
For which (n, p) can Sn arise as the

Galois group of an extension of Qp ?

Théo Untrau

Internship carried out at the Universität Duisburg-Essen under the supervision of

Prof. Dr. Vytautas Pa²k	unas



Abstract

This document is my report of an internship of two months and a half at the University
of Duisburg-Essen, at the end of my �rst year of Master.

The �rst aim was to answer the question that constitutes the title of this work. Qp denotes
the �eld of p-adic numbers, which are introduced quite brie�y in this text, so I refer to
[Ro] for a better presentation. Sn denotes the group of permutations of {1, . . . , n}, while
An will denote the subgroup of even permutations in Sn. The answer for the existence of
extensions appears in section 5.5.

Before this, we prove some general results on �elds K that are complete with respect to
a discrete valuation, Qp and its extensions being the main example of such �elds in this
document. For instance, their ring of integers is a discrete valuation ring, we have a very
powerful analog of Newton's algorithm to approximate roots of a polynomial, and if L/K
is a �nite extension, then the valuation on K extends uniquely to a valuation on L.

This naturally leads to the notion of rami�cation, and this is the point of section 3. At
the end of this section, rami�cation groups will allow us to make a great step in our way
to answer the main question. Indeed, we prove that a �nite Galois extension L/Qp has a
solvable Galois group ! Since Sn is not solvable as soon as n > 5, we can already exclude
many cases.

After a brief discussion on Galois groups of polynomials, we can complete our �rst aim.
But once we know for which (n, p) there exist extensions, a natural question one may ask
is : How many extensions are there in a �xed algebraic closure with the prescribed Galois
group ? What do they look like ? This is the second aim of this internship : Classify the
extensions when they exist. In section 6, the cases where I found an answer are presented,
while appendix 7.6 contains my state of advancement for the remaining cases.
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1 p-adic numbers

We de�ne the ring of p-adic integers as the projective limits of the rings Z/pnZ :

Zp := lim←−
n>1

Z/pnZ

See appendix 7.2 for more details. It is easy to prove that Zp is an integral domain, and this justi�es the
following de�nition :

De�nition 1.1. The �eld of fractions of Zp is called the �eld of p-adic numbers, and is denoted by Qp.

Remark : We will give another way to de�ne the �eld Qp in the section about valued �elds. These
de�nitions come a bit quickly, and lack some motivations and examples, but a more detailed and illustrated
introduction to p-adics can be found in [Ro] for instance.

2 Valued �elds

2.1 First de�nitions and examples

Let K be a �eld. An absolute value over K is a map |.| : K → R+ such that :

∀(x, y) ∈ K2, |xy| = |x|.|y|

∀(x, y) ∈ K2, |x+ y| 6 |x|+ |y|

∀x ∈ K, x = 0 ⇐⇒ |x| = 0

A �eld with an absolute value on it is called a valued �eld.

The absolute value |.| is called nonarchimedean if |n| stays bouded for all n ∈ N. Otherwise it is called
archimedean.

Proposition 2.1. The absolute value |.| is nonarchimedean if and only if for all x, y ∈ K one has :

|x+ y| 6 max(|x|, |y|)

Proof. See [Ne], Proposition (3.6)

If (K, |.|) is a �eld together with an absolute value, then K can be made a metric space by setting
that the distance between x and y is |x − y|. If the absolute value is nonarchimedean, then it satis�es
the strong triangle inequality above, and soK becomes an ultrametric space for the distance induced by |.|.

If |.| is a nonarchimedean absolute value on K, then for any q > 1, putting

ν(x) = − logq |x| for x ∈ K×, and ν(0) = +∞

one gets a map ν : K → R ∪ {+∞} such that :

∀(x, y) ∈ K2, ν(xy) = ν(x) + ν(y)
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∀(x, y) ∈ K2, ν(x+ y) > min(ν(x), ν(y))

∀x ∈ K, ν(x) = +∞ ⇐⇒ x = 0

A function on K satisfying these properties is called a nonarchimedean valuation on K. It follows from the
axioms that ν(1) = 0, and it is easy to prove that ν(−1) = 1 too. In characteristic 2, 1 = −1, so there is
nothing to prove, and otherwise, it su�ces to write ν(1) = ν((−1)× (−1)) = 2ν(−1) to get the conclusion.
From this, one can easily deduce that for all y ∈ K, ν(−y) = ν(y). Note the following important fact :

if ν(x) 6= ν(y) then ν(x+ y) = min(ν(x), ν(y))

Indeed, assume for instance that ν(x) < ν(y), then :

ν(x) = ν(x+ y − y) > min(ν(x+ y), ν(y)) > min(min(ν(x), ν(y)), ν(y))︸ ︷︷ ︸
=min(ν(x),ν(y))=ν(x)

hence min(ν(x+ y), ν(y)) = ν(x) and so ν(x+ y) = ν(x) = min(ν(x), ν(y))

Remark : In the nonarchimedean case, one could also introduce the notions of absolute value and valuation
in the other order, because if ν is a nonarchimedean valuation on K, then for any q > 1, the function

|.| := q−ν(.)

de�nes a nonarchimedean absolute value on K. Therefore, the datum of one of the two is really equivalent
to the datum of the other one.

Example : (Absolute values on Q)

- The usual absolute value |.| on R de�nes an archimedean absolute value on Q.

- If r ∈ Q× and p is a prime number, then there exists a unique k ∈ Z such that :

r = pk
a

b

with a, b ∈ Z \ {0} and p dividing neither a nor b. This k is called the p-adic valuation of r, and will
be denoted by νp(r). If we set νp(0) = +∞, then one can check that νp de�nes a nonarchimedean
valuation on Q. Therefore, for any q > 1, we can obtain a nonarchimedean absolute value associated
with νp. We make a choice and decide that q = p de�nes the p-adic absolute value on Q, namely :

|.|p := p−νp(.)

This example shows that Q can be equiped with many di�erent absolute values, that induce di�erent
metric (or ultrametric) structures. We can wonder whether or not Q is complete with respect to these
absolute values. We already know that for the usual absolute value, it is not the case, and one way to
construct the �eld of real numbers is to say that it is the completion of Q, seen as a metric space with |.|.
For the other absolute values we have seen in the example, we have the following result.

Proposition 2.2. Let p be a prime number. Then the completion of (Q, |.|p) is the �eld Qp.
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Remark : In de�nition 1.1 we give another de�nition of Qp as the fraction �eld of Zp. As for the di�erent
constructions of R, each construction has advantages and drawbacks. If we say that Qp is the completion
of Q with respect to |.|p, then it is complete by de�nition, but it is not clearly a �eld, and we do not know
how to compute with the elements of Qp. On the other hand, if Qp is de�ned as the �eld of fractions of
Zp then it is a �eld by de�nition, and since the computation with the elements of Zp is very explicit, we
know how to compute with p-adic integers. But the fact that it is complete is now less straightforward.

Theorem 2.3. (Ostrowski) Let K be a complete �eld with respect to an archimedean valuation. Then

there exists an isomorphism σ : K → R or C, and s ∈]0, 1] such that for all x ∈ K, |x| = |σ(x)|s

Proof. See [Ne], Theorem (4.2)

This theorem tells us that a complete �eld with respect ot an archimedean valuation "looks like" the real
or the complex numbers. That is why from now on we will only consider nonarchimedean valuations, and
refer to them simply as valuations.

Proposition 2.4. Let (K, ν) be a valued �eld (ν being non archimedean). Then the subset OK := {x ∈
K | ν(x) > 0} is a subring of K, called the ring of integers. It is a local ring, with unique maximal ideal

pK := {x ∈ OK | ν(x) > 0} (and group of units O×K = OK \ pK)

Proof. Simple veri�cations. Note that OK satis�es that for all x in K, either x or x−1 is in OK . This
implies that K = Frac(OK) and that OK is integrally closed in K. Indeed, let x ∈ K be integral over OK .
This means that x satis�es some monic polynomial equation with coe�cients in OK :

xn + an−1x
n−1 + · · ·+ a0 = 0

If we assume for a contradiction that x /∈ OK , then x−1 ∈ OK and the equation leads to

x = −an−1 − an−2x−1 − · · · − a0(x−1)n−1 ∈ OK : Contradiction.

Thus {x ∈ K | x is integral over OK} = OK , this is exactly what it means for OK to be integrally closed
in K.

De�nition 2.5. With the notations above, we de�ne the residue �eld of K as the quotient ring OK/pK .
It is often denoted by κK , or simply κ when the context is clear.

De�nition 2.6. A valuation ν is called discrete if there exists s ∈ R∗+ such that

ν(K×) = sZ

Any element in K having valuation s is called a local parameter or a uniformizer or a prime element. It
is often denoted by πK or simply π when there is no possible doubt. If s = 1, ν is said to be normalized.
Note that it is easy to get a normalized valuation from a discrete valuation, and that this does not change
OK , pK and the residue �eld.

Suppose that ν is normalized, so that ν(K×) = Z. Let π be a uniformizer (i.e. an element of valuation
1). Take any element x ∈ K× and let m be ν(x). Then

ν(π−mx) = −mν(π) + ν(x) = −m+m = 0

hence π−mx ∈ O×K . Therefore, any element x ∈ K× can be written uniquely as a product of a power of
the �xed uniformizer and a unit :

∀x ∈ K×, ∃!(m,u) ∈ Z×O×K , x = πmu
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Proposition 2.7. If ν is a discrete valuation on K, then OK is a discrete valuation ring, that is : a

principal ideal domain that has a unique non-zero prime ideal.

Proof. More precisely, we are going to prove that the non-zero ideals of OK are the powers of pK . Let π
be a local parameter in OK . Let I ⊂ OK be a non-zero ideal in OK . Take an element x ∈ I with minimal
valuation, say n. If n = 0, then I contains a unit, hence I = OK = p0K . Otherwise, n > 1, and there exists
u ∈ O×K such that x = πnu. Thus, πnOK ⊂ I. Conversely, if y ∈ I, then m := ν(y) > n, so there exists
v ∈ O×K such that

y = πmv = πn(πm−nv) ∈ πnOK
So I = πnOK = pnK = {x ∈ OK | ν(x) > n}. Therefore, the non-zero ideals of OK are the (πn), for
n > 0.

Remark : The homomorphism
pnK → OK/pK
πna 7→ a mod pK

induces an isomorphism

pnK/p
n+1
K ' OK/pK = κ

for all n > 0.

De�nition 2.8. A local �eld is a complete �eld K with respect to a discrete valuation ν, such that its

residue �eld κ is a �nite �eld.

Example : If p is a prime number, then Qp is a local �eld, with ring of integers Zp, and residue �eld
Zp/pZp ' Z/pZ.

2.2 Hensel's lemmas

When our valued �eld is complete with respect to a discrete valuation, we have a very strong result that
allows us to lift roots of a polynomial in OK [X] from roots modulo pK . As we will see in the proof,
this result is to be related with Newton's method to approximate zeros of a function. This is very nice,
because when the residue �eld is �nite, it is easy to �nd roots of a polynomial modulo pK , because there
are only �nitely many candidates. Besides the undeniable usefulness of �nding roots of polynomials,
Hensel's lemma will also allow us to extend valuations uniquely to some �eld extensions, ans that is a very
important result of the next section. First, we state the two following lemmas :

Lemma 2.9. Let A be a commutative ring, and f ∈ A[X]. Let a ∈ A. Then there exists a unique g ∈ A[X]
such that

f(X) = f(a) + f ′(a)(X − a) + g(X)(X − a)2

Lemma 2.10. Let K be a �eld, together with a non archimedean absolute value |.|. A sequence (an)n∈N
is Cauchy if and only if |an+1 − an| −→

n∞
0

Corollary 2.11. If (K, |.|) is complete, with |.| non archimedean, then a power series
∑

n>0 an with

coe�cients in K converges if and only if an −→
n∞

0

Theorem 2.12. (Hensel's lemma I)

Let (K, ν) be complete with respect to a discrete valuation. Let q > 1 and |.| = q−ν(.). Consider f ∈ OK [X]
and a0 ∈ OK such that :

|f(a0)| < |f ′(a0)|2
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For n > 0 we de�ne :

an+1 := an −
f(an)

f ′(an)

Then (an)n∈N is well de�ned, and converges to the unique root a of f such that :

|a− a0| 6 ε|f ′(a0)| (< |f ′(a0)| ) where ε is de�ned below

Proof. (Largely inspired by [Su] and a document on this lemma in the section Expository papers of [Co])
Let

ε :=
|f(a0)|
|f ′(a0)|2

We prove by induction on n that :

(i) |an| 6 1 (i.e. an ∈ OK)

(ii) |an − a0| 6 ε < 1 ( =⇒ an ≡ a0 mod pK)

(iii) |f ′(an)| = |f ′(a0)| 6= 0 ( =⇒ an+1 is well de�ned)

(iv) |f(an)| 6 ε2n |f ′(a0)|2

For n = 0, all the point are clearly satis�ed. Now take n > 0 and assume that an satis�es the points (i)
to (iv). Let us prove that this is still the case for an+1.

(i)

|an+1 − an| =
|f(an)|
|f ′(an)|

6
ε2
n |f ′(a0)|2

|f ′(a0)|
= ε2

n |f ′(a0)| 6 ε2
n

because |f ′(a0)| 6 1 for f ′(a0) is an integer (a0 ∈ OK and f ∈ OK [X]). Thus :

|an+1| 6 max(|an+1 − an|, |an|) 6 1

(ii)
|an+1 − a0| 6 max(|an+1 − an|, |an − a0|) 6 max(ε2

n
, ε) = ε

(iii) Let us consider the Taylor expansion of f ′ at an :

f ′(an+1) = f ′
(
an −

f(an)

f ′(an)

)
= f ′(an)− f(an)

f ′(an)
f ′′(an) + α

(
f(an)

f ′(an)

)2

(1)

for some α ∈ OK thanks to lemma 2.9. Now,∣∣∣∣ f(an)

f ′(an)

∣∣∣∣ 6 ε2n |f ′(a0)| < |f ′(a0)| = |f ′(an)|

So the term f ′(an) has strictly minimal valuation among the terms of the right hand side of (1).
Therefore, |f ′(an+1)| = |f ′(an)|
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(iv) Applying lemma 2.9 to f this time, one has :

f(an+1) = f(an)− f(an)

f ′(an)
f ′(an) + β

(
f(an)

f ′(an)

)2

= β

(
f(an)

f ′(an)

)2

, for some β ∈ OK .

Since β ∈ OK , |β| 6 1, hence

|f(an+1)| 6
∣∣∣∣ f(an)

f ′(an)

∣∣∣∣2 =
|f(an)|2

|f ′(a0)|2
6

(ε2
n |f ′(a0)|2)2

|f ′(a0)|2
6 ε2

n+1 |f ′(a0)|2

This concludes the induction step. We have proved that |an+1−an| 6 ε2
n
, and ε < 1 by assumption, hence

|an+1− an| −→
n∞

0. By lemma 2.10, (an)n∈N is Cauchy, so it converges to an element a ∈ OK , because OK
is complete as a closed subset of the complete �eld K. Besides, |a − a0| = limn∞ |an − a0| 6 ε < 1, so
a ≡ a0 mod pK (i.e. a is a lift of our �rst root modulo pK). Moreover,|f(an)| 6 ε2n |f ′(a0)|2 −→

n∞
0

f(an) −→
n∞

f(a) because polynomials are continuous

This implies that a is a root of f in OK .

We now need to show that a is the unique root of f such that |a− a0| 6 ε|f ′(a0)|. For all n > 1,

|an+1 − an| 6 ε2
n |f ′(a0)| < ε|f ′(a0)| =

|f(a0)|
|f ′(a0)|

Moreover |a1 − a0| = |f(a0)|/|f ′(a0)| by de�nition. Therefore,

∀n ∈ N, |an − a0| 6
|f(a0)|
|f ′(a0)|

= ε|f ′(a0)|

(using the ultrametric triangle inequality). When n −→ ∞ we get |a − a0| 6 ε|f ′(a0)|. Thus, a is a root
of f , that reduces to a0 modulo pK , and such that |a− a0| 6 ε|f ′(a0)|.

Now if b is another root satisfying these two properties, then : we write b = a + (b − a) and we apply
lemma 2.9 once again :

f(b) = f(a) + (b− a)f ′(a) + c(b− a)2, for some c ∈ OK

But a and b are both roots of f , so this lead to (b − a)f ′(a) + c(b − a)2 = 0. Assuming a 6= b one has
f ′(a) = c(a− b). Thus |f ′(a)| 6 |a− b| because c ∈ OK . Now the strong triangle inequality gives :

|a− b| 6 |a− a0 + a0 − b| 6 max(|a− a0|, |b− a0|) < |f ′(a0)|

However, we know that |f ′(a)| = |f ′(a0)| (by passing to the limit in (iii)). Thus :

|f ′(a0)| = |f ′(a)| 6 |a− b| < |f ′(a0)| : Contradiction.
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Corollary 2.13. In particular, if a0 is a simple root of f modulo pK , then it lifts uniquely to a root of f
in OK , i.e. there exists a unique a ∈ OK such that a ≡ a0 mod pK and f(a) = 0.

Proof. Let a0 ∈ OK such that

{
f(a0) ≡ 0 mod pK

f ′(a0) 6≡ 0 mod pK

Then ν(f(a0)) > 1 (ν being normalized) and ν(f ′(a0)) = 0. Equivalently,

|f(a0)| < 1 and |f ′(a0)| = 1

Therefore, a0 satis�es the conditions of the theorem above, so there exists a unique a ∈ OK such that{
f(a) = 0

|a− a0| < 1 (i.e. a ≡ a0 mod pK)

The two preceding results are very useful in the study of the squares in Zp and of the structure of Z×p (the
group of units).

Proposition 2.14. Let p 6= 2 be a prime, and let b ∈ Z×p = Zp \ pZp. Then b is a square in Zp if and

only if b is a square modulo pZp.

