
WASSERSTEIN METRIC AND QUANTITATIVE EQUIDISTRIBUTION, I
THE CASE OF TORI

E. KOWALSKI AND T. UNTRAU

Abstract. The Wasserstein distance between probability measures on tori provides a nat-
ural “invariant” quantitative measure of equidistribution, similar to the classical Erdős–
Turán–Koksma inequalities, but is a more intrinsic quantity. We recall the basic properties
of the Wasserstein distance and present some applications to quantitative forms of our previ-
ous work on the equidistribution of ultra-short exponential sums, and on the equidistribution
of sums of additive characters over very small multiplicative subgroups.

Contents

1. Quantitative equidistribution and Wasserstein distances 1

2. Ultra-short sums of trace functions 7

3. Proof of Theorem 2.1 9

4. Sums of additive characters over growing multiplicative subgroups 13

Appendix: proof of the Bobkov–Ledoux inequality 18

References 23

1. Quantitative equidistribution and Wasserstein distances

Starting from the work of Weyl about a century ago, equidistribution has been a major
theme of modern number theory. Besides the qualitative aspect, there is considerable interest
in having quantitative versions of equidistribution theorems. In the most classical case
which concerns the equidistribution modulo 1 of a sequence (xn)n>1 of real numbers in [0, 1],
equidistribution is the property that

(1) lim
N→+∞

1

N
|{n 6 N | a < xn < b}| = b− a

for any real numbers a and b, with 0 6 a < b 6 1. The Weyl Criterion states that this is
equivalent to the fact that the Weyl sums

Wh(N) =
1

N

∑
n6N

e(hxn), h ∈ Z

converge to 0 as N→ +∞ for any non-zero integer h.
1



The simplest quantitative forms of this equidistribution property are simply quantitative
estimates for the decay to 0 of the Weyl sums, which should ideally be uniform in terms of
h and N. Such estimates also provide a quantitative version of (1), by means of the classical
Erdős–Turán inequality : if we denote

EN(a, b) =
1

N
|{n 6 N | a < xn < b}|,

then we have

sup
06a<b61

|EN(a, b)− (b− a)| � 1

T
+

∑
0<|h|6T

|Wh(N)|
|h|

for any parameter T > 1.

The left-hand side of this inequality is called the discrepancy of the sequence (xn)16n6N,
and is a natural measure of the distance between the probability measure

1

N

∑
n6N

δxn

and the Lebesgue measure.

On the other hand, many problems give rise to multi-dimensional equidistribution results,
where the sequence (xn) takes values in [0, 1]d for some integer d > 1. Equidistribution (with
respect to the Lebesgue measure) means that

lim
N→+∞

1

N
|{n 6 N | ai < xn,i < bi for all i}| =

∏
i

(bi − ai)

whenever 0 6 ai < bi 6 1 for all i, and is again equivalent to the convergence towards 0 of
the Weyl sums

Wh(N) =
1

N

∑
n6N

e(h · xn)

for h ∈ Zd {0}, where x · y denotes the usual scalar product on Rd. The analogue of the
Erdős–Turán inequality is due to Koksma and states that the “box discrepancy”

∆d = sup
06ai6bi61

16i6d

∣∣∣ 1

N
|{n 6 N | xn ∈

d∏
i=1

[ai, bi]}| −
d∏
i=1

(bi − ai)
∣∣∣

satisfies

(2) ∆d �
1

T
+

∑
16‖h‖∞6T

1

M(h)
|Wh(N)|

for any parameter T > 1, where M(h) =
∏

max(1, |hi|) and the implied constant depends
only on d (see e.g. [11, Th. 1.21]).

