Prépa Agreg ENS Rennes

Autour des sommes et produits d’éléments algébriques

1. Un argument non-constructif

Soit L/K une extension de corps. Si «, 8 sont deux éléments de L algébriques sur K alors « + 3, af etc.
appartiennent & K (a, 3), qui est une extension finie de K par multiplicativité du degré. En effet, on a

et chacun des termes de droite est fini, le premier car comme [ est algébrique sur K, il est algébrique sur K(«),
et le second car « est algébrique sur K. Donc 'extension K («, 5)/K est finie, donc algébrique, donc les éléments
o+ B, af etc. sont algébriques sur K.

Cependant, cet argument nous dit seulement que o« + S admet un polyndéme annulateur & coefficients dans
K, mais ne nous dit pas comment en trouver un.

2. Un exemple ou ’on peut tatonner

Pour des nombres algébriques de petit degré, on peut parfois s’en sortir méme sans méthode systématique,
simplement en calculant les puissances successives de ’élément o + § par exemple, et en cherchant des relations
K-linéaires entre ces puissances.

Par exemple, pour trouver un polynoéme annulateur a coefficients dans Q de v/2 + /3, on peut calculer

(V2+V3)2=5+2V6
(V2 +V3)* = (5 +2V6)% = 49 + 20V6

On voit qu’une combinaison linéaire de la premiére et de la deuxiéme équation permet de se débarrasser du

V6 : en effet
(V2+V3) 1 —10(vV2 + V3)2 = -1

ce qui montre que X* — 10X?2 + 1 est un polynéme annulateur de v/2 + /3 a coefficients dans Q.

3. Calcul pratique de polynémes annulateurs a ’aide du théoréme de
Cayley-Hamilton

Cette méthode est tirée de l'exercice 1 de la feuille de TD de Jean-Francois Dat accessible ici : https:
//webusers.imj-prg.fr/~jean-francois.dat/enseignement/Galois/TD23.pdf

Soit L/K une extension de corps, et o € L un élément algébrique sur K. L’application de L dans Endg (L)
qui & x associe m,, (’application linéaire de L dans L de multiplication par x) est un morphisme de K-algébres,
donc pour tout f € K[X], on a f(m,) = my(,). En particulier, si on prend pour f le polynéme caractéristique
x de mq, on aura x(mq) = 0 d’aprés le théoréme de Cayley-Hamilton, et donc m,,) = 0. Or la multiplication
par z est 'application linéaire nulle si et seulement si x est nul (cela vient aussi du fait qu’on a un morphisme
d’algebres, donc les inversibles de L sont envoyés sur les inversibles de Endg (L)), donc x(a) = 0 et on a bien
trouvé un polynéme annulateur de « a coefficients dans K.

Exemple 3.1. Déterminons un polynéme a coefficients rationnels qui s’annule en « := i 4+ /2. Pour cela, on
se place dans L = Q(i,v/2), que 'on voit comme un Q-espace vectoriel. On s’intéresse & I’application linéaire
me de multiplication par «. Afin de calculer son polynome caractéristique, on a besoin d’écrire la matrice de
cette application linéaire dans une certaine base, et donc de trouver une base de Q(i,v/2) en tant que Q-espace
vectoriel. On sait que (1,v/2) forme une base de Q(v/2)/Q, et donc il nous reste & déterminer une base de
Q(i,v/2)/Q(+v/2) pour conclure & ’aide du théoréme de la base téléscopique. Or cette derniére extension est
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de degré au plus 2 car ¢ admet X2 4+ 1 comme polynome annulateur & coefficients dans Q(v/2). Comme i
n’appartient pas & Q(v/2) (qui est contenu dans R), on en déduit que (1,7) est une base de Q(i,v/2)/Q(V/2).
D’apres le théoréme de la base téléscopique, une base de L sur Q est donc donnée par

B=(1,v2,i,iV2)

On calcule facilement

02 -1 0
1 0 0 -1
Matg(ma) = 1 0 0 2
01 1 0

puis son polynome caractéristique X4 — 2X?2 + 9, qui nous fournit un polynéme annulateur de i + v/2.