Proof. The direct implication is easy, and for the converse, it su�ces to apply corollary 2.13 to f =
X2 − b ∈ Zp[X].

However, if p = 2, then the polynomial f above is no longer separable, so we can't apply the corollary and
we need to use theorem 2.12. Namely, we have the following :

Proposition 2.15. Let b ∈ Z×2 = Z2 \ 2Z2. b is a square in Z2 if and only if b ≡ 1(8Z2).

Proof. If b is a square in Z2, then let a ∈ Z2 be such that b = a2. Write b = (bn)n∈N∗ and a = (an)n∈N∗

(considering Z2 as the projective limit of the rings (Z/2nZ). Then

b3 = a23 ∈ Z/8Z

Since b /∈ 2Z2, a3 /∈ 2.(Z/8Z), hence b3 = (1 mod 8) by a quick study of what values can a square have
modulo 8. Since b ∈ Z2, this implies that b1 = (1 mod 2) and b2 = (1 mod 4). Thus b ≡ 1(8Z2).

Conversely, suppose that b ≡ 1(8Z2). Let us consider f = X2 − b ∈ Z2[X]. Then our assumption implies
that |f(1)|2 6 1/8. On the other hand f ′(1) = 2 so that |f ′(1)|22 = 1/4. Thus :

|f(1)|2 < |f ′(1)|22

and we can apply Hensel's lemma to �nd a square root of b in Z2.

Proposition 2.16. Let p 6= 2 be a prime. The group of p-adic units has the following structure :

Z×p ' F×p × (1 + pZp)︸ ︷︷ ︸
as multiplicative groups

' Z/(p− 1)Z × Zp︸ ︷︷ ︸
as additive groups
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Proof. Considering the natural inclusion i : 1 + pZp → Z×p and

ρ : Z×p → F×p
(an)n>1 7→ a1

we get an exact sequence of abelian groups :

1→ 1 + pZp
i
↪→ Z×p

ρ
� F×p → 1

By the splitting lemma in homological algebra, it su�ces to prove that there exists a group homomorphism
σ : F×p → Z×p such that ρ ◦ σ = id to conclude that Z×p is isomorphic to the direct product of the terms
on its right and left sides. Consider f = Xp−1 − 1 : it has p − 1 distinct simple roots in Fp, which are
exactly the elements of F×p : 1̄, . . . , p− 1. By corollary 2.13, each of them lifts uniquely to an element
αi = (̄i, a2, a3, . . . ) ∈ Z×p . Then σ : ī→ αi is a group homomorphism satisfying ρ ◦ σ = id.

Now, F×p is a cyclic group of order (p− 1), hence isomorphic to the additive group Z/(p− 1)Z. To prove
that (1 + pZp, .) ' (Zp,+), one can consider the logarithm :

ln : 1 + pZp → pZp
1 + x 7→

∑+∞
n=1(−1)n−1 x

n

n

The series considered converge because their general term tends to zero as n −→ +∞. It remains to check
that ln is a group isomorphism between (1 + pZp, .) and (pZp,+) and that the latter is isomorphic to
(Zp,+)

Proposition 2.17.

Z×2 ' {±1} × (1 + 4Z2)

Proof. First, Z×2 = Z2 \ 2Z2, so an element in Z×2 is just a sequence (an)n>1 such that :{
∀n > 1, an ∈ Z/2nZ
a1 = 1 ∈ Z/2Z

Thus, Z×2 = 1 + 2Z2. Now consider :

1 −→ 1 + 4Z2
i
↪→ 1 + 2Z2

ρ−→ (Z/4Z)× −→ 1 (2)

where i is the natural inclusion, and :

ρ : 1 + 2Z2 −→ (Z/4Z)× = {±1}
(1 mod 2, 1 + 2b mod 4, . . . ) 7→ 1 + 2b mod 4

The sequence (2) is exact, so to obtain the conclusion, we just need to �nd a group homomorphism
s : (Z/4Z)× −→ 1 + 2Z2 such that ρ ◦ s = id. It su�ces to take s : −1 7→ −1 ∈ Z ⊂ 1 + 2Z2, hence the
conclusion.

Hensel's lemma is sometimes stated in an other version, which says that from a factorization af a polynomial
modulo pK , we can lift a factorization in OK [X]. The idea is the same, starting from our factorization in
OK
pK

[X], we try to �nd a factorization modulo p2K by adjoining only terms that are zero modulo pK , and
so on, by induction. The precise statement is the following :

10



Theorem 2.18. (Hensel's lemma II)

Let (K, ν) be as in theorem 2.12, with residue �eld denoted by κ. Let f ∈ OK [X] be a primitive polynomial

(this means that at least one of its coe�cients lies in O×K). If f admits a factorization modulo pK into

two relatively prime polynomials :

f mod pK = ḡ.h̄ ∈ κ[X], ḡ ∧ h̄ = 1

Then f admits a factorization in OK [X] :
f = g.h

with deg(g) = deg(ḡ), (g mod pK) = ḡ, and (h mod pK) = h̄.

Proof. See [Ne], (4.6) "Hensel's Lemma"

We can observe that the condition "f primitive" is just there to ensure that f mod pK is not zero in
κ[X]. The proof is similar to the proof of the other version of Hensel's lemma : We construct factoriza-
tion modulo pnK inductively, but there are some subtleties, because the degree of the polynomials must
stay bouded, so that we do not end up with a factorization into power series instead of polynomials. An
euclidean division solves the problem.

Corollary 2.19. For every irreducible polynomial f =
∑d

i=0 aiX
i ∈ K[X], one has :

max
i=0...d

|ai| = max (|a0|, |ad|)

In particular, if f is monic, irreducible, and a0 ∈ OK , then f ∈ OK [X]

Proof. Let us set |f | := maxi=0...d |ai|

After multiplying by an appropriate power of a uniformizer, we may assume that f ∈ OK [X] and that
|f | = 1. Our aim is to prove that m := max(|a0|, |ad|) = 1. Of course m 6 1. Assume that m < 1.

Let r be min{i ∈ [[0, d]]; |ai| = 1}. Then 0 < r < d because m < 1 and :

f = Xr(ar + ar+1X + · · ·+ adX
d−r) mod pK

By theorem 2.18, this factorization lifts to a factorization of f in OK [X] ⊂ K[X]. This contradicts the
irreducibility of f . Thus, m = 1 and this concludes the proof.

2.3 Extension of valuations

The aim of this section is to prove theorem 2.21. We start with a short recall on norms in �eld theory.
Let L/K be a �nite �eld extension of degree n (in particular, L is a n-dimensional vector space over K).
Then for any α ∈ L the map :

µ(α) : L → L
x 7→ αx

is K linear. Thus, it is an endomorphism of a n dimensional vector space over K, so it makes sense to
consider its determinant.

De�nition 2.20. The norm of the element α ∈ L over K is the determinant of the multiplication by α,
namely :

NmL/K(α) := det(µ(α)) (∈ K)

11



It follows immediately that NmL/K(.) is multiplicative.

Theorem 2.21. If (K, ν) is complete with respect to a discrete valuation and L/K is a �nite �eld exten-

sion, then ν extends uniquely to L. Moreover, the unique valuation νL extending ν can be written explicitly

:

∀α ∈ L, νL(α) =
1

[L : K]
ν(NmL/K(α))

To prove this theorem, we will need a few lemmas. Recall that if A ⊂ B are two rings, an element b ∈ B
is said to be integral over A if there exists a monic polynomial P ∈ A[X] such that P (b) = 0.

Lemma 2.22. Let A be an integral domain, integrally closed in K := Frac(A). Let L/K be a �nite

extension. Then, for all α ∈ L, α is integral over A if and only if the minimal polynomial of α over K
has its coe�cients in A.

Proof. Let x ∈ L. Let f be the minimal polynomial of x over K. If f ∈ A[X], then x is a root of a monic
polynomial with coe�cients in A, so by de�nition, x is integral over A.

Conversely, assume that x is integral over A. Let P ∈ A[X] be a monic polynomial such that P (x) = 0.
Then f divides P , so every root of f is a root of P , hence is integral over A. Moreover we know that
sums and products of integral elements are still integral. More precisely, given an algebraic closure K̄ of
K containing L, the following set

{z ∈ K̄ | z is integral over A}

is a subring of K̄. This is not obvious, but it is very standard, see for instance Milne's lecture notes in
algebraic number theory ([Mi]), where he gives two proofs of this statement. Now, we also know that the
coe�cients of f are just sums and products of the roots, so they are all integral over A, and they lie in K
(recall that f is the minimal polynomial of x over K). Since A is assumed to be integrally closed in K,
f ∈ A[X].

Lemma 2.23. If L/K is a �nite extension, α ∈ L, and a0 is the constant term of the minimal polynomial

of α over K, then

NmL/K(α) = ±am0 , for some m ∈ N∗

Proof. In fact, the statement can be made way more precise, but we actually just need to know this. A
proof can be found in [Go] Chapter IX.

Lemma 2.24. Let L be a �eld, and |.|1, |.|2 two absolute values on L. Assume that ∀x ∈ L, |x|1 6 1 =⇒
|x|2 6 1. Then there exists s > 0 such that |.|1 = |.|s2

Proof. Let y ∈ L such that |y|1 > 1. Take any x ∈ L×. Then |x|1 > 0, so ln(|x|1) is well-de�ned. Set
α := ln(|x|1)/ ln(|y|1), so that |x|1 = |y|α1 . Let (mi/ni)i∈N be a decreasing sequence of rational numbers
converging to α. Then :

|x|1 = |y|α1 6 |y|
mi
ni
1 =⇒ |x|1

|y|mi/ni1

6 1

this leads to : ∣∣∣∣ xniymi

∣∣∣∣
1

6 1 =⇒
by assumption

∣∣∣∣ xniymi

∣∣∣∣
2

6 1

Hence :
|x|2 6 |y|mi/ni2 −→

n∞
|y|α2

12



Taking an increasing sequence of rational numbers converging to α would lead to |y|α2 6 |x|2, so |x|2 = |y|α2 .
Therefore, for all x ∈ L×,

ln(|x|1)
ln(|x|2)

=
ln(|y|α1 )

ln(|y|α2 )
:= s > 0 (independent of x)

Therefore, |.|1 = |.|s2.

Remark : In particular, two such absolute values give rise to the same topology on L.

We can now start the proof of theorem 2.21.

Proof. Step 1 : Let us set O := {x ∈ L | NmL/K(x) ∈ OK}. We prove that O is exactly the integral

closure of OK in L.

If x ∈ L is integral over OK , then the minimal polynomial f of x over K has coe�cients in OK . In
particular its constant term lies in OK , so by lemma 2.23, NmL/K(x) ∈ OK .

Conversely, suppose x is an element of L such that NmL/K(x) ∈ OK . Let f be its minimal polynomial
over K, say :

f = Xn + an−1X
n−1 + · · ·+ a1X + a0

Again, by lemma 2.23, NmL/K(x) = ±am0 for some m ∈ N∗. Therefore mν(a0) = ν(NmL/K(x)) > 0 by
assumption, so a0 ∈ OK . To sum it up : f is a monic irreducible polynomial in K[X] with a0 ∈ OK ,
hence (by corollary 2.19) f ∈ OK [X]. This implies that x is integral over OK

Step 2 : νL is a valuation on L that extends ν.

All the points are clear except the ultrametric inequality, namely :

∀(x, y) ∈ L2, νL(x+ y) > min(νL(x), νL(y)) (3)

First, since O is the integral closure of OK in L, it is a ring, so that :

∀x ∈ L, x ∈ O =⇒ 1 + x ∈ O

Now, let x, y ∈ L. If x or y is zero, then (3) is clearly satis�ed, so we can assume that none of them is
zero. Then νL(x+ y) = νL(x(1 + x−1y)) = νL(x) + νL(1 + x−1y)

- If x−1y ∈ O : Then 1 + x−1y ∈ O, so νL(1 + x−1y) > 0, hence

νL(x+ y) > νL(x) > min(νL(x), νL(y))

- If x−1y /∈ O : Then we write νL(x+ y) = νL(y(y−1x+ 1)) = νL(y) + νL(y−1x+ 1) Since x−1y /∈ O,
it is not hard to see that its inverse y−1x ∈ O. Indeed,

∀α ∈ L, NmL/K(α) /∈ OK =⇒ NmL/K(α)−1︸ ︷︷ ︸
=NmL/K(α−1)

∈ OK

Thus, νL(y−1x+ 1) > 0, hence :

νL(x+ y) > νL(y) > min(νL(x), νL(y))

So νL is a valutation on L that extends ν, and moreover, the ring of integers in L with respect to
this valuation, namely OL = {x ∈ L | νL(x) > 0}, is nothing else than O, the integral closure of OK
in L.
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Step 3 : Uniqueness.

Let ν ′ be a valuation on L extending ν. We denote by O′ the ring of integers in L for this valuation,
namely : O′ = {x ∈ L | ν ′(x) > 0}, and by p′ the unique maximal ideal in O′ : p′ = {x ∈ L | ν ′(x) > 0}.
The corresponding sets in (L, νL) are denoted by OL, pL.

Let us prove that OL ⊂ O′. Assume for a contradiction that there exists x ∈ L such that x ∈ OL but
x /∈ O′. Since x ∈ OL, which is the integral closure of OK in L (as we have seen in Step 1 ), there are
integers a0, . . . an−1 ∈ OK such that :

xn + an−1x
n−1 + · · ·+ a0 = 0

Dividing by xn gives the following :

1 = −an−1x−1 − · · · − a0x−n

However, since x /∈ O′, ν ′(x) < 0 and ν ′ extends ν, so :

∀i ∈ {0, . . . , n− 1}, ν ′(aixi−n) = ν(ai)︸ ︷︷ ︸
>0

+ (i− n)ν ′(x)︸ ︷︷ ︸
>0

Thus, ν ′(1) > min
i
ν ′(aix

i−n) > 0, so 1 ∈ p′ : Contradiction.

Therefore, OL ⊂ O′, which we can rewrite as ∀x ∈ L, νL(x) > 0 =⇒ ν ′(x) > 0. Setting

|.|L := exp(−νL(.)) and |.|′ := exp(−ν ′(.))

we get two absolute values on L satisfying the assumption of lemma 2.24, so there exists s > 0 such that
|.|L = |.|′s. But these two must agree on K, hence s = 1 (it su�ces to take an element in K with absolute
value di�erent from 1). Thus, |.|L = |.|′ and νL = ν ′.

Moreover, this unique extension of valuation gives a valued �eld (L, νL) which is still complete ! Indeed,
let us set |.| = exp(−ν(.)). Then, |.|L := exp(−νL(.)) is a norm on L seen as a K-vector space. Indeed, it
satis�es the triangle inequality and the separability condition. Moreover, if λ ∈ K and x ∈ L, then

|λx|L = exp(−νL(λx)) = exp(−ν(λ)) exp(−νL(x)) = |λ||x|L

Since L is a �nite dimensional vector space over K, and (K, |.|) is complete, the fact that (L, |.|L) is
complete follows from this general result :

Proposition 2.25. Let K be complete with respect to an absolute value |.|. Let V be any n-dimensional
normed vector space over K. Then for any basis (e1, . . . , en) of V , the maximum norm :∥∥∥∥∥

n∑
i=1

xiei

∥∥∥∥∥
∞

= max(|x1|, . . . , |xn|)

is equivalent to the given norm on V . In particular V is complete.

Remark: This theorem is just a more general version of the equivalence of all norms over a �nite dimen-
sional (R or C) vector space. We see that the key ingredient is that the ground �eld K has to be complete
for its absolute value.
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Proof. Let ‖.‖ be a norm on V . We want to prove that there exist ρ, ρ′ > 0 such that :

∀x ∈ V, ρ‖x‖∞ 6 ‖x‖ 6 ρ′‖x‖∞

- Let x ∈ V and write x =
∑
xiei. Then :

‖x‖ =

∥∥∥∥∥
n∑
i=1

xiei

∥∥∥∥∥ 6
n∑
i=1

|xi|‖ei‖ 6

(
n∑
i=1

‖ei‖

)
︸ ︷︷ ︸

:=ρ′

‖x‖∞

- In order to prove the existence of a ρ, we proceed by induction on the dimension of V .

If n = dim(V ) = 1, then for all x ∈ V , ‖x‖ = ‖x1e1‖ = |x1|‖e1‖ = ‖e1‖‖x‖∞, so one can take ρ to
be ‖e1‖.
Now, let n > 1, and assume that the result holds for any (n − 1) dimensional normed vector space
over K. Set Vi = Span(ej , j 6= i), for all i ∈ {1, . . . , n}. Then by the induction assumption, Vi is
complete with respect to the restricted norm ‖.‖. In particular, it is closed in (V, ‖.‖). This implies
that for all i, Vi + {ei} is closed, hence

n⋃
i=1

Vi + {ei} is a closed subset of V

Moreover, it does not contain 0. Therefore, there exists ρ > 0 such that for all i ∈ {1, . . . , n}, if
wi ∈ Vi, then ‖wi + ei‖ > ρ.
Now, let x =

∑
xiei ∈ V \ {0} and let r be the index such that |xr| = ‖x‖∞. Then, one has :∥∥∥∥ xxr

∥∥∥∥ =

∥∥∥∥∥∥er +
∑
i 6=r

xi
xr
ei

∥∥∥∥∥∥ > ρ
So ‖x‖ > ρ|xr| = ρ‖x‖∞ This holds for all non zero x ∈ V , and it is also satis�ed at zero, hence the
result.

3 Rami�cation

3.1 Rami�cation index, inertia degree and dimension formula

Again, let K be complete with respect to a discrete valuation ν, and let L/K be a �nite extension. In
the preceding section, we proved that ν extends uniquely to a valuation νL on L, and that (L, νL) is also
complete. Now, our aim is to study the same objects in L that we studied in K, such that the subgroup
νL(L×) of (R,+), or the residue �eld κL = OL/pL. We will try to study the di�erent relations that can
arise between these objects and κK , ν(K×) . . .