However, this inequality is somewhat unsatisfactory when d > 2, due to its lack of
“invariance”. By this, we mean that if we apply to the sequence (xn) a continuous map
f : [0, 1]d → [0, 1]d (or f : [0, 1]d → C), then the equidistribution of (xn) with respect to some
measure µ implies that (f(xn)) is equidistributed with respect to the image measure f∗(µ),
and one naturally wants to have a quantitative version of this other convergence statement.
Such a statement cannot be obtained from (2) without some analysis of the way the map f
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transforms boxes with sides parallel to the coordinate axes. Note that this is a problem even
if f is (say) a linear transformation in SLd(Z), and µ is the Lebesgue measure. In particular,
if the space [0, 1]d arises abstractly without specific choices of coordinates (which may well
happen), then the generalized Erdős–Turán inequality imposes the choice of a coordinate
system, which might be artificial and awkward for other purposes. Moreover, if we consider
the functional definition of equidistribution, namely the fact that

lim
N→+∞

1

N

∑
n6N

f(xn) =

∫
[0,1]d

f(x)dx

for any continuous function f : [0, 1]d → C, it is difficult to pass from (2) to quantitative
bounds for the difference ∣∣∣ 1

N

∑
n6N

f(xn)−
∫

[0,1]d
f(x)dx

∣∣∣,
which may be equally relevant to applications.

From the probabilistic point of view, the goal of measuring the distance between probabil-
ity measures is very classical, and has appeared in many forms since the beginning of modern
probability theory. In recent years, there has been increasing interest in using Wasserstein
metrics for this purpose. Indeed, these distances have considerable impact in probability
theory, statistics, the theory of PDEs and numerical analysis. However, they only appeared
very recently in works related to equidistribution questions, including in works of Bobkov and
Ledoux [3], Steinerberger [19], Brown and Steinerberger [9], Graham [14] and Borda [6, 7].
Although not yet well-established in the analytic number theory community, we believe that
the Wasserstein metrics provide a particularly well-suited approach to quantitative equidis-
tribution.

To explain this, we recall the definition of the Wasserstein distances on a compact metric
space (M, d). Let p > 1. For (Radon) probability measures µ and ν on M, let Π(µ, ν) be
the set of probability measures on M×M with marginals µ and ν (which is not empty since
µ⊗ ν belongs to it). The p-Wasserstein distance is then defined by

W p(µ, ν) = inf
π∈Π(µ,ν)

(∫
M×M

d(x, y)pdπ(x, y)
)1/p

.

Remark 1.1. (1) This quantity depends on the choice of the metric d. When needed, we

will write W (d)
p (µ, ν) to indicate which metric is used.

(2) In probabilistic terms, we have

W p(µ, ν)p = inf
X∼µ
Y∼ν

E(d(X,Y)p),

where the infimum is taken over families of random variables (X,Y) with values in M such
that the law of X is µ and that of Y is ν.

The Wasserstein distances are particularly important in the theory of optimal transport:
indeed, they measure the cost of “moving” µ to ν (see, e.g. the book [22] of Villani for an
introduction to optimal transport). Crucially from our point of view, the definition of W p

is intrinsic and does not suffer from the same invariance issues as the box discrepancy. The
key points are the following:
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(1) the Wasserstein distances are metrics on the set of probability measures on M, and
the topology that they define on this set is the topology of convergence in law;

(2) the Wasserstein metrics satisfy simple inequalities under various operations, such as
pushforward by a Lipschitz map;

(3) the Wasserstein metrics satisfy inequalities in terms of Weyl sums (in contexts much
more general than that of M = (R/Z)d above) which are comparable to (2);

(4) for p = 1, the Wasserstein metric W 1 admits a very clean functional interpretation,
known as the Kantorovich–Rubinstein Theorem.

We summarize these basic properties.

Theorem 1.2 (Wasserstein distance properties). Let (M, d) be a compact metric space.

(1) For p > 1, the Wasserstein metric is a metric on the space of probability measures
on M, and the topology it defines is the topology of convergence in law: W p(µn, µ)→ 0
if and only if, for all (bounded) continuous functions f : M→ C, we have

lim
n→+∞

∫
M

fdµn =

∫
M

fdµ.

(2) For probability measures µ and ν on M, we have

W p(µ, ν) 6 W q(µ, ν)

if p 6 q.
(3) Let (N, δ) be a compact metric space. Let c > 0 be a real number and let f : M→ N

be a c-Lipschitz map. For any probability measures µ and ν on M, we have

W p(f∗µ, f∗ν) 6 cW p(µ, ν).