4. Calcul pratique de polynémes annulateurs & 1’aide de résultants

La référence principale pour cette partie est Anneauz, corps, résultants de Félix Ulmer. J’ai également
emprunté un exemple au mémoire d’agrégation d’Antonin Riffaut https://perso.eleves.ens-rennes.fr/
“ariffaut/Agregation/memoire_agregation.pdf

Rappelons quelques faits sur les résultants qui sont utiles pour le calcul de polynomes annulateurs. Etant

donnés deux polyndmes
n m
f= ZaiYi et g¢g:= Z b;Y?
i=1 i=1

a coefficients dans un anneau commutatif A, de degrés respectifs n et m, la matrice de Sylvester de f et g est
une matrice dans M,, 1, (A) (ses coefficients sont des a;, des b;, ou des zéros). Son déterminant est ce qu’on
appelle le résultant de f et de g, noté Resy (f,g) (c’est donc un élément de A en tant que déterminant d’une
matrice & coefficients dans A). On précise la variable Y car en pratique il faut imaginer que A sera de la forme
k[X1,...,Xn]. Le résultat essentiel pour nous sera le fait suivant, qui dit que Resy (f, g) (qui est, on le rappelle,
un élément de A) appartient a 1'idéal engendré par f et g dans A[Y] :

Lemme 4.1. Avec les notations précédentes, il existe u,v € A[Y] tels que deg(u) < m et deg(v) < n et tels que

Resy (f,9) = uf +vg.

Ce lemme se démontre en faisant des opérations sur les lignes (ou les colonnes) de la matrice de Sylvester
puis en développant le déterminant par rapport a la derniére ligne (ou la derniére colonne). Il faut souligner
que le membre de gauche est une « constante » (c’est-a-dire un élément de A) alors que le membre de droite
est formé de polynomes (c’est-a-dire d’éléments de A[Y]). On peut penser a I’égalité de ce lemme comme & une
sorte de relation de Bézout entre f et g, sauf qu’elle est vraie dans le cadre général des anneaux commutatifs.
Si A est supposé factoriel, alors en effet il y a un lien plus fort entre résultant et pged (le résultant est nul si et
seulement si les polynomes ont un facteur commun), mais nous n’aurons pas besoin de ce fait pour le probléme
qui nous intéresse ici.

Soit L/K une extension de corps, et «, 3 € L, algébriques sur K. On note f(Y) et g(Y) leurs polynémes
minimaux sur K. Ce sont des éléments de K[Y]. On introduit une seconde variable X, et on voit f(X —Y) et
9(Y) comme deux éléments de A[Y] avec A = K[X]. Alors

h:= ReSy(f(X - Y),g(Y))

est un élément de A = K[X] par définition du résultant, et nous allons expliquer pourquoi c’est un polynéme
annulateur de o + 8. D’aprés le Lemme 4.1, il existe deux polynomes u,v € A[Y] = K[X,Y] tels que

B(X) = u(X, Y)F(X = V) 4+ 0(X,Y)g(Y).
En évaluant en « + 3 la variable X on obtient
h(a+B) =u(a+8,Y)f(a+B-Y)+v(a+5,Y)g(Y)

Le membre de gauche est un élément de L, c’est I’évaluation en o + 8 du polynome h € K[X]. Par contre, le
membre de droite est un élément de L[Y], que 'on peut encore évaluer. Or si on évalue Y en 3, on voit que
fla+B8-p8) = f(a) =0et g(8) = 0 par définition de f et g comme polyndémes minimaux (annulateurs suffirait)
de « et 8. Donc h(a + ) = 0, et c’est ce qu’on voulait : on a bien trouvé un polynéme annulateur de o + g a
coefficients dans K.
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Remarque 4.2. Attention, il pourrait arriver que h soit le polynéme nul... C’est notamment le cas lorsque f
et g ne sont pas premiers entre eux, mais cette situation ne devrait pas se présenter sur des exemples simples.