Since K× is a multiplicative subgroup of L×, one has that ν(K×) = νL(K×) is a subgroup of νL(L×). We
denote by e its index, that is :

e := #

(
νL(L×)

ν(K×)

)
15



e is called the rami�cation index of the extension L/K.

Moreover, we have a natural ring homomorphism φ : OK → OL/pL = κL obtained by composing the
natural inclusion OK ↪→ OL and the surjection OL � κL (reduction modulo pL). But pK ⊂ kerφ, so φ
factors to a ring homomorphism :

ϕ : κ → κL
x mod pK 7→ x mod pL

and ϕ is injective because κ is a �eld. Thus, κL/κ is a �eld extension, we denote by f its degree, namely :

f := [κL : κ]

f is called the inertia degree of L/K. When the context is clear, we stick to the notations e and f , but
sometimes we will write e(L/K) and f(L/K) in order to specify explicitly to which extension correspond
e and f .

Remark : If πL is a uniformizer in L and π a uniformizer in K, then π ∈ OL, so it can be written
πmL .u with u ∈ O×L and m ∈ Z, unique. But νL(π) = ν(π) = e.νL(πL), hence e = m. Therefore
pKOL = πOL = πeLOL = peL. This is a particular case of Hilbert's rami�cation theory, which consists in
studying how a prime ideal p ⊂ OK factors in OL when we look at the ideal it generates in OL. Here we
have :

pKOL = peL

and this justi�es the name rami�cation index for e. If K were a number �eld, the decomposition of a
prime ideal p ⊂ OK could be more complicated :

pOL =
m∏
i=0

Pei
i

where the Pi are prime ideals in OL. Then ei is a relative rami�cation index (because it is relative to one
of the prime ideals in the decomposition).

Proposition 3.1. If (K, ν) is a complete discrete valued �eld, and L/K is a �nite extension, then with

the notations above, one has :

[L : K] = e.f

Proof. Since f = [κL : κ], let w1, . . . , wf ∈ OL such that (w̄1, . . . , w̄f ) is a basis of κL as a κ vector space
(w̄i = wi mod pL). Let πL be a uniformizer in L. Then π0L, . . . , π

e−1
L are representatives of νL(L×)/ν(K×)

Let us prove that (πiLwj)06i6e−1, 16j6f is an integral basis of OL over OK . This implies that it is a basis
of L/K and the dimension formula follows.

- Linear independance : Let us assume, for a contradiction, that there exist ai,j ∈ K not all of them
equal to zero, such that :

e−1∑
i=0

f∑
j=1

ai,jwjπ
i
L = 0 (4)

For all i ∈ {0, . . . , e− 1}, let us denote :

si :=

f∑
j=1

ai,jwj
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If si = 0 and ai,j 6= 0 for some j, then multiplying by an appropriate power of πK , we obtain :

f∑
j=1

bi,jwj = 0

with bi,j ∈ OK and at least one of them lies in O×K . But if one reduces this equality modulo pL,
one gets a non-trivial linear combination of the w̄j 's which is equal to zero, hence a contradiction,
because w̄1, . . . , w̄f is a basis of κL/κ. Thus :

si = 0 =⇒ ∀j ∈ {1, . . . , f}, ai,j = 0

Since some of the ai,j 's are assumed to be non-zero, some of the si's must be non-zero. Let us denote
by I∗ the set of all indices i such that si 6= 0. Then (4) becomes :∑

i∈I∗
siπ

i
L = 0

Now, let us show that for all i ∈ I∗, νL(si) ∈ ν(K×). As above, one can �nd m ∈ Z such that :

si =

f∑
j=1

ai,jwj = πmK

f∑
j=1

bi,jwj

with bi,j ∈ OK and at least one of them in O×K . Thus

νL(si) = ν(πmK) + νL

 f∑
j=1

bi,jwj


However, since some of the bi,j 's lie in O×K , they are non-zero modulo pK . Using the fact that
w̄1, . . . , w̄f are linearly independant over κ, we get that

∑
j bi,jwj cannot lie in pL, and hence is

invertible in OL. Therefore, it has valuation 0 and so

νL(si) = ν(πmK) ∈ ν(K×)

Now if i 6= j ∈ I∗ then νL(siπ
i
L) and νL(sjπ

j
L) must be di�erent because νL(πiL) and νL(πjL) are

di�erent modulo ν(K×). Thus :

νL

(∑
i∈I∗

siπ
i
L

)
= νL(0) =∞ = min

i∈I∗
νL(siπ

i
L)

This implies that for all i ∈ I∗, si = 0. Contradiction.

- OL is generated by (πiLwj) over OK : Let us denote by M the OK-module

M :=
e−1∑
i=0

f∑
j=1

OKπiLwj

and by N the following :

N :=

f∑
j=1

OKwj
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so that

M =
e−1∑
i=0

πiLN

It is not hard to prove that OL = N + πLOL, and iterating this

OL = N + πL(N + πL(N + πL . . . ))

until we get :
OL = M + πeLOL i.e. OL = M + pKOL

Iterating this last formula, one has OL = M + pK(M + pKOL) = M + pKM + p2KOL But clearly,
pKM ⊂M , hence OL = M + p2KOL, and we would prove the same way that for all i > 1,

OL = M + piKOL

It is easy to prove that this implies that M is dense OL (with respect to the topology induced by
νL of course). We just have to show that M is closed in OL to conclude. This follows from the fact
that (K, ν) is complete, and OK is closed in (K, ν), see the proof of Proposition 2.25.

From the proof we can deduce the following useful result :

Corollary 3.2. Under the assumptions of the proposition above, if one further assumes that κL/κ is

separable, then there exists x ∈ OL such that OL = OK [x]

Proof. We denote by νL the unique extension of ν to L, and by wL the normalization of νL, so that a
local parameter πL ∈ OL satis�es wL(πL) = 1 (with the notations of the preceding proposition one has
wL = e.νL).

Since κL/κ is �nite and separable, one can �nd γ ∈ κL such that κL = κ(γ) (a primitive element). Then
1, γ, . . . , γf−1 form a basis of κL/κ. Let us denote by ḡ the minimal polynomial of γ over κ, and let us take
g to be any lift of ḡ to OK [X] (i.e. g is a polynomial in OK [X] which reduction modulo pK is ḡ ∈ κ[X]).
Then we claim that there exists a representative x ∈ OL of γ, such that g(x) is a local parameter for OL.
Indeed, take any x in OL such that x mod pL = γ. Then g(x) mod pL = ḡ(γ) = 0, so wL(g(x)) > 1. If it
is equal to one, then we are done. Otherwise, take πL any uniformizer in OL. Then by lemma 2.9 :

g(x+ πL) = g(x) + πLg
′(x) + π2Ly for some y ∈ OL

As κL/κ is separable, ḡ is a separable polynomial, so g′(x) mod pL = ḡ′(x mod pL) = ḡ′(γ) 6= 0. Thus,
g′(x) is in O×L = OL \ pL. In particular, the term πLg

′(x) sati�es wL(πLg
′(x)) = wL(πL) + wL(g′(x)) =

1 + 0 = 1. Since the two other terms have valuation greater than two, wL(g(x+πL)) = 1, hence g(x+πL)
is a uniformizer. It su�ces to take x+πL instead of x to get a representative of γ such that g(x) is a local
parameter in OL.

To sum it up, we have found x ∈ OL such that γ = (x mod pL) satis�es that 1, γ, . . . , γf−1 is a basis of
κL over κ, and g(x) is a local parameter in OL. The proof of proposition 3.1 shows that (xig(x)j) 0 6
i 6 f − 1, 0 6 j 6 e− 1, is a basis of OL over OK , hence OL = OK [x].

18



3.2 Unrami�ed and totally rami�ed extensions

De�nition 3.3. Let K be a complete �eld with respect to a discrete valuation ν.

- A �nite extension L/K is called unrami�ed if κL/κ is separable and [L : K] = [κL : κ]

- A �nite extension L/K is said to be totally rami�ed if the residue �eld extension κL/κ is separable

and [L : K] = e(L/K) in the degree formula of proposition 3.1.

Remarks:

- According to proposition 3.1, L/K is unrami�ed if and only if νL(L×) = ν(K×), or equivalently :
every local parameter in K is still a local parameter in L.

- With the notations of proposition 3.1, saying that L/K is unrami�ed is just saying that [L : K] = f

- Note that if K is a local �eld, then the separability condition is automatically veri�ed, because κ is
a �nite �eld, hence a perfect �eld.

- The proof of proposition 3.1 shows that if a �nite extension L/K is totally rami�ed of degree n, then
(1, πL, . . . , π

n−1
L ) is an integral basis of OL over OK . In particular,

OL = OK [πL]

- L/K is totally rami�ed if and only if :

pKOL = p
[L:K]
L

Proposition 3.4. Let E/K and F/K be two extensions inside an algebraic closure K̄/K, and let L = EF
. Then one has : E/K unrami�ed =⇒ L/F unrami�ed. In particular, each subextension of an unrami�ed

extension is unrami�ed.

L = EF

E F

K

unrami�ed

=⇒

L = EF

E F

K

unrami�ed

Proof. First, let us prove the "in particular" part. Let K ⊂ F ⊂ E, and suppose E/K is unrami�ed.
Then L := EF = E, and the proposition shows that E/F is unrami�ed. Therefore, [F : K] = [L : K]/[L :
F ] = [κL : κ]/[κL : κF ]. But on the other hand, [κL : κ] = [κL : κF ][κF : κ]. Hence [F : K] = [κF : κ]
i.e. F/K is unrami�ed. Less formally, if the extension E/K does not create new possible values for the
extended valuation, any subextension cannot create new values, and so is also unrami�ed.

We now prove the main statement. E/K is �nite unrami�ed, so κE/κ is �nite and separable. Let us
take α ∈ κE such that κE = κ(α) (this is possible by the primitive element theorem). Let γ ∈ OE be a
representative of α. Let f be the minimal polynomial of γ over K and g be the minimal polynomial of α
over κ. Since γ ∈ OE , f lies in OK [X]. We denote by f̄ its reduction modulo pK . Then f̄(α) = 0 hence
g|f̄ . So deg(f̄) > [κE : κ]. Therefore :

[κE : κ] 6 deg(f̄) =
f monic

deg(f) = [K(γ) : K] 6 [E : K] = [κE : κ]
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So there must be equalities all along, and this proves that E = K(γ), since K(γ) ⊂ E and they have the
same dimension as K vector spaces. Thus,

L = EF = K(γ)F =
K⊂F

F (γ)

Moreover, deg(f̄) = [κE : κ] = deg(g) and so f̄ = g, the minimal polynomial of α over κ.

Now, let us prove that L/F is unrami�ed. Let h be the minimal polynomial of γ over F (it has coe�cients
in OF because γ is in OE , hence in OL). Let h̄ be its reduction modulo pF . Since f(γ) = 0 and
f ∈ K[X] ⊂ F [X], one has h|f . But when we compute the euclidean division of f by h in F [X], we are
doing it in the ring OF [X], and so h|f not only in F [X], but also in OF [X]. Reducing modulo pF gives us
that h̄|f̄ . The latter is separable because it is the minimal polynomial of α over κ, and κE/κ is separable.
So h̄ is separable. Thus, if h̄ factors in κF [X], then the two factors are relatively prime, and h̄ is primitive
because it is monic. By theorem 2.18, h would factor in OF [X], which is absurd because h is the minimal
polynomial of γ over F . Thus, h̄ is irreducible in κF [X], so :

[κL : κF ] 6 [L : F ] = deg(h) = deg(h̄) = [κF (γ mod pL) : κF ] 6 [κL : κF ]

Thus, κL = κF (γ mod pL), so κL/κF is separable because (γ mod pL) has h̄ as minimal polynomial, and
h̄ is separable. We also have [L : F ] = [κL : κF ], hence the conclusion : L/F is unrami�ed.

Corollary 3.5. The compositum of two unrami�ed extensions of K is again unrami�ed.

Proof. Suppose E/K and F/K are two unrami�ed extension, then by the preceding proposition E/K
unrami�ed =⇒ EF/F unrami�ed. Hence F/K is unrami�ed and EF/F is unrami�ed. This implies that
EF/K is unrami�ed because separability is transitive and the degree in �eld extensions is multiplicative.

Proposition 3.6. If K is complete with respect to a discrete valuation, then for any �nite extension L/K
such that κL/κ is separable, there exists a unique extension F of K contained in L such that F/K is

unrami�ed and L/F is totally rami�ed. This �eld F is called the inertial sub�eld of the extension L/K.

Proof. Since κL/κ is �nite and separable, one can �nd a primitive element α for this extension, i.e. there
exists α ∈ κ×L such that κL = κ(α). Let g ∈ κ[X] be the minimal polynomial of α over κ. Let h ∈ OK [X]
be a monic polynomial which reduction modulo pK gives g :

h̄ := h mod pK = g ∈ κ[X]

Then h is irreducible in K[X]. Indeed, g is irreducible in κ[X], and h is monic, so h is irreducible in
OK [X] (it is easy to see this by contrapositive, write a factorization of h in OK [X] and reduce it modulo
pK , this leads to a non trivial facorization of g in κ[X]). But this implies the irreducibility of h in K[X] (in
general, if A is a UFD, the irreducible polynomials in A[X] are the ones that are irreducible in Frac(A)[X]
and primitive (meaning that the gcd of their coe�cients is equal to one). One example that one can have
in mind to remember which implication is true is the following : the polynomial 2X ∈ Z[X] is irreducible
over Q, but it is not irreducible in Z[X] because 2 is not a unit in Z. Thus, being irreducible in Z[X] is a
stronger condition than being irreducible in Q[X]).

Now, let γ ∈ OL such that γ mod pL = α ∈ κL. Then :{
h(γ) mod pL = g(α) = 0

h′(γ) mod pL = g′(α) 6= 0 because (κL/κ separable =⇒ g separable)
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By Hensel's lemma (see corollary 2.13), there exists β ∈ OL such that h(β) = 0 and β mod pL =
γ mod pL = α. We de�ne :

F := K(β) ⊂ L

Composing OF ↪→ OL and OL � κL gives a ring homomorphism :

ϕ : OF → κL
a 7→ a mod pL

pF is clearly included in ker(ϕ), hence ϕ factors to a ring homomorphism :

ϕ : κF → κL
a mod pF 7→ a mod pL

Since κF is a �eld, it is injective, but it is also surjective, becasuse β ∈ OF , and ϕ(β) = α and κL = κ(α).
Therefore, the residue �eld extension κL/κF has degree 1, hence L/F is totally rami�ed.
On the other hand, since h is irreducible, it is the minimal polynomial of β over K, hence :

[F : K] = [K(β) : K] = deg(h) = deg(g) = [κ(α) : κ] = [κL : κ] = [κF : κ]

because κF and κL are isomorphic as �elds, and as κ-vector spaces via ϕ. This shows that F/K is
unrami�ed and concludes the proof of the existence of a subextension F such that :

L

F

K

totally rami�ed

unrami�ed

It remains to prove that F is unique with these properties. Suppose F ′ also satis�es K ⊂ F ′ ⊂ L, F ′/K
is unrami�ed and L/F ′ is totally rami�ed. Then the compositum FF ′ is again unrami�ed by corollary
3.5. From the inclusions :

F ⊂ FF ′ ⊂ L

we can deduces the following for the inertia degrees :

f(F/K) 6 f(FF ′/K) 6 f(L/K)

But as we have just seen, κF ' κL as κ-vector spaces, hence :

f(L/K) = [κL : κ] = [κF : κ] = f(F/K)

Therefore, one must have :
f(F/K) = f(FF ′/K)

But since the two extensions are both unrami�ed, this implies :

[F : K] = [FF ′ : K]

But F ⊂ FF ′, so we can deduce that F = FF ′, and this implies that F ′ ⊂ F . The same method can be
repeated to show the converse inclusion, hence F = F ′.
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Remark : If one further assumes that κL/κ is Galois, then in the proposition above, F/K is Galois.
Indeed, if we assume κL/κ to be Galois, then since g is irreducible in κ[X] and has a root in κL, it has all
its roots in κL. g being separable, its roots are all distinct, so κL contains the f(L/K) distinct roots of g.
Let us denote f instead of f(L/K) for the inertia degree of the extension L/K (recall that f = [κL : κ]
by de�nition). We denote by α1, α2, . . . , αf the roots of g, α1 being the α of the proof of the proposition.

By what we saw in the proof, there exist γ1, γ2, . . . , γf ∈ OF , unique modulo pF , such that :

∀1 6 i 6 f, αi = γi mod pL

Then :

∀1 6 i 6 f,

{
h(γi) mod pL = g(αi) = 0

h′(γi) mod pL = g′(αi) 6= 0

Via the isomorphism ϕ, the same holds if we replace pL by pF . Thus, by Hensel's lemma, for all 1 6 i 6 f ,
there exists a unique βi ∈ OF such that h(βi) = 0 and βi mod pF = γi mod pF . Suppose that βi = βj
for some i 6= j : Then γi − γj = 0 mod pF . But pF ⊂ pL, hence γi mod pL = γi mod pL, i.e. αi = αj :
Contradiction. Therefore, β1, . . . , βf are all distinct, so we found f roots of h, which is of degree f : we
have all of them. Thus, OF contains all the roots of h, and F is generated over K by one of them, so F
is the splitting �eld of h over K. Since h is irreducible in K[X] and separable, F/K is Galois.

Theorem 3.7. Let K be complete with respect to a discrete valuation, and let L/K be a �nite Galois exten-

sion. Assume that κL/κ is separable. Then κL/κ is Galois and there is a surjective group homomorphism

:

Gal(L/K)� Gal(κL/κ)

whose kernel, denoted by IL/K , is called the inertia subgroup of Gal(L/K).
Moreover, IL/K = Gal(L/F ) where F is the inertial sub�eld of L/K.

