p′ in Patterns(σi−1(Ω)) and π ∈ Pos(p′)
with |π| = i − 1. Because p′[π] is defined, we know that ht(p′) ≥ i. Therefore
ht(σi−1(Ω)) ≥ i and ht(σi(Ω)) ≥ i, so L(i + 1).

— Let us prove property U(i) by induction on the step i.

— i = 0 : U(0) ⇐⇒ ht(Ω) ≤ ht(Ω).

— i > 0 : Suppose the execution has reached step i and both L(i) and U(i) are
true. Then either it terminates at step i and never reaches step i + 1, so L(i +

142

Appendix

1) and U(i + 1) immediately hold, or else it reaches step i + 1. Suppose that
the execution reached step i + 1, so we have Some(Ωi+1, σδ) ∈ un f olds(T)
for T = {(ω, rω) | ω ∈ Ωi} with every rω some transition of the automaton
A, and σi+1 = σδ ◦ σi.

Because of the specific form of the unification problem defined in un f olds(T),
we know that for all binding (X, p) in σδ, we have X ∈ Vars(Ωi) implies that
p is either a variable or of the form f (

#»

X) for f a function and
#»

X variables.
In particular, ht(σ(X)) ≤ ht(X) + 1. Also Vars(Ωi) ⊆ Vars(σi(Ω)). There-
fore ht(σδ(σi(Ω))) ≤ ht(σi(Ω)) + 1. Using U(i), we have ht(σi+1(Ω)) ≤
i + ht(Ω) + 1, so U(i + 1) holds.

Combining both the lowerbound given by L(i) and the upperbound given by U(i), we
conclude that i ≤ ht(σ(Ω)) ≤ i + ht(Ω).

Lemma 6.19 (Characterisation of easier sets of atoms). Let Ωa and Ωb two sets of atoms.
Then

Ωa ≤ Ωb ⇐⇒ there exists a substitution σ such that σ(Ωa) ⊆ Ωb.

Proof. (by Thibaut Antoine).

— ⇐: Let σ be a substitution such that σ(Ωa) ⊆ Ωb. Then, for any model M and
assignment λ ∈ Assigns(M, Ωb), we have that λ′ = λ ◦ σ = X 7→ λ(σ(X)) is
such that λ′ ∈ Assigns(M, Ωa). Thus Ωa ≤ Ωb.

— ⇒: Suppose Ωa ≤ Ωb and let us prove that there exists σ such that σ(Ωa) ⊆ Ωb.
Let Ha be the Herbrand model on the domain of patterns and with the interpre-
tation of relations symbols defined as R 7→ { #»p | R(#»p) ∈ Ωa}. Because assign-
ments in a Herbrand model are substitution, we write them as such. We know
that σid = X 7→ X is such that σid ∈ Assigns(Ha, Ωa) by definition of Ha. By
Ωa ≤ Ωb, we know that there exists σ ∈ Assigns(Ha, Ωb). That is, for every atom
ωb ∈ Ωb, we have Ha, σ |= ωb, i.e. Ha |= σ(ωb). By definition of Ha, we thus
necessarily have σ(ωb) ∈ Ωa. Therefore σ(Ωb) ⊆ Ωa.

Lemma 6.20 (Easier relation is preserved by unfolding). Let some automaton A and two
sets of atoms Ωa and Ωb such that Ωa ≤ Ωb. Then, for every (Ω′

b, σb) ∈ un f oldsA(Ωb), there
exists (Ω′

a, σa) ∈ un f oldsA(Ωa) such that Ω′
a ≤ Ω′

b.

143

Appendix

Proof. Because Ωa ≤ Ωb, let σ be a substitution such that σ(Ωa) ⊆ Ωb. Let (Ω′
b, σb)

an element of un f oldsA(Ωb). By definition of un f oldsA(Ωb), there exists one transition
rωb per atom ωb ∈ Ωb such that, with Tb = {(ωb, rωb) | ωb ∈ Ωb}, un f olds(Tb) =

Some(Ω′
b, σb). Then, because σ(Ωa) ⊆ Ωb, Ta = {(ωa, rσ(ωa)) | ωa ∈ Ωa} is such that

un f olds(Ta) = Some(Ω′
a, σa) with Ω′

a ≤ Ω′
b.

