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Autour des sommes et produits d'éléments algébriques

1. Un argument non-constructif

Soit L/K une extension de corps. Si α, β sont deux éléments de L algébriques sur K alors α + β, αβ etc.
appartiennent à K(α, β), qui est une extension �nie de K par multiplicativité du degré. En e�et, on a

[K(α, β) : K] = [K(α)(β) : K(α)][K(α) : K]

et chacun des termes de droite est �ni, le premier car comme β est algébrique sur K, il est algébrique sur K(α),
et le second car α est algébrique sur K. Donc l'extension K(α, β)/K est �nie, donc algébrique, donc les éléments
α+ β, αβ etc. sont algébriques sur K.

Cependant, cet argument nous dit seulement que α + β admet un polynôme annulateur à coe�cients dans
K, mais ne nous dit pas comment en trouver un.

2. Un exemple où l'on peut tâtonner

Pour des nombres algébriques de petit degré, on peut parfois s'en sortir même sans méthode systématique,
simplement en calculant les puissances successives de l'élément α+β par exemple, et en cherchant des relations
K-linéaires entre ces puissances.

Par exemple, pour trouver un polynôme annulateur à coe�cients dans Q de
√
2 +

√
3, on peut calculer

(
√
2 +

√
3)2 = 5 + 2

√
6

(
√
2 +

√
3)4 = (5 + 2

√
6)2 = 49 + 20

√
6

On voit qu'une combinaison linéaire de la première et de la deuxième équation permet de se débarrasser du√
6 : en e�et

(
√
2 +

√
3)4 − 10(

√
2 +

√
3)2 = −1

ce qui montre que X4 − 10X2 + 1 est un polynôme annulateur de
√
2 +

√
3 à coe�cients dans Q.

3. Calcul pratique de polynômes annulateurs à l'aide du théorème de

Cayley-Hamilton

Cette méthode est tirée de l'exercice 1 de la feuille de TD de Jean-François Dat accessible ici : https:
//webusers.imj-prg.fr/~jean-francois.dat/enseignement/Galois/TD23.pdf

Soit L/K une extension de corps, et α ∈ L un élément algébrique sur K. L'application de L dans EndK(L)
qui à x associe mx (l'application linéaire de L dans L de multiplication par x) est un morphisme de K-algèbres,
donc pour tout f ∈ K[X], on a f(mx) = mf(x). En particulier, si on prend pour f le polynôme caractéristique
χ de mα, on aura χ(mα) = 0 d'après le théorème de Cayley-Hamilton, et donc mχ(α) = 0. Or la multiplication
par x est l'application linéaire nulle si et seulement si x est nul (cela vient aussi du fait qu'on a un morphisme
d'algèbres, donc les inversibles de L sont envoyés sur les inversibles de EndK(L)), donc χ(α) = 0 et on a bien
trouvé un polynôme annulateur de α à coe�cients dans K.

Exemple 3.1. Déterminons un polynôme à coe�cients rationnels qui s'annule en α := i +
√
2. Pour cela, on

se place dans L = Q(i,
√
2), que l'on voit comme un Q-espace vectoriel. On s'intéresse à l'application linéaire

mα de multiplication par α. A�n de calculer son polynôme caractéristique, on a besoin d'écrire la matrice de
cette application linéaire dans une certaine base, et donc de trouver une base de Q(i,

√
2) en tant que Q-espace

vectoriel. On sait que (1,
√
2) forme une base de Q(

√
2)/Q, et donc il nous reste à déterminer une base de

Q(i,
√
2)/Q(

√
2) pour conclure à l'aide du théorème de la base téléscopique. Or cette dernière extension est
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de degré au plus 2 car i admet X2 + 1 comme polynôme annulateur à coe�cients dans Q(
√
2). Comme i

n'appartient pas à Q(
√
2) (qui est contenu dans R), on en déduit que (1, i) est une base de Q(i,

√
2)/Q(

√
2).

D'après le théorème de la base téléscopique, une base de L sur Q est donc donnée par

B = (1,
√
2, i, i

√
2)

On calcule facilement

MatB(mα) =

Ü
0 2 −1 0
1 0 0 −1
1 0 0 2
0 1 1 0

ê
puis son polynôme caractéristique X4 − 2X2 + 9, qui nous fournit un polynôme annulateur de i+

√
2.