Exemple 4.3. Pour déterminer un polynome annulateur sur Q pour le nombre algébrique v/2+ /3, on considére
f(Y) := Y2 — 2 (le polynéme minimal de v/2 sur Q) et g(Y) := Y3 — 3 (celui de v/3). Alors f(X —Y) =
(X -Y)?-2=Y?2-2XY + X? —2. Donc (bon c’est 1a qu’on doit se souvenir de la définition de la matrice de
Sylvester et qu’on ne peut pas se contenter de savoir qu’elle dépend des coefficients des polynomes)

X229 0 0 -3 0

92X X2_-29 0 0 -3

h(X) =Resy (f(X -Y),g9(Y)) =| 1 —2X X2-2 0 0
0 1 92X 1 0

0 0 1 0 1

Apreés calculs (cela se fait & la main, mais j’avoue avoir utilisé sage...) on obtient
h(X)=X%-6X*-6X3+12X% -36X +1
comme polynoéme annulateur de /2 + /3.

Remarque 4.4. Si on voulait un polynéme annulateur de a8 plutét que de a4 3, on aurait envie de remplacer
le f(X —Y) de la définition de h par f(X/Y). Le probléme est que ce serait une fraction rationnelle, et non un
polynéme. On compense cela en multipliant par Y. Un polynéme annulateur de oS est alors

Resy (Y" f(X/Y),9(Y)).

La preuve est la méme que dans le cas additif.

5. Pour aller plus loin

Dans la section précédente, on a montré que le polynéme
h(X) = Resy (f(X = Y),g(Y))

était un polynome annulateur de o + 5. En fait, on peut méme montrer que ses racines sont exactement les
a; + B;, ol les o; parcourent les racines de f et les 3; parcourent les racines de g.

Le résultat principal qui va nous servir & comprendre cela est le fait que le résultant, qui n’est défini qu’en
termes des coefficients de f et g, « joue » en fait avec leurs racines dans un corps qui les contient.

Théoréme 5.1. Soit K un corps et L une extension de K dans laquelle f et g sont scindés :

n m

f=a [V —ci) et g=bn [[(Y =5;) dansL[Y].

=1 j=1
Alors o . .
Resy (f,9) = apbiy, [T [ (ei = 8) = a [[ 9(ei) = (=0)™ v, T] £(8))-
i=1 j=1

i=1j=1
On trouve ce résultat dans le livre de théorie de Galois de Gozard ou dans le livre Anneauz, corps, résultants
de Félix Ulmer.

Puisque 'on va s’intéresser & des polyndmes annulateurs, il ne faudra pas trop se préoccuper des coefficients
dominants et des signes qui rendent les formules ci-dessus quelque peu effrayantes. Il ne faut pas trop non plus
s'inquiéter du fait que le résultat est valable seulement sur un corps, alors qu’on utilise plutot des résultants de
polynomes & coefficients dans un anneau A de la forme k[X1,..., Xx]. En pratique, comme un tel anneau est
intégre, on peut se placer dans son corps des fractions K, utiliser le théoréme ci-dessus pour comprendre ce qu’il
se passe quand on fait notre calcul de résultants en termes de racines de polynémes dans K, puis se rappeler
que les calculs ont en fait eu lieu dans A. En tout cas tout ce qu’il faut retenir c’est que calculer le résultant de
deuz polyndmes, c’est faire le produit des évaluations de l'un en en les racines de l'autre.

Reprenons les notations précédentes : L/K une extension, «, 8 € L algébriques sur K, de polyndmes mini-
maux respectifs f et g. Alors on avait noté

h = Resy (f(X — Y),g(Y)).



C’est un élément de K[X] qui s’annule en o + 3, mais nous allons montrer un résultat plus précis.