Lemma 6.21 (Safety of pruning). Suppose that an execution of InhabitsA(Ω) returns Some(_)
in i steps and is such that there exists iold, inew ∈ [0 . . . i − 1] with iold < inew and Ωiold ≤
Ωinew . Then there exists an other execution of InhabitsA(Ω) that returns Some(_) at some step
j < i.

Proof. Let such an execution of InhabitsA(Ω) be and let k = inew − iold. We build an
other execution of InhabitsA(Ω) whose sets of atoms and substitutions will be named
with a prime to distinguish them from those of the first execution. This other execution
can copy InhabitsA(Ω) until step iold, i.e. have ∀j ∈ [0 . . . iold], Ωj = Ω′

j ∧ σj = σ′
j . Then,

this prime execution can intuitively loosely copy the first execution on steps [inew . . . i].
More formally, because Ωiold ≤ Ωinew and by k applications of Lemma 6.20, we can
extend this prime execution until step i − k with the property that ∀j ∈ [iold . . . i −
k], Ω′

j ≤ Ωj+k. In particular Ω′
i−k ≤ Ωi. Because the first execution returned Some(_) at

step i, we know that Ωi = ∅, so necessarily Ω′
i−k = ∅. Also k = inew − iold > 0, so this

prime execution returns Some(_) in i − k steps.

Lemma 6.33 (Teacher height boundedness). If Teacher(A, Γ) = Some(φ̂) then for any
other counterexample φ̂′ of A |= Γ, ht(φ̂) ≤ ht(φ̂′) + dh with dh only depending on Γ.

Proof. Let dh = ht(Γ) + d, with d being the max, among every type, of the height
of the smallest term of this type. More precisely, writing T for the set of types, d =

maxτ∈T(mint∈Tτ(Σ)(ht(t))).
Suppose Teacher(A, Γ) terminates with Some(φ̂). Then there exists φ ∈ Γ such that
Inhabitsdet

A (Ωφ) terminates with Some(σ), σGr = Grd(σ(Ωφ)), and φ̂ = σGr(σ(φ)).
Let i be the step at which Inhabitsdet

A (Ωφ) terminated. By Lemma 6.16, ht(σ(Ωφ)) ≤
i + ht(Ωφ), so ht(σ(φ)) ≤ i + ht(φ).
By the Teacher synchronisation of parallel calls to Inhabitsdet

A , for any other formula
φ′ ∈ Γ, Inhabitsdet

A (Ωφ′) either terminates with None or terminates after Inhabitsdet
A (Ωφ),

i.e., after step i.
Let φ̂′ be a smallest ground counterexample to A |= Γ. Because φ̂′ is ground, A |= Ωφ̂′

means that for every atom of the shape R(#»t) in Ωφ̂′ we have
#»t ∈ R(R,A). φ̂′ can be

144

Appendix

written as σ′(φ′) for σ′ a substitution and φ′ ∈ Γ. By lemma A.3 and the fact that no
Inhabitsdet

A call, despite being implemented as breadth-first search, has stopped before
step i, we have i ≤ ht(φ̂′).

Combining these two inequalities, we have ht(σ(φ)) ≤ ht(φ̂′) + ht(φ).
Bounding ht(φ) by ht(Γ), we find ht(σ(φ)) ≤ ht(φ̂′) + ht(Γ).
The teacher finishes by returning φ̂ = σGr(σ(φ)). For e a variable, pattern, atom, set of
atom, or clause, ht(Grd(e)(e)) ≤ ht(e) + d, so ht(φ̂) ≤ ht(φ̂′) + dh.