Proof. With the notations of the proof of proposition 3.6, since h is irreducible in K[X] and has a root
in L (namely β), it must split into linear factors in L[X] because L/K is Galois. Therefore, there exist
β1, . . . , βf ∈ L such that β1 = β and :

h(X) =

f∏
i=1

(X − βi) ∈ L[X]

Besides, we have seen in the proof of proposition 3.6 that all the roots of h have valuation zero, hence :

∀1 6 i 6 f, βi ∈ OL

Reducing modulo pL leads to :

h̄ =

f∏
i=1

X − (βi mod pL)︸ ︷︷ ︸
:=αi

 = g

Thus, the roots of g are all in κL, and we know that κL = κ(β1 mod pL) = κ(α), so that κL is the splitting
�eld of the separable polynomial g over κ, hence κL/κ is Galois.

Now, let us prove that there is a surjective group homomorphism from Gal(L/K) to Gal(κL/κ). Let
σ ∈ Gal(L/K). We want explain how σ induces a �eld automorphism of the residue �eld κL. First, take
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x ∈ OL. Since OL is the integral closure of OK in L, x satis�es a monic polynomial equation over OK ,
namely :

xn +

n−1∑
i=0

aix
i = 0, with a0, . . . , an−1 ∈ OK

Applying σ, we get

σ(x)n +

n−1∑
i=0

aiσ(x)i = 0

since σ �xesK, henceOK . Therefore, σ(x) is integral overOK , so it is inOL. We have proved that σ(OL) ⊂
OL. But the same proof shows that σ−1(OL) ⊂ OL, for σ−1 is also in Gal(L/K). Thus, σσ−1(OL) ⊂
σ(OL), hence σ(OL) = OL. That is why σ induces a surjective (and injective) ring homomorphism :

σ|OL : OL � OL

Therefore we have a natural ring homomorphism given by :

σ̃ : OL � κL
x 7→ σ(x) mod pL

Let us show that pL ⊂ ker(σ̃). It is easy to see that νL ◦ σ is a valuation on L extending the valuation ν
de�ned on K. Thus, it must be equal to νL. This implies that if νL(x) > 0, then νL(σ(x)) = νL(x) > 0
(i.e. if x is zero modulo pL, then σ(x) is also zero modulo pL). So σ̃ factors to σ̄ :

σ̄ : κL � κL
x mod pL 7→ σ(x) mod pL

Now, σ̄ is injective because κL is a �eld, and so it is a �eld automorphism. Moreover, σ̄ �xes κ, for σ
�xes K. This explains how any element σ ∈ Gal(L/K) induces σ̄ ∈ Gal(κL/κ). Now it is easy to check
that σ 7→ σ̄ is a group homomorphism. Let us prove that is is surjective. Let σ∗ ∈ Gal(κL/κ). Since
κL = κ(α1), σ

∗ is uniquely determined by the image of α1, which is necessarily a root of g, i.e. one of the
αi's. Suppose that σ

∗(α1) = αi. Since h is irreducible and separable, if we denote by H its splitting �eld
over K (such that K ⊂ H ⊂ L), then Gal(H/K) acts transitively on the roots of h (see proposition 4.2).
So there exists τ ∈ Gal(H/K) such that τ(β1) = βi. Now, H/K is Galois, so :

Gal(L/K) → Gal(H/K)
σ 7→ σ|H

is surjective

Therefore, we can �nd σ ∈ Gal(L/K) such that σ|H = τ , hence σ(β1) = βi. Then it is clear that σ̄ = σ∗,
hence the surjectivity we wanted.

Finally, let us prove that IL/K , the kernel of :

Gal(L/K) → Gal(κL/κ)
σ 7→ σ̄

is actually Gal(L/F ). If σ ∈ Gal(L/F ), then σ(β) = β because β ∈ F = K(β). Therefore,

σ̄(α) = σ̄(β mod pL) = σ(β) mod pL = β mod pL = α

Since κL = κ(α), this implies that σ̄ = id. Thus, Gal(L/F ) ⊂ IL/K . Conversely, if σ ∈ IL/K , then σ̄ = id,
i.e. σ̄(α) = α, i.e. σ(β) ≡ β mod pL. But the roots of h are all representatives of distinct classes modulo
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pL because g is separable. Since σ(β) is also a root of h, it must be equal to β. Therefore, σ �xes β, so it
�xes K(β) = F : σ ∈ Gal(L/F ). Thus :

IL/K = Gal(L/F )

Corollary 3.8. Under the assumptions of theorem 3.7,

Gal(F/K) ' Gal(κL/κ)

Proof. The preceding theorem shows that :

Gal(L/K)/Gal(L/F ) ' Gal(κL/κ)

Besides, in a remark above we proved that when κL/κ is Galois, so is F/K. Then Galois theory tells us
that :

Gal(F/K) ' Gal(L/K)/Gal(L/F )

hence the result.

Remark : In particular, if K is a local �eld, and L/K is �nite unrami�ed, then κL/κ is Galois because
κ is a �nite �eld. This implies that F/K is Galois by a preceding remark, but F = L because L/K is
unrami�ed. Therefore, a �nite unrami�ed extensions of a local �eld is always Galois. Moreover, we can
apply the corollary, and deduce :

Gal(L/K) ' Gal(κL/κ)

We are now interested in the subextensions of L/F in the preceding theorems. That is why we concentrate
on the subextensions of a totally rami�ed extension.

Let us restate the context. Let K be a complete �eld with respect to a discrete valuation, with residue
�eld κ of characteristic p > 0. Suppose L/K is a �nite totally rami�ed extension of degree n. Proposition
3.1 tells us that :

OL = OK [πL] = OK + πLOK + · · ·+ πe−1L OK
where πL is a uniformizer in L and e the rami�cation index of L/K. Since we assume that the extension
is totally rami�ed, e = n. We write n = n0p

l with n0 prime to p. Then we have the following lemma :

Lemma 3.9. If z ∈ L satis�es zn0 = 1, then z ∈ K

Proof. Let f(X) := Xn0 − 1, and let z ∈ L be a root of f . We denote by ν (respectively |.|) the valuation
(respectively absolute value) on L extending the one on K. Since zn0 = 1, one has n0ν(z) = ν(1) = 0,
hence ν(z) = 0. In particular, z ∈ OL and so there exist x0, x1, . . . , xe−1 ∈ OK such that :

z = x0 + πLx1 + · · ·+ πe−1L xe−1

Therefore, it su�ces to take y := x0 to get y ∈ OK such that |y − z| < 1. Then :

f(y) = yn0 − 1 = yn0 − zn0 = (y − z)

(
n0−1∑
i=0

yizn0−1−i

)
︸ ︷︷ ︸

:=S
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with S ∈ OL. So ν(f(y)) = ν(y − z) + ν(S) > ν(y − z), hence :

|f(y)| 6 |y − z| < 1 (5)

Besides,
|y| 6 max(|y − z|, |z|)

But 1 = |z| 6= |y − z| so we have an equality, and |y| = max(|y − z|, |z|) = |z| = 1. Thus, y ∈ O×K .

Now |f ′(y)| = |n0yn0−1|. But since n0 is prime to p, (n0 mod pK) 6= 0 in κ, so n0 ∈ O×K , as well as yn0−1,
so that :

|f ′(y)| = |n0yn0−1︸ ︷︷ ︸
∈O×K

| = 1 (6)

By (5), (6) and Hensel's lemma applied in the �eld K, there exists a unique y0 ∈ K such that f(y0) = 0
and |y − y0| < 1. But if we apply Hensel's lemma in L, we also �nd that there exists a unique z0 ∈ L
such that f(z0) = 0 and |z0 − y| < 1. Both conditions are satis�ed by y0 and z, so by the uniqueness,
z = y0 ∈ K.

From this we can deduce the following theorem, that will be a key tool to answer our main question.

Theorem 3.10. With the notations introduced above, there exists a unique extension V of K with K ⊂
V ⊂ L such that [V : K] = n0. Moreover, there exists π a uniformizer in K, and ω ∈ V such that ωn0 = π
and V = K(ω)

Proof. Let πK be a uniformizer in K. If πL still denotes a local parameter in L, then we know that
νL(πeL) = e.νL(πL) = ν(πK). Therefore :

πeL
πK
∈ O×L

Let U ∈ O×L such that πeL = UπK . One can �nd x0, . . . , xe−1 ∈ OK such that :

U = x0 + · · ·+ πe−1L xe−1

and since U ∈ O×L , x0 ∈ O
×
K . Factorizing by x0 leads to :

U = x0Z, where Z ∈ OL and νL(Z − 1) > 0

Hence :
πeL = x0ZπK

Recall that since the L/K is totally rami�ed, e = n = n0p
l. So the equality above is :(

πp
l

L

)n0

= Z (x0πK)︸ ︷︷ ︸
:=π

and π is still a uniformizer in K because x0 ∈ O×K . We would like to �nd a n0-th root of Z, that is why
we introduce the polynomial f := Xn0 − Z. We have seen that νL(Z − 1) > 0 and this implies :

|f(1)| = |1− Z| < 1

Besides,
|f ′(1)| = |n0| = 1 because n0 is prime to p
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Therefore, by Hensel's lemma, one �nds v ∈ L such that f(v) = 0. Thus :(
πp

l

L

v

)n0

= π

We set

ω :=
πp

l

L

v
and V = K(ω)

It remains to prove that [V : K] = n0, and that it is unique with this degree. Since ω is a zero of
Xn0 − π, which is a polynomial with coe�cients in K,

[V : K] = [K(ω) : K] 6 n0

But since ωn0 = π : a uniformizer in K, n0νL(ω) = ν(π) = 1, so V contains an element of valuation 1/n0,
which means that the rami�cation index e(V/K) is at least n0. This implies n0 6 [V : K] because the
rami�cation index is less than the degree of the extension. Therefore :

[V : K] = n0

Now, suppose K ⊂ W ⊂ L is another extension such that [W : K] = n0. Then since L/K is totally
rami�ed,W/K is also totally rami�ed, and so by proposition 3.1,W = K(πW ) if πW denotes a uniformizer
in W . Then πn0

W is a uniformizer in K, and so there exists u ∈ O×K such that :

πn0
W

π
=
(πW
ω

)n0

= u

Let us introduce g = Xn0 − u ∈ K[X]. Denote by a the fraction πW /ω. νL(a) = 0, so a ∈ O×L . By the
same arguments as earlier in the proof, one can �nd z ∈ O×K such that |z − a| < 1. Then :

|g(z)| = |zn0 − an0 | = |z − a| | . . . |︸︷︷︸
61

< 1

and :
|g′(z)| = |n0| = 1

Hensel's lemma gives us an element z0 ∈ K such that g(z0) = 0. Therefore :(πW
ω

)n0

= u = zn0
0 =⇒

(
πW
ωz0

)n0

= 1

Using lemma 3.9, we get that πW /(ωz0) ∈ K, and since z0 ∈ K, this tells us that πW /ω ∈ K, hence :

V = K(ω) = W = K(πW )

This concludes the proof.
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3.3 Tamely rami�ed extensions

De�nition 3.11. Let K be complete with respect to a discrete valuation. Suppose that the residue �eld κ
has characteristic p > 0. A �nite extension L/K is said to be tamely rami�ed if the residue �eld extension

κL/κ is separable and the rami�cation index e(L/K) is prime to p. Otherwise, i.e. if p | e(L/K), then
the extension is said to be wildly rami�ed.

Combining the results we have already proved, we can state the following structure theorem :

Theorem 3.12. Let K be a �eld complete with respect to a discrete valuation, and let L/K be a �nite

extension. Suppose that the residue �eld κ has characteristic p > 0 and that κL/κ is separable. Then there

exist unique �elds F and V such that :

L

V

F

K

wildly rami�ed

totally rami�ed

tamely rami�ed

unrami�ed

Proof. This follows immediately from proposition 3.6 and theorem 3.10.

3.4 Rami�cation groups

Let (K, ν) be a local �eld, and let L/K be a �nite Galois extension, with Galois group denoted by G. ν
extends uniquely to a discrete valuation on L, say ωL. We denote by νL the normalization of ωL, so that
a uniformizer in L has valuation 1 for the valuation νL. Note that νL no longer extends ν, but this way
it takes values in Z.

De�nition 3.13. Let i ∈ Z, i > −1. We de�ne the i-th rami�cation group Gi of the extension L/K as

follows :

Gi := {σ ∈ G | ∀a ∈ OL, νL(σ(a)− a) > i+ 1}

Remarks: We know that any σ ∈ G preserves OL, so G−1 is just G. Moreover, by looking at the surjec-
tive homomorphism of theorem 3.7, it is clear that G0 is the inertia subgroup of G, i.e. G0 = IL/K .

If σ belongs to a high rami�cation group, it means that σ does not move OL to much, i.e. every element
in OL is sent by σ to an element in OL that is close to it with respect to the absolute value associated to
νL.

Proposition 3.14. (Gi)i>−1 form a decreasing sequence of normal subgroups of G, and they eventually

become trivial.

Proof. The �rst statement can be easily checked just by writing down what this means. For the second
part, recall (see corollary 3.2) that there exists x ∈ OL such that OL = OK [x]. Then one can prove that :

Gi = {σ ∈ G | νL(σ(x)− x) > i+ 1}
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Set :
n := max

σ∈G\{id}
νL(σ(x)− x)

Then n < +∞, for if σ(x) = x then σ|OL = id, and this implies that σ is trivial on L = Frac(OL). Now
for all i > n, Gi = {id}.

To sum it up, we have a sequence of normal subgroups of the Galois group :

· · · ⊂ Gn+1︸ ︷︷ ︸
={id}

⊂ Gn︸︷︷︸
={id}

⊂ · · · ⊂ Gi+1 ⊂ Gi ⊂ · · · ⊂ G1 ⊂ G0︸︷︷︸
=IL/K

⊂ G−1︸︷︷︸
=G

Since they are all normal in G, they are in particular normal subgroups of their preceding term :

· · · / · · · / Gi+1 / Gi / · · · / G1 / G0 / G−1

Now our aim is to study the quotients Gi/Gi+1. We already know from theorem 3.7 and the preceding
remark that G−1/G0 is isomorphic to the Galois group of the residue �eld extension :

G−1/G0 ' Gal(κL/κ)

We will need the following lemma to simplify the study of the higher order quotients.

Lemma 3.15. Let π be a uniformizer in L, and σ ∈ G0.

∀i > 1, σ ∈ Gi ⇐⇒
σ(π)

π
≡ 1 mod πi

Proof. Let i > 1 and σ ∈ G0.
If σ ∈ Gi, then for all a ∈ OL, νL(σ(a) − a) > i + 1, hence σ(a) − a ≡ 0 mod πi+1. In particular, for
a = π, we get :

σ(π)

π
≡ 1 mod πi (7)

Conversely, suppose that (7) is satis�ed. Let F be the unique maximal unrami�ed extension such that
K ⊂ F ⊂ L (see proposition 3.6 and theorem 3.7). Then since L/F is totally rami�ed, one hasOL = OF [π].
Therefore for any τ ∈ Gal(L/F ),

(∀a ∈ OL, νL(τ(a)− a) > i+ 1) ⇐⇒ νL(τ(π)− π) > i+ 1

But Gal(L/F ) = IL/K = G0, so σ ∈ Gal(L/F ). Moreover (7) tells us that σ satis�es the right hand side
of the above equivalence, hence : ∀a ∈ OL, νL(σ(a)− a) > i+ 1 i.e. σ ∈ Gi

We introduce the following notations :

∀i > 1, U
(i)
L := 1 + piL = 1 + πiOL and U

(0)
L := O×L (8)

Proposition 3.16. For all i ∈ N, there is an injective group homomorphism

θi : Gi/Gi+1 ↪→ U
(i)
L /U

(i+1)
L
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Proof. First of all, we shall explain why U
(i)
L is a group when i > 1 ! Let us try to prove that it is a

subgroup of O×L . It is clearly stable under product and contains the 1 element, but does any element have

an inverse in U
(i)
L ? This is due to the fact that L is complete. Indeed, for any element x ∈ piL, the power

series
∑

(−1)nxn converges because its general term tends to zero, and a simple computation shows that

this is a multiplicative inverse for 1 + x, and that it is also in 1 + piL. Thus, U
(i)
L is a subgroup of O×L (in

particular, it is commutative). Morover, one has U
(i+1)
L ⊂ U (i)

L for all i ∈ N.

Now, let i ∈ N∗, and let π still denote a uniformizer in L. If σ ∈ Gi then :

σ(π)

π
≡ 1 mod πi

so σ(π)/π ∈ U (i)
L . Therefore, the map :

Gi → U
(i)
L

σ 7→ σ(π)
π

is well de�ned. We can then compose it with the natural surjection :

U
(i)
L � U

(i)
L /U

(i+1)
L

We obtain the following map :

θi : Gi → U
(i)
L /U

(i+1)
L

σ 7→ σ(π)
π U

(i+1)
L

Besides, for i = 0, since νL ◦ σ = νL, one has :

νL

(
σ(π)

π

)
= 0

hence σ(π)/π ∈ O×L = U
(0)
L . So we can de�ne θ0 : G0 → U

(0)
L /U

(1)
L by the same formula as for θi when

i > 1.
Now that we have de�ned maps θi for all i ∈ N, let us check that these are group homomorphisms with
kernel Gi+1. Let i ∈ N and σ, τ ∈ Gi. Setting u = τ(π)/π, one has :

(σ ◦ τ)(π)

π
=
σ(π)

π

τ(π)

π

σ(u)

u
(9)

Since σ ∈ Gi , σ(u) ≡ u mod πi+1 But u = τ(π)/π ∈ O×L by the same arguments as above, because
νL ◦ τ = νL. Therefore,

σ(u)

u
≡ 1 mod πi+1 i.e.