4. Calcul pratique de polynômes annulateurs à l'aide de résultants

La référence principale pour cette partie est Anneaux, corps, résultants de Félix Ulmer. J'ai également
emprunté un exemple au mémoire d'agrégation d'Antonin Ri�aut https://perso.eleves.ens-rennes.fr/

~ariffaut/Agregation/memoire_agregation.pdf

Rappelons quelques faits sur les résultants qui sont utiles pour le calcul de polynômes annulateurs. Étant
donnés deux polynômes

f =

n∑
i=1

aiY
i et g :=

m∑
i=1

biY
i

à coe�cients dans un anneau commutatif A, de degrés respectifs n et m, la matrice de Sylvester de f et g est
une matrice dans Mm+n(A) (ses coe�cients sont des ai, des bi, ou des zéros). Son déterminant est ce qu'on
appelle le résultant de f et de g, noté ResY (f, g) (c'est donc un élément de A en tant que déterminant d'une
matrice à coe�cients dans A). On précise la variable Y car en pratique il faut imaginer que A sera de la forme
k[X1, . . . , XN ]. Le résultat essentiel pour nous sera le fait suivant, qui dit que ResY (f, g) (qui est, on le rappelle,
un élément de A) appartient à l'idéal engendré par f et g dans A[Y ] :

Lemme 4.1. Avec les notations précédentes, il existe u, v ∈ A[Y ] tels que deg(u) < m et deg(v) < n et tels que

ResY (f, g) = uf + vg.

Ce lemme se démontre en faisant des opérations sur les lignes (ou les colonnes) de la matrice de Sylvester
puis en développant le déterminant par rapport à la dernière ligne (ou la dernière colonne). Il faut souligner
que le membre de gauche est une � constante � (c'est-à-dire un élément de A) alors que le membre de droite
est formé de polynômes (c'est-à-dire d'éléments de A[Y ]). On peut penser à l'égalité de ce lemme comme à une
sorte de relation de Bézout entre f et g, sauf qu'elle est vraie dans le cadre général des anneaux commutatifs.
Si A est supposé factoriel, alors en e�et il y a un lien plus fort entre résultant et pgcd (le résultant est nul si et
seulement si les polynômes ont un facteur commun), mais nous n'aurons pas besoin de ce fait pour le problème
qui nous intéresse ici.

Soit L/K une extension de corps, et α, β ∈ L, algébriques sur K. On note f(Y ) et g(Y ) leurs polynômes
minimaux sur K. Ce sont des éléments de K[Y ]. On introduit une seconde variable X, et on voit f(X − Y ) et
g(Y ) comme deux éléments de A[Y ] avec A = K[X]. Alors

h := ResY (f(X − Y ), g(Y ))

est un élément de A = K[X] par dé�nition du résultant, et nous allons expliquer pourquoi c'est un polynôme
annulateur de α+ β. D'après le Lemme 4.1, il existe deux polynômes u, v ∈ A[Y ] = K[X,Y ] tels que

h(X) = u(X,Y )f(X − Y ) + v(X,Y )g(Y ).

En évaluant en α+ β la variable X on obtient

h(α+ β) = u(α+ β, Y )f(α+ β − Y ) + v(α+ β, Y )g(Y )

Le membre de gauche est un élément de L, c'est l'évaluation en α + β du polynôme h ∈ K[X]. Par contre, le
membre de droite est un élément de L[Y ], que l'on peut encore évaluer. Or si on évalue Y en β, on voit que
f(α+β−β) = f(α) = 0 et g(β) = 0 par dé�nition de f et g comme polynômes minimaux (annulateurs su�rait)
de α et β. Donc h(α+ β) = 0, et c'est ce qu'on voulait : on a bien trouvé un polynôme annulateur de α+ β à
coe�cients dans K.
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Remarque 4.2. Attention, il pourrait arriver que h soit le polynôme nul. . . C'est notamment le cas lorsque f
et g ne sont pas premiers entre eux, mais cette situation ne devrait pas se présenter sur des exemples simples.