A.2 Undecidability of the teacher procedure and of the

emptiness of SHoCs

This section introduces the material we use for proving that the teacher proce-
dure is undecidable, either using convoluted automata or SHoCs, and that emptiness
of SHoCs is undecidable. Not that emptiness of languages of convoluted automata is
clearly decidable, as a reachability procedure allows to decide whether a state has an
empty language or not. However, emptiness of the relation denoted by a state of a con-
voluted automaton may be decidable or not, depending on the convolution. For ex-
ample, the left- and right-convolution yield decidable emptiness problems of relations,
as the reachability procedure on states still applies, whereas it is not straightforward
whether the complete convolution yields a decidable emptiness problem.

We begin by introducing (two-counter) Minsky machines, whose halting problem is
undecidable. The idea of using the undecidability of the halting problem of two-counters
Minsky machines is from private communications with Naoki Kobayashi and [33].

Definition A.5 (Minsky machine).

A Minsky machine is a finite function I that maps a program counter p (a natural
number) to its corresponding instruction. An instruction is one of

inc_goto(i, pt) | dec_goto(i, pt, pe) | halt

for i a natural number designating a register and pt, pe program counters. A configura-
tion is a pair (R, p) with R = [r1, . . . , rn] an array of natural numbers representing the
value of each register and p the program counter. Instruction inc_goto(i, pt) increments
register ri then changes p to pt. Instruction dec_goto(i, pt, pe) decrements ri and changes

145

Appendix

p to pt if the decrement is successful (i.e. if ri > 0), and else leaves ri unchanged (at 0)
and changes p to pe. Finally, instruction halt halts the machine.

Example A.6. Here is a simple (non terminating) Minsky machine with 1 register, ini-
tial configuration ([0], 0), and the following program:

0 : inc_goto(1, 1)
1 : inc_goto(1, 2)
2 : dec_goto(1, 0, 3)
3 : halt

A partial run of this machine can be represented by the following sequence on config-
urations, starting by the initial one:

([0], 0) → ([1], 1) → ([2], 2) → ([1], 0) → ([2], 1) → ([3], 2) → ([2], 0) → . . .

An interesting class of Minsky machines are those with only two counters, as Min-
sky machines with at least two counters are known for having an undecidable halting
problem.

Definition A.7 (From a 2-counter Minsky machine to SHoCs).
Let I be a 2-counter Minsky machine. We write SI the SHoCs that partially encodes I
defined by the following 8 fixed clauses and one or two clauses defining Rp for every
p ∈ dom(I):

Req(z, z) Rz(z)
Req(s(N), s(M)) ⇐ Req(N, M) Rpzz(pair(N1, N2)) ⇐ Rz(N1) ∧ Rz(N2)

Rinc(s(N), s(M)) ⇐ Rinc(N, M)

Rinc(z, s(M)) ⇐ Rz(M)

Rinc1(pair(N1, N2), pair(M1, M2)) ⇐ Rinc(N1, M1) ∧ Req(N2, M2)

Rinc2(pair(N1, N2), pair(M1, M2)) ⇐ Rinc(N2, M2) ∧ Req(N1, M1)

— For every p such that I(p) = inc_goto(i, pt):

146

Appendix

Rp(cons(P1, L1), cons(P2, L2)) ⇐ Rpt(L1, L2) ∧ Rinci(P1, P2)

— For every p such that I(p) = dec_goto(i, pt, pe):
Rp(cons(P1, L1), cons(P2, L2)) ⇐ Rpt(L1, L2) ∧ Rinci(P2, P1)

Rp(cons(P1, L1), cons(P2, L2)) ⇐ Rpe(L1, L2) ∧ Rpzz(P1)

— For every p such that I(p) = halt:
Rp(cons(P1, L1), nil)

Relation Req defines equality of natural numbers, Rinc relates any n with s(n), Rinc1

relates pairs of natural numbers such that the second pair is the same as the first except
for the first element that is incremented. Relations Rp locally simulate the behavior of
the Minsky machine at program counter p.