σ(u)

u
∈ U (i+1)

L (10)

(9) and (10) yield θi(σ ◦ τ) = θi(σ)θi(τ).

Let us determine the kernel of θi. If σ ∈ Gi ,

σ ∈ ker(θi) ⇐⇒
σ(π)

π
∈ U (i+1)

L ⇐⇒ σ(π)

π
≡ 1 mod πi+1 ⇐⇒

lemma 3.15
σ ∈ Gi+1

Thus, ker(θi) = Gi+1 and so we get injective group homomorphisms :

θi : Gi/Gi+1 ↪→ U
(i)
L /U

(i+1)
L

σ mod Gi+1 7→ σ(π)
π U

(i+1)
L
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Now that we know that the successive quotients Gi/Gi+1 can be identi�ed with subgroups of U
(i)
L /U

(i+1)
L ,

we need to understand these groups.

Proposition 3.17.

U
(0)
L /U

(1)
L '

(
κ×L , .

)
and for all i > 1, U

(i)
L /U

(i+1)
L '

(
piL/p

i+1
L ,+

)
' (κL,+)

Proof. Let

ϕ : O×L = U
(0)
L � κ×L

a 7→ a mod π

It is a well-de�ned, surjective, group homomorphism. Moreover,

a ∈ ker(ϕ) ⇐⇒ a ∈ 1 + (π) = U
(1)
L

Hence U
(0)
L /U

(1)
L is isomorphic to the multiplicative group of the residue �eld of the extension.

Now , let i > 1. Consider the following map :

U
(i)
L � piL/p

i+1
L

1 + x 7→ x mod pi+1
L

One checks easily that this is a surjective group homomorphism with kernel U
(i+1)
L hence :

U
(i)
L /U

(i+1)
L '

(
piL/p

i+1
L ,+

)
But the latter is isomorphic to (κL,+) via :

OL � piL/p
i+1
L

a 7→ aπi mod pi+1
L

which factors through pL = (π).

Summary : We have proved that there are embeddings :

G0/G1 ↪→ (κ×L , .)

and
∀i > 1, Gi/Gi+1 ↪→ (κL,+)

This allows us to deduce many consequences about the structure of G0. Indeed, the �rst embedding
tells us that G0/G1 can be seen as a �nite subgroup of (κ×L , .), and therefore G0/G1 is a cyclic group. In
particular it is abelian. Morever, as subgroups of (κL,+), the quotients Gi/Gi+1 for i > 1 are abelian.
Therefore, we have a sequence of normal subgroups of G0 :

· · · / · · · / Gi+1 / Gi / · · · / G1 / G0

such that they eventually become trivial and all the successive quotients are abelian groups. This means
(by de�nition) that G0 is solvable ! But we can be more precise concerning the structure of the groups
Gi/Gi+1.
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Suppose κL has characteristic zero. Then (κL,+) has only {0} as a �nite subgroup, hence for all
i > 1, Gi/Gi+1 is the trivial group, i.e. Gi = Gi+1. But Gk is trivial for k su�ciently large, so for all
i > 1, Gi = {id}. Then G0/G1 = G0 and this implies that G0 is a cyclic group.

Now, suppose κL has characteristic p > 0. Then �nite subgroups of (κL,+) are �nite dimensional Fp
vector spaces, hence isomorphic to (Fnip ,+) for some ni ∈ N. Thus, we obtain :

∀i > 1,∃ni ∈ N, Gi/Gi+1 '
(
Z/pZ

)ni
Let us prove that G1 is a p-group, that is : a group of order pm for some m ∈ N.
For all i > 1 we have #Gi = # (Gi+1) # (Gi/Gi+1). Besides, for N su�ciently large, GN = {id}.
Therefore,

#GN−1 = # (GN−1/GN ) = pnN−1

#GN−2 = #(GN−1)#(GN−2/GN−1) = pnN−1pnN−2

...

#G1 =
∏N−1
i=1 pni is a power of p

Finally, assume that the residue �eld of K, namely κ, is a �nite �eld. Then κL/κ is a �nite extension
of a �nite �eld, so it has a cyclic Galois group. Since :

G/G0 ' Gal(κL/κ)

we deduce that G/G0 is cyclic, hence solvable. Now, we have the following standard result :

Lemma 3.18. Let G be a group. If H / G,{
H solvable

G/H solvable
=⇒ G solvable

Proof. See [Go] theorem XIII.16

Using lemma 3.18 with G = Gal(L/K) and H = G0, we obtain that when κ is �nite, Gal(L/K) is solvable.

Let us summarize all these results in the following proposition :

Proposition 3.19. Let L/K be a �nite Galois extension of a complete �eld with respect to a discrete

valuation. Denoting by Gi the rami�cation groups as in de�nition 3.13. We have the following properties

:

- G0/G1 is cyclic

- G0 is solvable

- If κL has characteristic 0, then for all i > 1, Gi = {id} and G0 is a cyclic group

- If κL has characteristic p > 0, then for all i > 1, there exists ni ∈ N such that

Gi/Gi+1 '
(
Z/pZ

)ni
and G1 is a p-group
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- If κ (the residue �eld of K) is �nite, then G = G−1 is solvable

In particular, the last point tells us that if K = Qp, then for any �nite Galois extension L/Qp, the
Galois group Gal(L/Qp) will be solvable. Now, it is well known that Sn is not solvable as soon as n > 5,
and that is is solvable for n 6 4 (it is, in my opinion, very nicely done in chapter XIII of [Go]. It starts
from the de�nition of solvability, and the proof of this result is then very detailed). Therefore, if n > 5,
Sn cannot be the Galois group of a �nite extension of Qp ! This is a great �rst step in our way to answer
the main question, because now we are reduced to study the possibility of Sn-extensions for n ∈ {2, 3, 4},
and these groups are not too large. However, as we will see, this is not so easy to work out the remaining
cases.

4 The Galois group of a polynomial

In this section, we forget a little about local �elds, and state some general results from Galois theory.

4.1 De�nition and �rst properties

Let K be a �eld, and K̄ a �xed algebraic closure of K. Let us take f to be a separable monic polynomial
of degree n > 1 in K[X]. This means that it has only simple roots in K̄ i.e. there exist α1, . . . , αn ∈ K̄,
all distinct, such that :

f = (X − α1) . . . (X − αn) in K̄[X]

Let us denote by L the splitting �eld of f over K :

L := K(α1, . . . , αn) ⊂ K̄

Then since f is separable, L/K is Galois, and we de�ne the Galois group of the polynomial f to be the
Galois group of the extension L/K.

Now, consider a �xed index i ∈ {1, . . . , n}, and σ ∈ Gal(L/K). Applying σ to the equation f(αi) = 0
leads to f(σ(αi)) = 0, because f has coe�cients in K. Therefore, there exists a unique index j such that
σ(αi) = αj . So we can de�ne the following map :

ϕσ : {1, . . . , n} → {1, . . . , n}
i 7→ the unique j such that σ(αi) = αj

If ϕσ(i) = ϕσ(i′) then this means that σ(αi) = σ(αi′). Since σ is injective, one has αi = αi′ , hence i = i′.
Therefore, ϕσ is injective, and since it goes from {1, . . . , n} to {1, . . . , n}, it is bijective. That is why we
can de�ne the following map from the Galois group of a polynomial into the set of permutations of the
indices of the roots :

ϕ : Gal(L/K) → Sn

σ 7→ ϕσ

One proves easily the following :

Proposition 4.1. The map ϕ from the discussion above is an injective group homomorphism.

This tells us that there is an embedding :

Gal(L/K) ↪→ Sn
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One important think to notice is that this embedding is not canonical, since it depends one the choice of
the numbering of the roots. So we cannot canonically identify the Galois group of f with a subgroup of
Sn, but only with a subgroup "up to conjugation".

Remark : Seeing the Galois group of a separable polynomial of degree n as a subgroup of Sn is the
original point of view of Galois. The modern way to introduce Galois groups as groups of automorphisms
of �eld extensions is due to Dedekind.

Proposition 4.2. Let f ∈ K[X] be separable of degree n, with Galois group G.

(i) If f is irreducible in K[X], then n | #G

(ii) f is irreducible in K[X] if and only if G (as a subgroup of Sn) acts transitively on {1, . . . , n}

Proof. See appendix 7.3

This proposition is very useful for our main purpose. Indeed, if one wants to �nd an extension K/Qp

with Galois group S3, it can be a good idea to look for an irreducible polynomial of degree 3 in Qp[X].
Since Qp has characteristic zero, such a polynomial would also be separable. The splitting �eld of this
polynomial over Qp will give an extension K/Qp with Galois group G, and this group will be a transitive
subgroup of S3. Now, it is easy to verify that the only transitive subgroups of S3 are S3 and A3.
Therefore, we just need a tool to be able to say whether the extension will have Galois group S3 or A3

when we pick an irreducible polynomial of degree 3 in Qp[X]. This is the point of the following theorem.

Theorem 4.3. Let K be a �eld of characteristic 6= 2. Let P ∈ K[X] be a separable polynomial, monic of

degree n > 2, i.e. :
P = (X − α1) . . . (X − αn)

in some �xed algebraic closure of K. We still denote by L the splitting �eld of P over K, namely L =
K(α1, . . . , αn) and by ϕ the natural embedding Gal(L/K) := G ↪→ Sn. Let us introduce

d(P ) :=
∏
i<j

(αi − αj)

Then :

- ∀g ∈ G, g(d(P )) = ε(ϕ(g))d(P )

- Under the Galois correspondence, the subgroup ϕ−1(An) ⊂ G corresponds to the sub�eld K(d(P )) ⊂
L

Proof. See [Go] theorem XI.32

Corollary 4.4. ϕ(G) ⊂ An if and only if disc(P ) is a square in K× (denoted by disc(P ) ∈ (K×)
2
)

Proof. By the theorem above, one has :

ϕ(G) ⊂ An ⇐⇒ ϕ−1(An) = G ⇐⇒ K(d(P )) = K ⇐⇒ d(P ) ∈ K

But since disc(P ) = d(P )2, the last condition is equivalent to disc(P ) ∈ (K×)
2
, hence the result.
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4.2 Galois groups of cubics and quartics

The discussion in the last section tells us how to proceed to �nd polynomials with Galois groupS3. Indeed,
let us say that P is a polynomial of degree 3, with coe�cients in a �eld K with characteristic di�erent
from 2. Suppose that P is irreducible over K, and separable. Then the Galois group G of this polynomial
can be identi�ed with ϕ(G) which is a transitive subgroup of S3. Therefore, ϕ(G) can only be A3 or S3.
Besides, the distinction can be done using the discriminant of P , by corollary 4.4. We get the following
proposition :

Proposition 4.5. Let K be a �eld of characteristic 6= 2, and P ∈ K[X] an irreducible, separable, monic,

cubic. If disc(P ) ∈ (K×)
2
, then G ' A3. Otherwise, G ' S3

Remark : If K has characteristic zero, then irreducible implies separable, so we do not need to check this
condition. This fact follows from the following proposition :

Proposition 4.6. Let K be a �eld, and P ∈ K[X] an irreducible polynomial. Then : P is inseparable if

and only if P ′ = 0.

Proof. ⇒ Suppose P ∈ K[X] is irreducible and inseparable. Then there exists a ∈ K̄ such that :

(X − a)2 | P in K̄[X]

This implies that (X − a) divides both P and P ′ in K̄[X]. Thus, P and P ′ have a common factor in
K̄[X], so that they are not coprime in K̄[X]. Therefore, when one computes Euclid's algorithm for P and
P ′, the last non-zero remainder has degree > 1. But since P and P ′ are ine K[X], all the polynomials
that appear in the successive euclidean divisions are in K[X], and the computation of the last non-zero
remainder gives the GCD of P and P ′ in K[X]. Therefore, the GCD of P and P ′ in K[X] has degree
> 1, so P and P ′ share a common irreducible factor in K[X]. Since P is irreducible, this implies that P
divides P ′. However, deg(P ′) < deg(P ), so P ′ must be zero.

Alternative proof : Since a is a root of P and P ′, the minimal polynomial of a over K, say f , is a
common irreducible factor of P and P ′. Since P and f are irreducible and f | P , there exists λ ∈ K×
such that P = λf , and so :

f | P ′ =⇒ P | P ′

Afterward, the proof is the same.

⇐ If P ′ = 0 then P and P ′ certainly have a common root in K̄, hence : P is inseparable.

In particular, if we assume that K has characteristic zero and P is irreducible, then P ′ = 0 implies
P ∈ K. This gives a contradiction because P is irreducible. Therefore, P ′ 6= 0 and P is also separable.

Now, let us study the case of quartic polynomials. The problem is that there are more transitive
subgroups in S4 than there are in S3, so it is more complicated to distinguish which irreducible polynomial
gives which subgroup. The discriminant is not su�cient to make the distinction. The idea is to associate
to a quartic a cubic polynomial, called its cubic resolvent. The Galois group of our quartic P will now
depend on the behaviour of P , but also of its cubic resolvent. The motivation to the de�nition of the
cubic resolvent is detailed in [Co] : Galois groups of cubics and quartics (not in characteristic 2), as well
as many examples of quartics over Q with all the possible Galois groups. The following de�nition and
theorem can be found in this reference, but also in chapter XVII, �5, in [Go].
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De�nition 4.7. Let K be a �eld with characteristic 6= 2, and let P ∈ K[X] be an irreducible monic

polynomial of degree 4 :

P (X) = X4 − a1X3 + a2X
2 − a3X + a4

The cubic resolvent of P is :

R3(P ) := X3 − a2X2 + (a1a3 − 4a4)X −
(
a21a4 + a23 − 4a2a4

)
Remark : In fact, if we denote the roots of P by α1, α2, α3, α4, one has :

R3(P ) = (X − (α1α2 + α3α4)) (X − (α1α3 + α2α4)) (X − (α1α4 + α2α3))

(See Keith Conrad's expository paper for the motivation of this de�nition and the computation of the
coe�cients). Then it is easy to see that P and R3(P ) have the same discriminant. We denote by ∆ this
common discriminant, and by G the Galois group of P over K. Then we have the following :

Theorem 4.8. We denote by K2 the set {x2, x ∈ K}.

(i) G ' S4 ⇐⇒ R3(P ) is irreducible and ∆ /∈ K2

(ii) G ' A4 ⇐⇒ R3(P ) is irreducible and ∆ ∈ K2

(iii) G ' Z/2Z× Z/2Z ⇐⇒ R3(P ) splits completely over K

(iv) G ' Z/4Z ⇐⇒ R3(P ) has exactly one root in K and P is reducible over K(
√

∆)

(v) G ' D4 ⇐⇒ R3(P ) has exactly one root in K and P is irreducible over K(
√

∆)

Proof. See [Go] theorem XVII.22, or Keith Conrad's expository paper Galois groups of cubics and quartics
(not in characteristic 2) ([Co])

Now, we have all the tools we need to answer completely our question, at least for the question of the
existence of extensions, this is the aim of the next section. Then, we will try to work out the question of
the classi�cation of the extensions when we know there are some.

5 Answer to our main question

Recall : We are trying to �nd out for which (n, p) there exist Sn-extensions of Qp, that is : �nite Galois
extensions of Qp with Galois group Sn.

5.1 Quadratic extensions of Qp

If one takes any α ∈ Qp such that α is not a square in Qp, then Qp(
√
α)/Qp is a �nite Galois extension

with Galois group of order 2, i.e. a S2-extension. The existence of elements in Qp \ (Qp)
2 is given by

propositions 2.14 and 2.15, and so quadratic extensions ofQp can certainly occur. The interesting question
is to classify these extensions, and we will do this in section 6.1.
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5.2 The cases (n > 5) and (n = 4 & p > 3)

Let p > 2 be a prime number. Then Qp is complete with respect to a discrete valuation, with �nite residue
�eld (isomorphic to Fp). As we have seen in proposition 3.19, any �nite Galois extension L/Qp has a
solvable Galois group, hence Gal(L/Qp) cannot be isomorphic to Sn, if n > 5.

HHH
HHHn
p

2 3 5 7 11 . . . . . .

2

3

4

5
...
...

Now, let us try to understand the case n = 4 : For which p can S4 occur as the Galois group of an

extension of Qp ?

- First, let us assume p > 5.

Suppose that there exists a Galois extension L/Qp with Galois group G ' S4. By proposition 3.19,
we know that G1 is a p-group. But #G1 | #S4 = 24 = 23 × 3. Since #G1 is a power of p, the only
way that it divides 24 is that G1 is trivial. Thus, G0/G1 is isomorphic to G0. Besides, proposition
3.19 tells us that G0/G1 is cyclic, hence G0 is cyclic. However, it is easy to check that S4 has no
normal cyclic subgroup, except {id}. This implies that G0 = {id} and G/G0 ' G = Gal(L/Qp).
Now, G/G0 is isomorphic to the Galois group of the residue �eld extension, which is a cyclic group
(Galois group of a �nite extension of �nite �eld). So G is a cyclic group, whereas we assumed G ' S4

: This is a contradiction.

- Now, let us consider the case p = 3.

Once again, we assume that there exists an extension L/Qp with Galois group G ' S4. The
di�erence with the last point is that this time #G1 is a power of 3 dividing 24, so it could be 3.
However, if #G1 = 3, then denoting by ϕ : G→ S4 an isomorphism between the two groups, ϕ(G1)
is a normal subgroup of S4 which contains a 3-cycle, and this implies that A4 ⊂ ϕ(G1). Therefore :

12 = #A4 6 #ϕ(G1) = #G1 = 3 =⇒ Contradiction.

Thus, #G1 = 1, and we can repeat the same proof as when p > 5 to show that S4-extensions of Q3

do not occur.

Summary table :
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HHHHn

p
2 3 5 7 11 . . . . . .

2

3

4

5
...
...

All the the gray cells in this table correspond to tuples (n, p) for which there is no �nite Galois extension
L/Qp with Galois group Sn.