Exemple 4.3. Pour déterminer un polynôme annulateur surQ pour le nombre algébrique
√
2+ 3

√
3, on considère

f(Y ) := Y 2 − 2 (le polynôme minimal de
√
2 sur Q) et g(Y ) := Y 3 − 3 (celui de 3

√
3). Alors f(X − Y ) =

(X − Y )2 − 2 = Y 2 − 2XY +X2 − 2. Donc (bon c'est là qu'on doit se souvenir de la dé�nition de la matrice de
Sylvester et qu'on ne peut pas se contenter de savoir qu'elle dépend des coe�cients des polynômes)

h(X) = ResY (f(X − Y ), g(Y )) =

∣∣∣∣∣∣∣∣∣∣
X2 − 2 0 0 −3 0
−2X X2 − 2 0 0 −3
1 −2X X2 − 2 0 0
0 1 −2X 1 0
0 0 1 0 1

∣∣∣∣∣∣∣∣∣∣
Après calculs (cela se fait à la main, mais j'avoue avoir utilisé sage. . .) on obtient

h(X) = X6 − 6X4 − 6X3 + 12X2 − 36X + 1

comme polynôme annulateur de
√
2 + 3

√
3.

Remarque 4.4. Si on voulait un polynôme annulateur de αβ plutôt que de α+β, on aurait envie de remplacer
le f(X − Y ) de la dé�nition de h par f(X/Y ). Le problème est que ce serait une fraction rationnelle, et non un
polynôme. On compense cela en multipliant par Y n. Un polynôme annulateur de αβ est alors

ResY (Y
nf(X/Y ), g(Y )).

La preuve est la même que dans le cas additif.

5. Pour aller plus loin

Dans la section précédente, on a montré que le polynôme

h(X) = ResY (f(X − Y ), g(Y ))

était un polynôme annulateur de α + β. En fait, on peut même montrer que ses racines sont exactement les
αi + βj , où les αi parcourent les racines de f et les βj parcourent les racines de g.

Le résultat principal qui va nous servir à comprendre cela est le fait que le résultant, qui n'est dé�ni qu'en
termes des coe�cients de f et g, � joue � en fait avec leurs racines dans un corps qui les contient.

Théorème 5.1. Soit K un corps et L une extension de K dans laquelle f et g sont scindés :

f = an

n∏
i=1

(Y − αi) et g = bm

m∏
j=1

(Y − βj) dans L[Y ].

Alors

ResY (f, g) = amn bnm

n∏
i=1

m∏
j=1

(αi − βj) = amn

n∏
i=1

g(αi) = (−1)mnbnm

m∏
j=1

f(βj).

On trouve ce résultat dans le livre de théorie de Galois de Gozard ou dans le livre Anneaux, corps, résultants

de Félix Ulmer.

Puisque l'on va s'intéresser à des polynômes annulateurs, il ne faudra pas trop se préoccuper des coe�cients
dominants et des signes qui rendent les formules ci-dessus quelque peu e�rayantes. Il ne faut pas trop non plus
s'inquiéter du fait que le résultat est valable seulement sur un corps, alors qu'on utilise plutôt des résultants de
polynômes à coe�cients dans un anneau A de la forme k[X1, . . . , XN ]. En pratique, comme un tel anneau est
intègre, on peut se placer dans son corps des fractions K, utiliser le théorème ci-dessus pour comprendre ce qu'il
se passe quand on fait notre calcul de résultants en termes de racines de polynômes dans K, puis se rappeler
que les calculs ont en fait eu lieu dans A. En tout cas tout ce qu'il faut retenir c'est que calculer le résultant de

deux polynômes, c'est faire le produit des évaluations de l'un en en les racines de l'autre.

Reprenons les notations précédentes : L/K une extension, α, β ∈ L algébriques sur K, de polynômes mini-
maux respectifs f et g. Alors on avait noté

h := ResY (f(X − Y ), g(Y )).
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C'est un élément de K[X] qui s'annule en α+ β, mais nous allons montrer un résultat plus précis.