Proposition A.8. Let I a two-counter Minsky machine and SI the associated SHoCs. For any
p ∈ dom(I), lists l and l′ of pairs of integers with l = cons(pair(n1, n2), l′), we have that
(l, l′) ∈ L(Ri, SI) iff l is the log (list of values that both counters took during the execution) of
a terminating run of the Minsky machine I that started on configuration ([n1, n2], i).

Corollary A.9. It follows immediately from proposition A.8 that a Minsky machine I halts
from the initial configuration ([0, 0], 0) iff there exists a list l of pairs on integers such that
(cons(pair(z, z), l), l) ∈ L(R0, SI).

Theorem A.10. The Teacher procedure is undecidable, whether using convoluted automata or
SHoCs as models.

Proof. Then let I be a Minsky machine and φ =
(
⊥ ⇐ R0(cons(pair(z, z), L), L)

)
a

clause. Then, from Corollary A.9 and Theorem 6.32, we have:

Teacher(SI , {φ}) = Some(_) ⇐⇒ I halts

The Teacher procedure is therefore undecidable when using SHoCs as models. More-
over, the construction SI can also be done using a convoluted automaton instead of a
SHoCs, so the Teacher procedure is undecidable too when using them as models.

We define the SHoCs Sshape to match the shape constraint of the clause, i.e. such that
L(Rshape, Sshape) = {(cons(pair(z, z), t), t) | t is a list of pairs of integers}:

147

Appendix

Definition A.11 (Sshape).

Rshape(cons(X1, X2), nil) ⇐ Rpzz(X1) ∧ Rnil(X2)

Rshape(cons(X1, X2), cons(Y1, Y2)) ⇐ Rpzz(X1) ∧ Rcons1(X2, Y1) ∧ Rcons2(X2, Y2)

Rcons1(cons(X1, X2), z) ⇐ Rz(X1)

Rcons1(cons(X1, X2), s(Y)) ⇐ Rs(X1, Y)

Rcons2(cons(X1, X2), nil) ⇐ Rnil(X2)

Rcons2(cons(X1, X2), cons(Y1, Y2)) ⇐ Rcons1(X2, Y1) ∧ Rcons2(X2, Y2)

Rs(s(X), z) ⇐ Rz(X)

Rs(s(X), s(Y)) ⇐ Rs(X, Y)

Rnil(nil)

Rpzz(pair(X1, X2)) ⇐ Rz(X1) ∧ Rz(X2)

Rz(z)

Theorem 7.25 (SHoCs emptiness problem is undecidable). For S a SHoCs and R a rela-
tion, the SHoCs emptiness problem is to decide whether L(R, S)=∅. This problem is undecid-
able.

Proof. Let I a Minsky machine and SI the corresponding SHoCs.
Let S = SI ∪ Sshape be the set-union of the clauses of SI and Sshape and let S′ be the
SHoCs resulting from the intersection of relation R0 and relation Rshape of S in a fresh
relation R. That is, L(S′, R) = L(S, R0) ∩ L(S, Rshape) = L(SI , R0) ∩ L(Sshape, Rshape).
From Corollary A.9, I halts iff L(R, S′) ̸= ∅.

148

Titre : titre (en français)..............

Mot clés : de 3 à 6 mots clefs

Résumé : Eius populus ab incunabulis primis
ad usque pueritiae tempus extremum, quod
annis circumcluditur fere trecentis, circummu-
rana pertulit bella, deinde aetatem ingres-
sus adultam post multiplices bellorum aerum-
nas Alpes transcendit et fretum, in iuvenem
erectus et virum ex omni plaga quam orbis
ambit inmensus, reportavit laureas et trium-
phos, iamque vergens in senium et nomine
solo aliquotiens vincens ad tranquilliora vitae
discessit. Hoc inmaturo interitu ipse quoque
sui pertaesus excessit e vita aetatis nono
anno atque vicensimo cum quadriennio im-
perasset. natus apud Tuscos in Massa Ve-
ternensi, patre Constantio Constantini fratre
imperatoris, matreque Galla. Thalassius vero