5.3 The case n = 3

5.3.1 If p 6= 3

First, let us assume p > 5.

Suppose there exists a �nite Galois extension L/Qp with Galois group G := Gal(L/Qp) isomorphic to
S3. Then by proposition 3.19, G1 is a p-group and its order divides the order of G, namely 6. Therefore,
G1 = {id}. So G0/G1 ' G0, and we know that G0/G1 is a cyclic group, hence G0 is a cyclic group.

Now, if L/Qp is totally rami�ed, then G = G0, and so G is cyclic. Since S3 is not cyclic, this cannot
happen : L/Qp cannot be totally rami�ed.

On the other hand, if L/Qp is unrami�ed, then G0 = {id}, hence G/G0 ' G. But we know that G/G0

is cyclic, soG is cyclic. Once again, sinceS3 is not cyclic, this cannot happen : L/Qp cannot be unrami�ed.

Therefore, in the formula [L : Qp] = e(L/Qp)f(L/Qp) = e.f , we cannot have e(L/Qp) = 1 or e(L/Qp) =
6. Either e = 2 and f = 3 or e = 3 and f = 2. But if we consider F = LG0 the maximal unrami�ed subex-
tension of the extension L/Qp (as in proposition 3.6 and theorem 3.7), we have Gal(L/F ) / Gal(L/Qp).
Since S3 has no normal subgroup of order 2, #Gal(L/F ) = 3 = [L : F ]. This implies that [F : Qp] = 2 =
f .

To sum it up, if L/Qp is a S3-extension, then we are in the following situation :

L

F

Qp

totally rami�ed of degree 3

unrami�ed of degree 2

Now, let H be any subgroup of G of order 2. Let LH be the corresponding sub�eld of L under the Galois
correspondence. Then LH has degree 3 over Qp. Since 3 is prime, the extension LH/Qp is either unram-
i�ed or totally rami�ed. But it cannot be unrami�ed because it is of degree 3, and the inertia degree of
L/Qp is 2. Therefore, LH/Qp is totally rami�ed of degree 3, which is prime to p : the characteristic of
the residue �eld of Qp (this is where the assumption p 6= 3 is important). This tells us that LH/Qp is
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tamely rami�ed, so we can apply theorem 3.10 !

By this theorem, one can �nd π a uniformizer in Qp, and an element ω ∈ LH such that ω3 = π and
LH = Qp(ω). Now, suppose that µ3 := {ζ ∈ Qp | ζ3 = 1} ⊂ Qp. Then Qp(ω) is the splitting �eld of the
Eisenstein polynomial X3 − π over Qp. This implies that LH/Qp is Galois, so H is a normal subgroup of
G. But as we said before, in S3, a subgroup of order 2 cannot be normal, so we have a contradiction. We
have proved that if a S3-extension L/Qp exists, then Qp cannot contain µ3.

Besides, µ3 ⊂ Qp ⇐⇒ X3 − 1 splits in Qp ⇐⇒ X2 + X + 1 splits in Qp ⇐⇒ disc(X2 + X +
1) is a square in Qp ⇐⇒ −3 ∈ Q2

p

Since −3 ∈ Z×p , the last condition is equivalent to −3 ∈
(
Z×p
)2
, and this is (by proposition 2.14) the same

as −3 being a square modulo p (because p 6= 2). However, the question "For which p is -3 a square

modulo p ?" is not so easy to turn into a simple condition on p, whereas the question "Which p is a

square modulo 3 ?" is very simple ! Gladly, the quadratic reciprocity law allows us to turn the not so easy
question into the easy one. Before this, we need to introduce a notation : the Legendre symbol, to write
the quadratic reciprocity law in a concise way.

De�nition 5.1. Let p be an odd prime number. We de�ne, for all a ∈ F×p , the Legendre symbol :(
a

p

)
=

{
1 ⇐⇒ a ∈

(
F×p
)2

−1 ⇐⇒ a /∈
(
F×p
)2

It satis�es the following property :

∀a ∈ F×p ,

(
a

p

)
= a

p−1
2

and :
L : F×p → {−1, 1}

a 7→
(
a
p

)
is a non-trivial group homomorphism.

Proof. If a ∈ F×p , then :

ap−1 = 1 =
(
a
p−1
2

)2
Therefore,

a
p−1
2 ∈ {−1, 1}

So the following map is well de�ned, and is clearly a group homorphism :

L′ : F×p → {−1, 1}
a 7→ a

p−1
2

We want to prove that L = L′. It su�ces to show that for all a ∈ F×p ,

a
p−1
2 = 1 ⇐⇒ a ∈

(
F×p
)2
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which amounts to prove that the kernel of L′ is equal to the image of :

u : F×p → F×p
x 7→ x2

Clearly, Im(u) ⊂ ker(L′), so we just need to prove that these two sets have the same number of elements.
Since Im(u) ' F×p /ker(u) and ker(u) = {−1, 1} has order 2 (−1 6= 1 because p is an odd prime), one has :

#Im(u) =
p− 1

2

Now, since L′ is a group homomorphism, we know that :

#ker(L′) =
p− 1

#Im(L′)

So to get the conclusion we want, we need to prove that #Im(L′) = 2 i.e. there exist elements x in F×p
such that x(p−1)/2 is not equal to 1. But the polynomial

X
p−1
2 − 1

cannot have p− 1 distinct roots because its degree is p−1
2 , so #Im(L′) = 2 and we obtain the result.

Proposition 5.2. (Quadratic reciprocity law)

Let p, q be two distinct odd primes. Then :(
p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2

Proof. See [Go] theorem XII.25

Using this, we can compute
(
−3
p

)
as follows :(

−3

p

)
=

(
−1

p

)(
3

p

)
= (−1)

p−1
2 (−1)

p−1
2

3−1
2

(p
3

)
= (−1)p−1

(p
3

)
=
(p

3

)
Therefore,

µ3 ⊂ Qp ⇐⇒ −3 ∈ Q2
p ⇐⇒ −3 ∈

(
F×p
)2 ⇐⇒ (

−3

p

)
= 1 ⇐⇒

(p
3

)
= 1

But now, it is easy to check that p is square modulo 3 if and only of p ≡ 1 mod 3, so we have �nally found
a very simple condition on p for the existence of an S3-extension of Qp. Indeed :

If such an extension L/Qp exists, then µ3 6⊂ Qp, hence p 6≡ 1 mod 3 i.e. p ≡ 2 mod 3 (because p > 5
is a prime, it is not congruent to zero modulo 3).

Conversely, suppose p ≡ 2 mod 3.

The polynomial P = X3 − p is irreducible in Qp[X] because it is Eisenstein. Since Qp has characteristic
zero, it is also separable. By proposition 4.5, it su�ces to compute its discriminant to tell the Galois group
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of this polynomial. This can be done by computing the resultant of P and P ′, so this is not hard, but it
can be tedious. I just take the following result as a fact :

disc(X3 + aX + b) = −4a3 − 27b2 (11)

Thus, disc(P ) = −27p2 = −3(3p)2, so that :

disc(P ) ∈ Q2
p ⇐⇒ −3 ∈ Q2

p ⇐⇒
(
−3

p

)
= 1 ⇐⇒

(p
3

)
= 1 ⇐⇒ p ≡ 1 mod 3

Since we assumed p ≡ 2 mod 3, disc(P ) is not a square in Qp, so the Galois group of P over Qp is
isomorphic to S3 by proposition 4.5. Therefore, there exists a S3-extension of Qp.

Summary : For all primes p > 5, S3 arises as the Galois group of an extension of Qp if and only if
p ≡ 2 mod 3.

Moreover, if p = 2 then the polynomial X3−2 also gives a S3-extension of Q2. Indeed, it is irreducible
and separable, and its discriminant is a square in Q2 if and only if −3 is a square Q2. But −3 6≡ 1 mod 8,
so by proposition 2.15, disc(X3 − 2) is not a square in Q2. Thus, the Galois group of X3 − 2 over Q2 is
isomorphic to S3.

5.3.2 If p = 3

X3 − 3 is irreducible and separable, and its discriminant is −27(−3)2 = −35 which is not a square in Q3,
because 5 is odd. Therefore, the splitting �eld of this polynomial over Q3 gives a S3-extension of Q3.

5.3.3 Summary

H
HHH

HHn
p

2 3 5 7 11 . . . . . .

2

3

4

5
...
...

In the green line of this table, S3 can occur as the Galois group of an extension of Qp if and only if
p = 3 or p ≡ 2 mod 3

5.4 The case (n = 4 & p = 2)

Let us consider, for instance, the polynomial P = X4+2X+2 ∈ Q2[X]. P is Eisenstein, hence irreducible.
Besides, its cubic resolvent is R3(P ) = X3 − 8X − 4. This polynomial is again irreducible. Indeed, its
Newton polygon (see appendix 7.1) is given by the �gure below :
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Figure 1: Newton polygon of R3(P ) = X3 − 8X − 4 ∈ Q2[X]

The polygon has only one �nite side, and the slope of this side is −2
3 . Since 2 and 3 are coprime,

R3(P ) is irreducible in Q2[X] by corollary 7.4. Moreover, a simple computation using (11) shows that

disc(P ) = disc(R3(P )) = disc(X3 − 8X − 4) = −4(−8)3 − 27× 42 = 1616 = 24 × 101

Therefore :

disc(P ) ∈ (Q2)
2 ⇐⇒ 101 ∈ (Q2)

2 ⇐⇒ 101 ≡ 1 mod 8 (by proposition 2.15)

However, 101 = 96 + 5 = 8× 12 + 5, hence 101 6≡ 1 mod 8 i.e. disc(P ) /∈ (Q2)
2

To sum it up, P satis�es : 
P is irreducible (Eisenstein) in Q2[X]

R3(P ) is irreducible in Q2[X]

disc(P ) is not a square in Q2

By theorem 4.8 (i), the Galois group of P over Q2 is isomorphic to S4. Thus, there exist S4-extensions
of Q2 !

5.5 Conclusion

In the summary table of paragraph 5.3.3, all the white cells correspond to tuples (n, p) for which extensions
exist, all the grey cells correspond to tuples for which we know there is no such extension, and �nally what
happens in the green line is explained under the summary table.

6 Classi�cation of the Sn-extensions of Qp when they exist

6.1 Classi�cation of the quadratic extensions of Qp

If K is a �eld with characteristic 6= 2, then any extension L/K of degree 2 is Galois and of the form
L = K(α) with α2 ∈ K× \ (K×)

2
. (1, α) is a basis of L as a K vector space, so that every element in L
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can be written uniquely x+yα with x, y ∈ K. Using this, it is easy to prove that two quadratic extensions
of K, say K(α) and K(β), are the same if and only if α/β ∈ K.

To reformulate this, quadratic extensions of K look like K
(√

∆
)
with ∆ in K× \ (K×)

2
and :

K
(√

∆
)

= K
(√

∆′
)
⇐⇒ ∆

∆′
∈
(
K×
)2 ⇐⇒ ∆ = ∆′ in K×/(K×)

2

Therefore, to describe all the quadratic extensions of K, it su�ces to �nd a set of representatives of
K×/(K×)

2. If {1,∆1, . . . ,∆n} is a set of representatives of K×/(K×)
2, then the quadratic extensions

of K (inside a �xed algebraic closure) are K(∆1), . . . ,K(∆n). So we just need to study Q×p /
(
Q×p
)2 to

answer the question of the classi�cation of the quadratic extensions of Qp.

First, let us assume that p > 3. We know that any element in Q×p can be written uniquely as a power
of p times a p-adic unit. This gives an isomorphism :

Q×p ' (Z,+)× (Z×p , .)

Therefore,

Q×p /
(
Q×p
)2 ' (Z/2Z)×

(
Z×p /

(
Z×p
)2)

Besides, by proposition 2.16 :
Z×p ' Z/(p− 1)Z× Zp

Since p does not divide 2, 2 is a unit in Zp, so 2Zp = Zp. This implies :

Z×p /
(
Z×p
)2 ' Z/2Z

Conclusion :
Q×p /

(
Q×p
)2 ' Z/2Z× Z/2Z

So this group has 3 non trivial elements, i.e. Qp has exactly 3 quadratic extensions in a �xed algebraic
closure. Let us be more explicit :

Let ε ∈ Z×p \
(
Z×p
)2
. Such an ε exists by proposition 2.14. Then it is not hard to see that {1, p, ε, pε} is a

set of representatives of Q×p /
(
Q×p
)2, just by checking that the quotients 1/p, ε/p, pε/ε, . . . are not squares

in Q×p .

Thus, if p 6= 2 is a prime, then Qp has exactly 3 quadratic extensions, namely :

Qp

Qp(
√
ε) Qp(

√
p) Qp(

√
pε)

Qp

Figure 2: The three quadratic extensions of Qp (p 6= 2)
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Now, let us consider the case p = 2. To understand the quadratic extensions of Q2, we need to under-
stand the group Q×2 /

(
Q×2
)2.

First, Q×2 ' Z× Z×2 ' Z× {±1} × (1 + 4Z2) (see proposition 2.17), so :

Q×2 /
(
Q×2
)2 ' Z/2Z× Z/2Z× (1 + 4Z2)/(1 + 4Z2)

2

Claim : (1 + 4Z2)
2 = 1 + 8Z2.

Let us prove this statement using Newton polygons (appendix 7.1). It is clear that (1 + 4Z2)
2 ⊂ 1 + 8Z2.

To prove the converse, suppose b is an element of 2Z2. We want to prove that the polynomial

f(X) := (1 + 22X)2 − (1 + 22b) ∈ Q2[X]

has a root in Z2. f(X) = −22b+ 23X + 24X2, so the Newton polygon of f(X) looks like this :

or

Figure 3: possible shapes of the Newton polygon of f(X), depending on the value of ν(b), where ν is the
usual valuation on Q2

In any case, the �rst �nite side corresponds to a single root, so this root must be in Q2, and since the
slope is 6 0, the root must have a valuation > 0, which means that the root lies in Z2. Therefore, we get
the conclusion we wanted : f(X) has a root in Z2, hence 1 + 8Z2 ⊂ (1 + 4Z2)

2.

This implies :

(1 + 4Z2)/(1 + 4Z2)
2 = (1 + 4Z2)/(1 + 8Z2) = U

(2)
Q2
/U

(3)
Q2

with the notations introduced in section 3.4 equation (8). We have seen in proposition 3.17 that this last
group is isomorphic to the residue �eld of Q2 for the additive law, namely Z/2Z. Therefore,

Q×2 /
(
Q×2
)2 ' (Z/2Z)3 (F2-vector space of dimension 3)

Since this group contains 7 non trivial elements, Q2 has exactly 7 quadratic extensions. To �nd
elements that are not squares in Q2, we try to �nd elements in Z×2 that are not congruent to 1 modulo 8.
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Odd integers are in Z×2 , so 3,−3,−1 are good candidates. Now we proceed as above by multiplying these
numbers by 2 we get 6,−6,−2 which represent other classes in Q×2 /

(
Q×2
)2, and �nally 2 is not a square

in Q2. It is not hard to prove that :

{1, 2,−2, 3,−3,−1, 6,−6}

is a set of representatives of Q×2 /
(
Q×2
)2. This gives us the following classi�cation : Inside an algebraic

closure Q2, there are 7 extensions of degre 2 of Q2, namely :

Q2(
√

2), Q2(
√
−2), Q2(

√
3), Q2(

√
−3), Q2(

√
−1), Q2(

√
6) and Q2(

√
−6)

6.2 The line n = 3 for p 6= 3

We have already proved (see paragraph 5.3.1) that S3 can occur as a Galois group of an extension of Qp

if and only if p ≡ 2 mod 3. Let us show that in this case, such an extension is unique, and is given by the
splitting �eld of the polynomial X3 − p over Qp.

Suppose that p ≡ 2 mod 3 and L/Qp is a �nite Galois extension with Galois group G := Gal(L/Qp)
isomorphic to S3. Let H be a subgroup of G of order 2. As usual, we denote by LH the corresponding
sub�eld of L under the Galois correspondence.

L

LH

Qp

As in paragraph 5.3.1, we have that since [LH : Qp] = 3, the extension LH/Qp is totally rami�ed.
Besides, 3 is prime to p. Therefore, by theorem 3.10, there exists ω ∈ LH such that LH = Qp(ω) and
ω3 = p.u for some u ∈ Z×p (i.e. ω3 is a uniformizer in Qp).

Now, let us prove that x 7→ x3 is surjective from Z×p to Z×p .

- First, suppose p > 5. Then by proposition 2.16,

Z×p ' Z/(p− 1)Z × Zp

Since p ≡ 2 mod 3, (p− 1) is prime to 3, so 3 is a unit in Z/(p− 1)Z. Therefore, multiplication by

3 is a bijection of Z/(p− 1)Z. Moreover, p does not divide 3, so 3 ∈ Z×p . Thus, multiplication by 3

is also a bijection of Zp. This proves that x 7→ x3 is surjective from Z×p to Z×p .

- Else, if p = 2, proposition 2.17 tells us :

Z×2 ' {±1} × (1 + 4Z2)

Since x 7→ x3 induces id on {±1}, we just need to prove that x 7→ x3 is surjective from (1 + 4Z2) to
(1 + 4Z2).
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Let 1 + 22a ∈ 1 + 4Z2.
We want to show that the polynomial P =

(
1 + 22X

)3 − (1 + 22a
)
∈ Q2[X] has a root in Z2. One

has :
P = −22a+ 3× 22X + 3× 24X2 + 26X3

Therefore, the Newton polygon of P has the following shape :

Figure 4: Newton polygon of P =
(
1 + 22X

)3 − (1 + 22a
)
∈ Q2[X]

The �rst �nite side starting from the left tells us that P has a single root with valuation the opposite
of the slope of this side. This root necessarily lies in Q2. Moreover, the �rst side has a non-positive
slope, so the root has a non-negative valuation, i.e. it is in Z2 (even if ν(a) = 0). Thus, P has a
root in Z2, and this concludes the proof that x 7→ x3 is surjective from Z×2 to Z×2 .