Soit M un corps contenant les racines de f et de g. Dans M [X], on peut écrire :

f(Y ) =

n∏
i=1

(Y − αi) et g(Y ) =

m∏
j=1

(Y − βj).

Comme α et β sont racines respectives de f et g, on peut supposer que α = α1 et que β = β1. Notons que
comme f(X −Y ) =

∏n
i=1((X −αi)−Y ), ce polynôme en Y est scindé sur le corps M(X) et ses racines sont les

X−αi. Ainsi, en appliquant le théorème ci-dessus on obtient que h est (au signe près) le produit des évaluations
de g(Y ) en les racines de f(X − Y ), donc

h(X) = ±
m∏
j=1

(X − (αi + βj))

On a donc montré que les racines de h étaient en fait tous les éléments de la forme αi + βj , où les αi sont
ce qu'on appelle les conjugués de α sur K (c'est-à-dire les racines de son polynôme minimal) et les βj sont les
conjugués de β sur K.

Exemple 5.2. Ce dernier résultat donne également une méthode pour construire des polynômes annulateurs
lorsqu'on sait déterminer tous les conjugués des éléments algébriques considérés. Dans l'exemple de

√
2 +

√
3,

on sait que les conjugués de
√
2 sont

√
2 et −

√
2, et que les conjugués de

√
3 sont

√
3 et −

√
3, donc le polynôme

(X − (
√
2 +

√
3))(X − (

√
2−

√
3))(X − (−

√
2 +

√
3))(X − (−

√
2−

√
3))

sera, comme par magie, un polynôme à coe�cients rationnels. Cela reste très proche d'une des grandes idées
de la théorie de Galois, qui dit que les éléments du corps de base sont les éléments invariants par le groupe
d'automorphismes. Ici, on ajoute au polynôme de degré 1

(X − (
√
2 +

√
3))

tous les facteurs obtenus en faisant agir sur
√
2 (resp.

√
3) les automorphismes de Q(

√
2) (resp. Q(

√
3)).

6. Calcul de polynômes annulateurs à l'aide du produit tensoriel d'ap-

plications linéaires

On présente cette méthode sous forme d'un exercice, inspiré du DM d'algèbre linéaire de Jérémy Leborgne.

Remarque 6.1. Dans l'exercice, on fait référence à l'utilisation du produit tensoriel pour munir proprement
un K-espace vectoriel d'une structure de L-espace vectoriel, lorsque L est une extension de K. Cette prudence
est nécessaire car lorsqu'on dit que α ∈ L est valeur propre d'un endomorphisme d'un K-espace vectoriel E,
l'égalité

u(x) = αx

n'a pas de sens tant que l'on a pas expliqué comment L agissait sur E. Bien sûr, même si cela peut-être jugé
moins élégant, il est tout à fait correct de �xer une base B de E, et de voir la matrice MatB(u) ∈ Mn(K) comme
un élément de Mn(L), pour laquelle cela a un sens de considérer des valeurs propres dans L et des vecteurs
propres dans Ln.

Exercice.

1. Soit L/K une extension de corps et α ∈ L. Montrer que α est algébrique sur K si et seulement si il existe
un K-espace vectoriel E de dimension �nie et un endomorphisme u ∈ L(E) tel que α soit racine de χu (i.e.
tel que α soit une valeur propre de l'endomorphisme uL obtenu à partir de u par extension des scalaires).

2. Soit E et E′ deux K-espaces vectoriels de dimension �nie, et u ∈ L(E), v ∈ L(E′). Soit L/K une
extension dans laquelle χu et χv sont scindés. On note uL et vL les endomorphismes des L-espaces
vectoriels EL := E ⊗K L et E′

L := E′ ⊗K L obtenus par extension des scalaires. Montrer que si α est une
valeur propre de uL et β une valeur propre de vL, alors α+ β est valeur propre de uL ⊗ IdE′

L
+ IdEL

⊗ vL
et que αβ est valeur propre de uL ⊗ vL.

3. En déduire que {x ∈ L | x est algébrique sur K} est un sous-corps de L.

4. Connaissant un polynôme annulateur de α et un polynôme annulateur de β, comment déterminer un
polynôme annulateur de α+ β ? de αβ ?
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