ea tempestate praefectus praetorio praesens
ipse quoque adrogantis ingenii, considerans
incitationem eius ad multorum augeri dis-
crimina, non maturitate vel consiliis mitiga-
bat, ut aliquotiens celsae potestates iras prin-
cipum molliverunt, sed adversando iurgan-
doque cum parum congrueret, eum ad rabiem
potius evibrabat, Augustum actus eius exag-
gerando creberrime docens, idque, incertum
qua mente, ne lateret adfectans. quibus mox
Caesar acrius efferatus, velut contumaciae
quoddam vexillum altius erigens, sine res-
pectu salutis alienae vel suae ad vertenda op-
posita instar rapidi fluminis irrevocabili impetu
ferebatur. Hae duae provinciae bello quondam
piratico catervis mixtae praedonum.

Title: Automatic Program Verification by Inference of Relational Models

Keywords: Formal verification, Relational properties, Algebraic datatypes, Model inference

Abstract: This thesis is concerned with auto-
matically proving properties about the input-
output relation of functional programs oper-
ating over algebraic data types. Recent re-
sults show how to approximate the image of
a functional program using a regular tree lan-
guage. Though expressive, those techniques
cannot prove properties relating the input and
the output of a function, e.g., proving that the
output of a function reversing a list has the
same length as the input list. In this thesis,
we built upon those results and define a pro-
cedure to compute or over-approximate such
a relation, therefore allowing to prove prop-
erties that require a more precise relational
representation. Formally, the program verifica-

tion problem reduces to satisfiability of Horn
clauses on the theory of algebraic data types,
which is here solved by exhibiting a Herbrand
model of the clauses. In this thesis, we try
to represent those Herbrand models not by
regular tree languages but by relational for-
malisms, namely by convoluted tree automata
and then by shallow Horn clauses, which gen-
eralize and simplify convoluted tree automata.
The Herbrand model inference problem aris-
ing from relational verification is undecidable,
so we propose an incomplete but sound infer-
ence procedure. Experiments show that this
procedure performs well in practice w.r.t. state
of the art tools, both for verifying properties
and for finding counterexamples.

	Introduction
	Overview of models formalisms to represent programs
	Proof using Tree automata
	Proof using Convoluted tree automata - first contribution
	Proof using Shallow Horn Clauses - second contribution

	Contribution
	Outline

	Prerequisites
	Term algebra and Herbrand model
	Term manipulation
	First-order clauses
	Tree automata

	State of the art
	Syntactic methods
	Semantic methods
	Automatic verification with regular language
	Automatic verification with relational formalisms

	General approach: from programs and properties to proofs
	From SMTLIB to clauses
	Approximation of clauses
	Model search for clauses: a generic Learner/Teacher procedure

	Convoluted tree automata
	Convolution with padding
	Standard left convolution
	Right and complete convolution
	Generalizing convolutions

	Convolution without padding

	Learner/Teacher for convoluted automata
	Teacher
	The procedure
	Teacher definition and theorems

	Learner
	Assembling the learner and teacher: Sat theorems

	Shallow Horn Clauses (SHoCs)
	SHoCs definition
	-clauses and their elimination
	Closure properties and decision procedures of SHoCs
	Expressivity of SHoCs
	SHoCs and convoluted automata
	SHoCs and CS-programs
	SHoCs and relational alternating automata

	Learner/Teacher for SHoCs
	Teacher
	Learner

	Implementation and experiments
	Implementation
	Teacher
	Learner

	Benchmarks
	Zoom in on some benchmarks

	Conclusion and perspectives
	Conclusion
	Perspectives

	Bibliography
	Appendix
	Omitted proofs for the Teacher
	Undecidability of the teacher procedure and of the emptiness of SHoCs