We proved that LH = Qp(ω) with ω such that ω3 = p.u for some u ∈ Z×p . Since raising to the third
power is surjective in Z×p , there exists v ∈ Z×p such that v3 = u. Therefore,

ω

v
∈ LH and

(ω
v

)3
= p

This implies that LH contains a root of X3 − p, hence L contains a root of X3 − p. Since this polynomial
is irreducible (Eisenstein) and L/Qp is Galois (hence normal), X3 − p splits in L i.e. L contains all the
roots of X3 − p. If we denote by F the splitting �eld of X3 − p over Qp, one has : F ⊂ L. We want to
prove that this inclusion is an equality.

LH = Qp(ω) = Qp

(
ω
v

)
because v ∈ Z×p . Since w/v is a root of X3 − p, LH ⊂ F . However, LH/Qp is

not Galois, because S3 has no normal subgroup of order 2, whereas F/Qp is Galois. Therefore, L
H  F ,

so that :
[LH : Qp]︸ ︷︷ ︸

=3

< [F : Qp]︸ ︷︷ ︸
divides 6

This implies that [F : Qp] = 6 = [L : Qp], so that the inclusion F ⊂ L is in fact an equality : F = L.
Conclusion : L is the splitting �eld of X3 − p over Qp.
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To sum it up, in paragraph 5.3.1, we proved that there exist S3-extensions of Qp if and only if
p ≡ 2 mod 3 or p = 3. The discussion above shows that in the case where p 6= 3, if a S3-extension of Qp

exists, then it is unique, and it is the splitting �eld of X3 − p over Qp.

6.3 Partial conclusion

In the following table, we summarize what we proved so far. At the intersection of the row n and the column
p, one reads the number of Sn-extensions of Qp, that is : the number of �nite Galois extensions K/Qp

inside a �xed algebraic closure Qp such that Gal(K/Qp) ' Sn. The cells coloured in grey correspond to
tuples (n, p) such that there is no such extension.

HHH
HHHn
p

2 3 5 7 11 . . . . . .

2 7 3 3 3 3 3

3 1 ∃ 1 0 1 1p≡2 mod 3

4 ∃
5
...
...

The two cells coloured in red correspond to tuples (n, p) for which we know there exist extensions,
but we have not achieved their classi�cation yet. Indeed, there exists a S3-extension of Q3 by paragraph
5.3.2, and there exists a S4-extension of Q2 by subsection 5.4.

An attempt to classify S3-extensions of Q3 is presented in the appendix, section 7.6.
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7 Appendix

7.1 Newton polygons

In this section, we de�ne the Newton polygon of a polynomial, which will give us a geometric way to tell
the valuations of the roots of a polynomial from the valuations of its coe�cients ! But �rst, we start with
a classic lemma which will be useful in the proof of the main theorem of this section.

Lemma 7.1. Let K be a �eld with characteristic p > 0. Let f ∈ K[X] be irreducible. If f is not separable,

then there exists g ∈ K[X] irreducible and separable, and k ∈ N∗, such that

f(X) = g(Xpk)

Proof. Since f is irreducible and inseparable, one must have f ′ = 0 (thanks to proposition 4.6). Thus, f
must be of the form :

f = a0 + a1X
p + a2X

2p + · · ·+ anX
np

Setting g1 = a0 + · · · + anX
n, one has f(X) = g1(X

p). Now, g1 is irreducible because f is, and if it is
separable, we are done. If g1 is not separable, we can apply the same proof to g1 and �nd g2 irreducible
such that g1(X) = g2(X

p). Then f(X) = g2(X
p2). Continuing in this fashion, we eventually �nd gk

separable, irreducible such that f(X) = gk(X
pk).

Let K be a �eld, and ν a discrete (normalized) valuation on K. Let f ∈ K[X], say :

f = anX
n + an−1X

n−1 + · · ·+ a1X + a0

Then for any i ∈ {1, . . . , n}, de�ne Ai ∈ Z2 to be the point with coordinates (i, ν(ai)). If ai = 0, then
ν(ai) = +∞, and in this case we say that Ai is the point at in�nity on the positive vertical axis : (0,+∞).

De�nition 7.2. The Newton polygon of f , is the convex hull of the set of points

{Ai, i ∈ {1, . . . , n}}

Example : Let us take K = Q5, with the 5-adic valuation, simply denoted by ν. Consider the polynomial
f = 5X10 + 52X6 + 5−1X5 +X4 + 52X + 57 ∈ Q5[X]. Then A10 = (10, 1), A6 = (6, 2), A5 = (5,−1), A4 =
(4, 0), A1 = (1, 2), A0 = (0, 7) and the other Ai's are all equal to the point (0,+∞). Therefore, we get the
following contruction for f :
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Figure 5: Newton polygon of f = 5X10 + 52X6 + 5−1X5 +X4 + 52X + 57 ∈ Q5[X]

Now, if the �eld (K, ν) is complete, we know that ν extends to any �nite extension of K. In particular,
if we denote by L the splitting �eld of f over K (in some �xed algebraic closure), then L is a �nite
extension, and we can wonder if there is a link between the valuations of the coe�cients of f and the
valuations of its roots in (L, νL). Newton polygons provide a very visual way to answer this question. I
have learned the following theorem from [Dw].

Theorem 7.3. Let K be a complete �eld with respect to a discrete valuation ν, and let f ∈ K[X]. Then to

each �nite side of the Newton polygon of f there corresponds at least one root of f. The number (counting

multiplicities) of roots corresponding to a given side is equal to the length of the projection of that side on

the x-axis, and all roots α corresponding to the same side have valuation νL(α) = −λ where λ is the slope

of the side. If

fλ =
∏

f(α)=0, νL(α)=−λ

(X − α)

Then fλ ∈ K[X].

Proof. First, let us prove the last statement. Assume f has degree n, and write α1, . . . , αn its roots counted
with multiplicity. Let us denote by L the splitting �eld of f over K, namely L = K(α1, . . . , αn).
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First, we assume that L/K is Galois. Note that since L is the splitting �eld of f , L/K is normal, so if
K is a perfect �eld, L/K is Galois. This holds for instance if K has characteristic zero. Then for any
σ ∈ Gal(L/K), we have already seen that σ preserves valuations (just because νL ◦ σ is also a valuation
on L extending ν, so by the uniqueness in theorem 2.21, it must be equal to νL). Thus, if we denote by
Rλ the set of roots of f with valuation −λ, one has : σ(Rλ) ⊂ Rλ, and since σ is injective, and Rλ is a
�nite set, σ(Rλ) = Rλ. But Rλ is exactly the set of roots of fλ, so the coe�cients of fλ are �xed by the
action of Gal(L/K) (because they are symmetric functions of the roots, and the set Rλ is globally �xed
by σ, for any σ in Gal(L/K)). Therefore, they must lie in K, hence fλ ∈ K[X].

Now, if K has characteristic p > 0, L/K may not be Galois. However, if f is irreducible, then all the roots
of f have same valuation, so that fλ = f ∈ K[X] for a unique λ. Why do they all have same valuation ? If
f is separable, then L/K is Galois, and the Galois group acts transitively on the roots of f , and preserves
valuations, so the roots must have the same valuation. Otherwise, f is not separable, and so it must be
of the form f = g(Xpk) with g ∈ K[X] an irreducible separable polynomial (thanks to lemma 7.1). Thus,

if we denote by Z(g) and Z(f) their respective sets of roots, then Z(g) = Z(f)p
k
, hence :

νL(Z(f)) =
1

pk
νL(Z(g))

Since g is separable, νL(Z(g)) consists of only one element, so νL(Z(f)) is also reduced to one element.

Finally, if f is reducible, we proceed by induction on n. If f is reducible of degree 2, then its roots are
in K, so the statement is clearly satis�ed. Now let n > 3, and assume that the statement is true for all
k < n. Let h ∈ K[X] be the minimal polynomial of α1 over K. Then h|f . Let g ∈ K[X] such that f = gh,
and set :

gλ =
∏

g(α)=0, νL(α)=−λ

(X − λ) = −λ

Then by the induction hypothesis, gλ lies in K[X] for every λ (by convention, a product over the empty
set is equal to 1). Let λ1 := −νL(α1). By the above case, since h is irreducible, all the roots of h have
valuation −λ1. Therefore, {

∀λ 6= λ1, fλ(X) = gλ(X)

fλ1(X) = h(X)gλ1(X)

which shows that in any case fλ ∈ K[X].

Now, let us prove the �rst assertion of the theorem. It is not restrictive to assume that a0 = 1, for
multiplying f by X or a non zero constant has the e�ect of a translation on the Newton polygon of f .
Assuming this, we write :

f =

n∏
i=1

(1 + βiX) = 1 + a1X + · · ·+ anX
n (12)

and suppose that νL(β1) 6 · · · 6 νL(βn) where νL is the unique extension of ν to L : the splitting �eld
of f over K. Suppose that {νL(β1), . . . , νL(βn)} = {ν1, . . . , νl} with ν1 < · · · < νl. We denote by ki the

49



number of βi's with valuation νi so that :

νL(β1) = · · · = νL(βk1) = ν1

νL(βk1+1) = · · · = νL(βk1+k2) = ν2
...

νL(βk1+···+kl−1+1) = · · · = νL(βk1+···+kl︸ ︷︷ ︸
=βn

) = νl

We want to prove that the Newton polygon of f has exactly l �nite (i.e. non vertical) sides, say
P0P1, . . . , Pl−1Pl, such that the projection of Pi−1Pi on the x-axis has length ki and that the side Pi−1Pi
has slope νi. This is equivalent to proving that :

∀1 6 p 6 l, νL(ak1+...kp) =

p∑
i=1

νiki and : (13)

∀1 6 p 6 l, ∀
p−1∑
i=1

ki < s <

p∑
i=1

ki, νL(as) >
p−1∑
i=1

νiki +

(
s−

p−1∑
i=1

ki

)
νp (14)

with the usual convention that a sum from 1 to 0 is equal to zero. Indeed, the �rst condition just tells
that :

P0 = (0, 0) because we assumed a0 = 0
P1 = (k1, ν1k1),

P2 = (k1 + k2, ν1k1 + ν2k2)
...

Pl = (k1 + · · ·+ kl︸ ︷︷ ︸
=n

, ν1k1 + · · ·+ νlkl)

which are the necessary positions of the points Pi for the statement to hold, and the second assertion says
that if s is between k1 + · · ·+ kp−1 and k1 + · · ·+ kp, then the point (s, ν(as)) lies above the side Pp−1Pp.
The formula may seem obscure, but it is just writing the equation of the line passing through Pp−1 and
Pp and expressing the fact of being above this line.
Now, from (12) it is easy to see that :

as =
∑

16i1<i2<···<is6n
βi1 . . . βis

Hence :
ν(as) > min

16i1<i2<···<is6n
{νL(βi1) + · · ·+ νL(βis)} (15)

Recalling the ordering of the valuations, we �nd that this minimum is νL(β1) + · · ·+ νL(βs) Thus,

ν(as) > νL(β1) + · · ·+ νL(βs)

which is the same as (14), just by de�nition of ν1, . . . , νl and of the numbers ki. Moreover, if s = k1+· · ·+kp
for some 1 6 p 6 l, then νL(βs+1) > νL(βs) and so (15) must be an equality, hence :

ν(as) = νL(β1) + · · ·+ νL(βs) = k1ν1 + · · ·+ kpνp

which is (13).
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Corollary 7.4. Let K be as above and f ∈ K[X] monic of degree n. If the Newton polygon of f consists

of only one �nite side of slope −m/n, with m relatively prime to n, then f is irreducible in K[X].

Proof. Under these assumptions, the theorem above tells us that all the roots of f have valuation m/n
(for the valuation νL extending ν to L : the splitting �eld of f over K). Let α be one of the roots. Let us
prove that the rami�cation index of K(α)/K is divisible by n. νL is a valuation on K(α) extending ν, so
by the uniqueness of such a valuation, it is νK(α).
Let us denote by e the rami�cation index of the extension K(α)/K, so that :

νL(K(α)) =
1

e
Z

(We are still implicitly assuming that ν is normalized, for it not restrictive at all)
Then νL(α) ∈ νL(K(α)), hence :

m

n
∈ 1

e
Z

Therefore, n | em, and since m and n are relatively prime, this implies that n divides e. But we also
know that e | [K(α) : K] from proposition 3.1. Hence n | [K(α) : K]. But α is a root of f which is of
degree n, so the minimal polynomial of α over K has degree smaller than n, and its degree is [K(α) : K].
Therefore, n | [K(α) : K] 6 n, so n = [K(α) : K] and f is the minimal polynomial of α. In particular, f
is irreducible.

7.2 Projective limits

Let G = (I, A, s, t) be an oriented graph : I is a set (the set of vertices), A is another set (the set of edges),
s and t are two maps :

source s : A→ I and target t : A→ I

An inverse system of groups (resp. rings) indexed by G is the datum :

(1) For any i ∈ I, a group (resp. ring) Ai

(2) For any a ∈ A, a group (resp.ring) homomorphism φa : As(a) → At(a)

We de�ne the projective limit lim←−
i∈I

Ai as :

lim←−
i∈I

Ai := {(ai)i∈I | ∀i ∈ I, ai ∈ Ai and ∀a ∈ A, φa
(
as(a)

)
= at(a)}

- lim←−
i∈I

Ai is a subgroup (resp. subring) of
∏
i∈I Ai.

- It satis�es the following universal property :

For any group (resp. ring) B, the datum of a homomorphism f : B → lim←−
i∈I

Ai is equivalent to the

datum of homomorphisms fi : B → Ai such that for all a ∈ A, the following diagram commutes :
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B As(a)

At(a)

ft(a)

fs(a)

φa

Examples :

- Let p ∈ N be a prime number. We de�ne the ring of p-adic integers (denoted by Zp) as the projective
limit of the rings Z/pnZ as follows :

Formally, we take G = (I, A, s, t) in the construction above with :

I = N∗, A = N∗, s : n 7→ n+ 1 and t : n 7→ n

For all i ∈ I, we take the ring Ai to be Z/piZ. For all a ∈ A, we have a natural ring homomorphism
:

φa : Z/pa+1Z → Z/paZ
k mod pa+1 7→ k mod pa

This gives us an inverse system of rings in the sense of the de�nition above, so we can de�ne the
ring :

Zp := lim←−
n>1

Z/pnZ

- Likewise, we would like to de�ne a new ring as the projective limit of all the rings Z/nZ, for all
n > 2. The di�erence with the preceding example is that this time, we cannot de�ne a natural ring
homomorphism from Z/nZ to Z/mZ for all m 6 n. This is only the case when nZ ⊂ mZ, i.e. when
m | n. This is why we take G = (I, A, s, t) with :

I = N>1, A = {(n,m) ∈ N2
>1 | m divides n}, s : (n,m) 7→ n, t : (n,m) 7→ m

where N>1 denotes the set of natural integers > 1. Then, for all i ∈ I, we set Ai := Z/iZ. For all
a = (n,m) ∈ A, we have a natural ring homomorphism :

φa : As(a) → At(a)
k mod n 7→ k mod m

Therefore, we have de�ned an inverse system of rings indexed by G = (I, A, s, t), and we can de�ne
the ring :

Ẑ := lim←−
n>2

Z/nZ

As a group, Ẑ plays an important role in number theory because if Fq denotes an algebraic closure

of a �nite �eld of order q, then Gal(Fq/Fq) ' Ẑ

Remark : It is a nice exercice to prove there is a ring isomorphism :

Ẑ '
∏

p prime

Zp

It is a good way to get used to the notion of projective limit, its universal property, and it also involves
the Chinese remainder theorem, which is always good to remember.
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7.3 Proof of proposition 4.2

(i) Let α be a root of f . Since f is irreducible, f is the minimal polynomial of α over K. Hence :
[K(α) : K] = deg(f) = n. Besides, K ⊂ K(α) ⊂ L, because L is the splitting �eld of f over K.
Therefore, [K(α) : K] divides [L : K] = #Gal(L/K) = #G. Thus,

n | #G

(ii) Let us explain more precisely what we mean when we say that G is a transitive subgroup of Sn.
As we saw, there is an embedding ϕ : G ↪→ Sn. Therefore, ϕ(G) is a subgroup of Sn, so it acts
on {1, . . . , n}, and we say that this subgroup is transitive when there is only one orbit in {1, . . . , n}
under the action of ϕ(G). This means that for any two roots of f , say αi and αj , there exists σ ∈ G
such that σ(αi) = αj .

Now, let us prove that f is irreducible if and only if G is a transitive subgroup of Sn. We denote by
C1, . . . , Cm the orbits of {α1, . . . , αn} under the action of G. Then :

f =

n∏
i=1

(X − αi) =

m∏
k=1

∏
α∈Ck

(X − α)︸ ︷︷ ︸
:=fk

Let k ∈ {1, . . . ,m}. Let us prove that fk is in K[X], and that it is irreducible.

First, if one takes σ ∈ G, then σ induces a permutation of Ck. Indeed, if α ∈ Ck, then :

Ck = {τ(α), τ ∈ G} (by de�nition)

so that σ(α) ∈ Ck. Therefore, σ(Ck) ⊂ Ck, and since σ is injective and Ck is �nite, we have :
σ(Ck) = Ck. Therefore, Ck is globally �xed by the action of σ, for all σ ∈ G = Gal(L/K). Since the
coe�cients of fk are symmetric polynomials in the elements of Ck, they are �xed by Gal(L/K), so
they are in K. Thus, fk ∈ K[X].

Now, let g ∈ K[X] be an irreducible monic factor of fk in K[X]. Let α be a root of g (in particular,
α ∈ Ck) and let β be any root of fk. Then since G acts transitively on Ck, there exists σ ∈ G such
that σ(α) = β. Then :

g(β) = g(σ(α)) = σ(g(α)) = σ(0) = 0

Thus, any root of fk is a root of g, so fk | g. Therefore, g = fk and fk is irreducible in K[X].