Soit M un corps contenant les racines de f et de g. Dans M[X], on peut écrire :

n

fO) =TV =) et g(v) =

=1 J

—

(Y —55).

1

Comme « et § sont racines respectives de f et g, on peut supposer que a = a; et que § = 81. Notons que
comme f(X —Y) =[], ((X —a;) —Y), ce polynome en Y est scindé sur le corps M (X) et ses racines sont les
X — «;. Ainsi, en appliquant le théoréme ci-dessus on obtient que h est (au signe prés) le produit des évaluations
de g(Y) en les racines de f(X —Y), donc

h(x) = £ (X = (i + 8))

On a donc montré que les racines de h étaient en fait tous les éléments de la forme «; + 55, ot les «; sont
ce qu’on appelle les conjugués de o sur K (c’est-a-dire les racines de son polynome minimal) et les 3; sont les
conjugués de g sur K.

Exemple 5.2. Ce dernier résultat donne également une méthode pour construire des polyndmes annulateurs
lorsqu’on sait déterminer tous les conjugués des éléments algébriques considérés. Dans ’exemple de v/2 + /3,
on sait que les conjugués de v/2 sont v/2 et —/2, et que les conjugués de v/3 sont v/3 et —/3, donc le polynome

(X = (V2+V3))(X = (V2= V3))(X = (V2 +V3)(X — (V2 - V3))

sera, comme par magie, un polynéme & coefficients rationnels. Cela reste trés proche d’une des grandes idées
de la théorie de Galois, qui dit que les éléments du corps de base sont les éléments invariants par le groupe
d’automorphismes. Ici, on ajoute au polynéme de degré 1

(X — (V2+V3))

tous les facteurs obtenus en faisant agir sur v/2 (resp. v/3) les automorphismes de Q(v/2) (resp. Q(v/3)).

6. Calcul de polynémes annulateurs a I’aide du produit tensoriel d’ap-
plications linéaires

On présente cette méthode sous forme d’un exercice, inspiré du DM d’algébre linéaire de Jérémy Leborgne.

Remarque 6.1. Dans 'exercice, on fait référence a 'utilisation du produit tensoriel pour munir proprement
un K-espace vectoriel d’une structure de L-espace vectoriel, lorsque L est une extension de K. Cette prudence
est nécessaire car lorsqu’on dit que o € L est valeur propre d’'un endomorphisme d’un K-espace vectoriel F,
I’égalité
u(z) = ax

n’a pas de sens tant que l'on a pas expliqué comment L agissait sur F. Bien sir, méme si cela peut-étre jugé
moins élégant, il est tout a fait correct de fixer une base B de E, et de voir la matrice Matg(u) € M,,(K) comme
un élément de M, (L), pour laquelle cela a un sens de considérer des valeurs propres dans L et des vecteurs
propres dans L™.

Exercice.

1. Soit L/K une extension de corps et a € L. Montrer que « est algébrique sur K si et seulement si il existe
un K-espace vectoriel E de dimension finie et un endomorphisme v € L(E) tel que « soit racine de y,, (i-e.
tel que « soit une valeur propre de ’endomorphisme wuy, obtenu & partir de u par extension des scalaires).

2. Soit E et E’ deux K-espaces vectoriels de dimension finie, et v € L(E), v € L(E’). Soit L/K une
extension dans laquelle x, et x, sont scindés. On note ur et vy les endomorphismes des L-espaces
vectoriels Er, := E Qg L et B} := E' @ L obtenus par extension des scalaires. Montrer que si « est une
valeur propre de uy, et 8 une valeur propre de vy, alors a + /3 est valeur propre de ur, ® Id g, +1dg, ®vg
et que af est valeur propre de uy ® vy,.

3. En déduire que {z € L | = est algébrique sur K} est un sous-corps de L.

4. Connaissant un polynome annulateur de « et un polynéme annulateur de (5, comment déterminer un
polynéme annulateur de a« + 37 de a5 ?
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