So the decomposition :

f =

m∏
k=1

fk

is the decomposition of f into irreducible factors in K[X]. Hence :

f is irreducible ⇐⇒ m = 1 ⇐⇒ G is a transitive subgroup of Sn
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7.4 Local class �eld theory

This section contains a corollary of the main theorem of local class �eld theory, that will be useful in our
attempt to classify S3-extensions of Q3 in section 7.6. I attended the Algebraic Number Theory 2 class
by Mr. Heinloth at the University in Essen, where we studied the proof in detail. However, including
the proof would require another long report, and I acknowledge that I need more time to understand it
completely. It involves a lot of interesting tools, such as Lubin-Tate formal group laws, group homology,
group cohomology, and Tate's cohomology to put these two together for a �nite group. During this class,
we mostly followed the notes from [Mi] on Class �eld theory. However, there are many references, for
instance [Yo] : an article proving local class �eld theory using Lubin-Tate formal groups laws, or [Ne],
Chapter V.

Let K be a �eld. We say that a �nite extension L/K is abelian if it is Galois with an abelian Galois
group. Local class �eld theory brings back the study of the abelian extensions of a local �eld to the study
of subgroups of K× :

Theorem 7.5. Let K be a local �eld of characteristic 0. Then, the rule :

L 7→ NL := NmL/K(L×)

gives a 1 to 1 correspondence between �nite abelian extensions of K and subgroups of �nite index in K×.
If L/K is �nite abelian, then there is an isomorphism :

K×/NmL/K(L×) ' Gal(L/K)

In particular, subgroups of index n correspond to extensions of degree n.

This theorem falls within the following beautiful summary of what Class �eld theory is about (although
Chevalley refers to global �elds more than local �elds here) :

"L'objet de la théorie du corps de classes est de montrer comment les extensions abéliennes d'un corps

de nombres algébriques K peuvent être déterminées par des éléments tirés de la connaissance de K lui-

même; ou, si l'on veut présenter les choses en termes dialectiques, comment un corps possède en soi les

éléments de son propre dépassement" Chevalley, 1940

Remark : The assumption "of characteristic zero" in theorem 7.5 is here to avoid a discussion on
topology. Indeed, the correspondence also works when K does not have characteristic 0, but it is between
�nite abelian extensions and open subgroups of �nite index in K×, with respect to the norm topology on
K×. In characteristic zero, subgroups of �nite index in K× are automatically open, so the statement is
simpli�ed. Since we are only concerned with Qp and its extensions, we can reduce the statement to local
�elds of characteristic zero.

7.5 Structure of K× when K is a �nite extension of Qp

Let K/Qp be a �nite extension of degree n. We �x a uniformizer π in K. Since every element x ∈ K×
can be written uniquely x = u.πm, with m ∈ Z and u ∈ O×K , we have an isomorphism :

K× ' Z×O×K

Moreover, we have an exact sequence :

1 −→ 1 + (π) −→ O×K −→ F×q −→ 1
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where q = pf , with f denoting the inertia degree of K/Qp. Using Hensel's lemma, one proves that this
exacts sequence of abelian groups splits, hence :

O×K ' F×q × (1 + pK)

Therefore,
K× ' Z× Z/(q − 1)Z× (1 + pK)

Now, we want to understand the group (1 + pK) = U
(1)
K (this notation has been introduced in section

3.4, equation (8)). This group can be endowed with a Zp-module structure, as it is done in [Ne], Chapter
II, �5, and it happens to be �nitely generated as a Zp-module. Therefore, by the structure theorem for
�nitely generated modules over a principal ideal domain :

U
(1)
K ' Zrp × TorZp

(
U

(1)
K

)
where r is the rank of U

(1)
K as a Zp-module. Besides,

TorZp

(
U

(1)
K

)
= {a ∈ U (1)

K | ∃m ∈ Z, ap
m

= 1} := µp∞(K)

This torsion submodule is isomorphic, as a group, to Z/pmZ, for some m ∈ N. Thus :

K× ' Z× Z/(q − 1)Z× Z/pmZ× Zrp

It remains to determine the rank r of the free part of the Zp-module U
(1)
K = 1 + pK .

Proposition 7.6. We denote by e the rami�cation index of K/Qp. For all m > e
p−1 ,

(1 + pmK)p = 1 + pm+e
K

where (1 + pmK)p denotes {xp, x ∈ U (m)
K }

Proof. Let m > e
p−1 . We denote by νK the unique valuation on K extending the standard valuation on

Qp. Then we normalize this discrete valuation to get a valuation ν on K. This valuation satis�es ν(p) = e
and ν(π) = 1. Let us prove the �rst inclusion :

⊂ : Let a ∈ pmK = (π)m. We write a = πmb, where b ∈ OK . We want to prove :

(1 + a)p ∈ 1 + pm+e
K

We have :

(1 + a)p =

p∑
k=0

(
p

k

)
ak = 1 +

p−1∑
k=1

(
p

k

)
ak + ap

Besides,

∀1 6 k 6 p− 1, ν

((
p

k

)
ak
)

= ν

((
p

k

))
+ k.ν(a) = e+ kν(πmb) = e+ k(m+ ν(b))

so that :

∀1 6 k 6 p− 1, ν

((
p

k

)
ak
)
> m+ e
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This implies that :

ν

(
p−1∑
k=1

(
p

k

)
ak

)
> m+ e

Moreover,
ν(ap) = p.ν(πmb) = p(m+ ν(b)) > mp

and :
m >

e

p− 1
=⇒ m >

e

p− 1
=⇒ mp > m+ e

hence ν(ap) > m+ e. Thus,

ν

(
p−1∑
k=1

(
p

k

)
ak + ap

)
> m+ e i.e. (1 + a)p ∈ U (m+e)

K

⊃ Let a ∈ pm+e
K , say a = bπm+e, with b ∈ OK . Let us show that the polynomial P := (1 +X)p− (1 + a)

has a root in pmK .

We have :

P = Xp +

p−1∑
k=1

(
p

k

)
Xk − a

Since for all 1 6 k 6 p− 1, ν
((
p
k

))
= e, and ν(a) = ν(b) +m+ e, the Newton polygon of P looks like this

:

Figure 6: Newton polygon of P = (1 +X)p − (1 + a) ∈ K[X]
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The equation of the line passing through the two red points is :

y = −(m+ ν(b)).x+m+ e+ ν(b)

so that the green point with coordinates (p, 0) belongs to this line if and only if :

(m+ ν(b)).p = m+ e+ ν(b) i.e. m =
e

p− 1
− ν(b)︸︷︷︸
>0

Thus, the assumption m > e
p−1 ensures that the green point is not on the �rst �nite side. This implies

that the Newton polygon of P has exactly two �nite sides. The �rst side corresponds to a single root,
which necessarily lie in K, and which valuation is m+ ν(b). In particular, the root is in pmK , that is what
we wanted to prove.

In particular, the proof shows that if m > e
p−1 , then for all x ∈ U (m+e)

K , there exists a unique y ∈ U (m)
K

such that yp = x. Indeed, the other side of the Newton polygon of P has slope − e
p−1 , so all the other

roots of P have valuation e
p−1 < m, so they cannot be in pmK .

Special case : Take x = 1 ∈ U (m+e)
K . Then there exists a unique y ∈ U (m)

K such that yp = 1. But y = 1
clearly works, hence :

∀m >
e

p− 1
, U

(m)
K ∩ µp∞(K) = {1}

Therefore, for m su�ciently large, U
(m)
K is torsion free. Thus, there exists s ∈ N such that :

U
(m)
K ' Zsp as Zp-modules

This implies :

U
(m)
K /

(
U

(m)
K

)p ' (Z/pZ)s as groups

Thus,

#
1 + pmK(
1 + pmK

)p = ps (16)

But proposition 7.6 allows us to compute the cardinality of this quotient by a �ltration. Indeed, since

(1 + pmK)p = U
(m+e)
K , we can compute as follows :

#
1 + pmK(
1 + pmK

)p = #
U

(m)
K

U
(m+e)
K

=
e−1∏
i=0

#
U

(m+i)
K

U
(m+i+1)
K

By proposition 3.17, we know that each quotient :

U
(m+i)
K

U
(m+i+1)
K

is isomorphic to (κK ,+), so it has q = pf elements. Therefore,

#
1 + pmK(
1 + pmK

)p =
e−1∏
i=0

#
U

(m+i)
K

U
(m+i+1)
K

=
e−1∏
i=0

pf = pef (17)

Thanks to proposition 3.1, we also have : ef = [K : Qp] = n. Finally, (16) and (17) implie : s = n.
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Conclusion :
If m >

e

p− 1
, then U

(m)
K is a free Zp-module of rank n

Now, the quotient U
(1)
K /U

(m)
K

is �nite, because once again, we can compute its cardinality using a

�ltration. Therefore, U
(m)
K is a submodule of U

(1)
K of �nite index ! Thus, the rank of their free component

must be the same, hence :

U
(1)
K = 1 + pK ' µp∞(K)× Znp

We can summarize what we did in the following theorem :

Theorem 7.7. Let K/Qp be a �nite extension of degree n, with rami�cation index e, inertia degree f ,
and residue �eld of order q = pf . Then :

K× ' Z×O×K ' Z× Z/(q − 1)Z× U
(1)
K ' Z× Z/(q − 1)Z× µp∞(K)× Znp

Besides, µp∞(K) ' Z/paZ for some a ∈ N, hence :

K× ' Z× Z/(q − 1)Z× Z/paZ× Znp

7.6 Attempt to classify S3-extensions of Q3

Suppose L/Q3 is a �nite Galois extension with G := Gal(L/Q3) ' S3. Let H be the subgroup of G
corresponding to A3 under the identi�cation ”G = S3”. Then H / G, so that LH/Q3 is Galois. Let us
denote LH by K. We have :

L

K

Q3

Galois group Z/3Z

Galois group S3

Galois group Z/2Z

Therefore, L/Q3 is formed by a Galois extension of degree 2, hence abelian, followed by a Galois extension
of degree 3, also automatically abelian. Since class �eld theory's aim is to classify abelian extensions, it is
not surprising that it helps us in this problem. Namely, it gives us the following result :

Proposition 7.8. Let K/Qp be a �nite extension of degree n. Then the number of abelian extensions

L/K of degree p is given by :
pd − 1

p− 1

with d = n+ 2 if K contains a pth root of 1, and d = n+ 1 otherwise.

Proof. By theorem 7.5, the abelian extensions L/K with degree p correspond to subgroups of index p in
K×. It is not hard to see that if H is a subgroup of index p in K×, then : (K×)

p ⊂ H ⊂ K×.

Now, subgroups of K× containing the subgroup (K×)
p
correspond one to one to subgroups of the

quotient K×/(K×)
p, and this correspondence preserves the index. Therefore, the number of abelian ex-

tensions of K of degree p is equal to the number of subgroups of index p in K×/(K×)
p.
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By theorem 7.7 :
K× ' Z× Z/(q − 1)Z× Z/paZ× Znp

with a = 0 if K ∩ µp∞(K) = {1} (i.e. if K does not contains p power roots of 1), and a > 0 otherwise.

Thus :

K×/(K×)
p ' Z

pZ
×

Z/(q − 1)Z

p
(
Z/(q − 1)Z

)
︸ ︷︷ ︸

:=A

×
Z/paZ

p
(
Z/paZ

)︸ ︷︷ ︸
:=B

×
Znp
pZnp︸︷︷︸
:=C

And :
A ' {1} because (q − 1) is prime to p

B '

{
Z/pZ if a > 0

{1} else

C '
(
Zp/pZp

)n
'
(
Z/pZ

)n
Therefore,

K×/(K×)
p ' Fdp with d =

{
n+ 1 if K ∩ µp∞(K) = {1}
n+ 2 else

Subgroups of index p in K×/(K×)
p correspond to subspaces of codimension 1 in a Fp vector space of

dimension d. But if we dualize, it su�ces to count the number of 1-dimensional subspaces of Fdp, and there

are (pd− 1)/(p− 1) such subspaces (number of non-zero vectors / number of non-zero scalars). Hence the
conclusion.

Using this, we can make a little progress. Indeed, we know that there are exactly three quadratic
extensions of Q3 (see section 6.1) :

Q3

Q3(
√

2) Q3(
√

3) Q3(
√

6)

Q3

Figure 7: The three quadratic extensions of Q3

Therefore, if L/Q3 is a S3-extension, then the subextension K introduced above is one of these 3
quadratic extensions of Q3. Moreover, K is a �nite extension of Q3, and L/K is an extension of degree
3, so proposition 7.8 applies ! Since :

32+1 − 1

3− 1
= 13 and

33+1 − 1

3− 1
= 40,

There are 13 or 40 possible extensions L/K that are Galois of degree 3, depending on whether or not K
contains the third roots of unity. But as we have already seen, µ3 ⊂ K if and only if X3 − 1 splits in K,
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if and only if disc(X2 +X + 1) ∈ (K×)
2
. This discriminant equals −3, and it is easy to prove that it is a

square in a quadratic extension of Q3 if and only if this extension is Q3(
√

6).

Thus :

13 13 40 number of Galois extensions of degree3

Q3(
√

2) Q3(
√

3) Q3(
√

6)

Q3

This gives us that there are at most 13+13+40 = 66 extensions of Q3 with Galois group S3. However,
this bound is very likely to be too large. Indeed, 66 is the number of distinct towers of extensions of the
form :

L

K

Q3

Galois with Galois group Z/3Z

Galois with Galois group Z/2Z

But such towers do not always give L/Q3 Galois, and even if it is the case, we are not sure that the Galois
group is isomorphic to S3... This is con�rmed by [LMFDB].

We need to �nd a way to translate the fact that L/Q3 is not just any quadratic extension K/Q3 fol-
lowed by any degree 3 Galois extension L/K. We need to express that when we paste this two extensions,
the big extension we obtain, namely L/Q3, is still Galois.

Besides, we need to take into account is that S3 is a semi direct product :

S3 ' Z/3Zoϕ Z/2Z

where ϕ : Z/2Z→ Aut(Z/3Z) maps 0 to id and 1 to −id.

Or as an inner semi-direct product : S3 ' N oH if we denote N := 〈(1 2 3)〉 (= A3) and H := 〈(1 2)〉.

Therefore, if L/Q3 is a S3 extension, and if K is as above, we can expect the following : Since in the
tower Q3 ⊂ K ⊂ L, Gal(L/K) is identi�ed with A3, we expect some group of order 2 to act on Gal(L/K).
The problem is that Gal(K/Q3) does not naturally act on Gal(L/K).

However, let us introduce Kab[3] : the composite of all abelian extensions of degree 3 of K. Recall that if
E/K and F/K are �nite Galois, then EF/K is Galois, and Gal(EF/K) embeds in Gal(E/K)×Gal(F/K).
In particular the compositum of two �nite abelian extension is also �nite abelian. By proposition 7.8, we
know there are only �nitely many such extensions, so Kab[3]/K is �nite abelian as a compositum of �nitely
many �nite abelian extensions.
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It is not hard to show thatKab[3]/Q3 is also Galois. ThusGal(K
ab[3]/K) is a subgroup ofGal(Kab[3]/Q3).

Since K/Q3 is Galois, this subgroup is normal. Therefore, Gal(Kab[3]/Q3) acts on Gal(Kab[3]/K) via
conjugation. But if σ, τ ∈ Gal(Kab[3]/Q3) are such that σ|K = τ|K , then their action is the same. Indeed,
consider :

φ : Gal(Kab[3]/Q3) → Aut
(
Gal(Kab[3]/K)

)
σ 7→ cσ

where cσ denote conjugation by σ, namely :

cσ : Gal(Kab[3]/K) → Gal(Kab[3]/K)
h 7→ σhσ−1

Then, since Gal(Kab[3]/K) is abelian, it is clear that Gal(Kab[3]/K) ⊂ ker(φ). Now, if σ|K = τ|K , then

στ−1 ∈ Gal(Kab[3]/K) ⊂ ker(φ), hence cσ = cτ . This de�nes an action of Gal(K/Q3) on Gal(K
ab[3]/K)

: For any s ∈ Gal(K/Q3), take any σ ∈ Gal(Kab[3]/Q3) such that σ|K = s, and de�ne the action of s on

Gal(Kab[3]/K) by the conjugation by σ.

Likewise, Gal(K/Q3) acts on Gal(L/K) : For any s ∈ Gal(K/Q3), take any lift σ̃ ∈ Gal(L/Q3)
and de�ne the action of s on Gal(L/K) by conjugation by σ̃. It is clear that this action is compatible
with the restriction homomorphism from Gal(Kab[3]/K) to Gal(L/K) : For all s ∈ Gal(K/Q3), for all
σ̃ ∈ Gal(L/Q3) such that σ̃|K = s, for all σ ∈ Gal(Kab[3]/Q3) such that σ|K = s, the following diagram
commutes :

Gal(Kab[3]/K) Gal(L/K)

Gal(Kab[3]/K) Gal(L/K)

|L

cσ cσ̃cσ

|L

We say that the homomorphism :

Gal(Kab[3]/K)
|L−→ Gal(L/K)

is Gal(K/Q3)-equivariant.

Besides, one can prove that Gal(Kab[3]/K) ' K×/(K×)
3 via local class �eld theory, so it is a F3 vector

space of dimension 3 if K is Q3(
√

2) or Q3(
√

3), and of dimension 4 if K = Q3(
√

6). Moreover, Gal(L/K)
is isomorphic to Z/3Z. So, with a lot of hand-waving, counting S3-extensions of Q3 is equivalent to
counting surjective group homomorphisms Fd3 � F3 satisfying some Z/2Z-equivariance property. This is
what I need to understand more clearly to obtain a conclusion.
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