(4) If N ⊂ M is a compact subset with inclusion i : N → M, then for probability mea-
sures µ and ν on N, we have

W p(i∗µ, i∗ν) = W p(µ, ν),

where the right-hand side is a Wasserstein distance on N.
(5) Let (N, δ) be a compact metric space. Let ∆ be a metric on M × N such that there

exists c > 0 such that

∆((x, y), (x′, y′)) 6 c(d(x, x′) + δ(y, y′))

for (x, y) and (x′, y′) in M× N. For any probability measures µ and ν on M, µ′ and
ν ′ on N, we have

W (∆)
p (µ⊗ µ′, ν ⊗ ν ′) 6 c21/q(W p(µ, ν) + W p(µ

′, ν ′))

for p > 1, where q is the dual exponent with 1/p+1/q = 1, and we use the convention
21/∞ = 1.

(6) For probability measures µ and ν on M, we have

W 1(µ, ν) = sup
u

∣∣∣∫
M

udµ−
∫

M

udν
∣∣∣

where the supremum is over functions u : M→ R which are 1-Lipschitz.
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(7) Suppose that M = (R/Z)k with its standard metric for some integer k > 1. For any
probability measures µ and ν on M and for all T > 0, we have

(3) W 1(µ, ν) 6
4
√

3
√
k

T
+
( ∑

16|h|∞6T

1

‖h‖2
|µ̂(h)− ν̂(h)|2

)1/2

,

where for a probability measure µ on M and h ∈ Zk, we denote by µ̂(h) the Fourier
coefficient of µ, i.e.

µ̂(h) =

∫
M

e(h · x)dµ(x).

Proof. (1) This is proved, e.g., in Villani’s book [22, Th. 7.3, Th. 7.12].

(2) This follows easily from Hölder’s inequality and the definition of the Wasserstein metric.

(3) This is also a formal consequence of the definition and the fact that, given π ∈ Π(µ, ν),
we have (f × f)∗π ∈ Π(f∗µ, f∗ν). Then, for π ∈ Π(µ, ν), we get∫

N×N

δ(x, y)pd(f × f)∗π =

∫
M×M

δ(f(x), f(y))pdπ 6 cp
∫

M×M

d(x, y)pdπ,

and taking the infimum over π ∈ Π(µ, ν) gives the inequality.

(4) This follows from (3) and the fact that any measure in Π(i∗µ, i∗ν) has support in N×N,
hence is of the form (i× i)∗π for some π ∈ Π(µ, ν).

(5) This is also elementary: if π ∈ Π(µ, ν) and π′ ∈ Π(µ′, ν ′), then π⊗π′ ∈ Π(µ⊗µ′, ν⊗ν ′),
with ∫

M2×N2

∆((x, y), (x′, y′))pd(π ⊗ π′) 6 cp
∫

M2×N2

(d(x, x′) + δ(y, y′))pd(π ⊗ π′)

by assumption. Using the Hölder inequality in the form (a+ b)p 6 2p/q(ap + bp) for a, b > 0,
we obtain∫

M2×N2

∆((x, y), (x′, y′))pd(π ⊗ π′) 6 cp2p/q
(∫

M2

d(x, x′)pdπ +

∫
N2

δ(y, y′)pdπ′
)
,

hence the result.

(6) This is much deeper and is a special case of the Kantorovich–Rubinstein duality (see,
e.g., [22, Th. 1.14]).

(7) This is (essentially) an application of a statement due to Bobkov and Ledoux [3]. For
completeness, we will give a proof in the Appendix starting on page 18. �

Thus, as an alternative to the classical inequality (2), we have the following corollary.

Corollary 1.3. Let k > 1 be an integer. Let (xn)n>1 be a sequence in (R/Z)k. Define the
probability measures

µN =
1

N

N∑
n=1

δxn ,
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for N > 1. For any N > 1, T > 0, we have

W 1(µN, λk) 6
4
√

3
√
k

T
+
( ∑

16|h|∞6T

1

‖h‖2
|Wh(N)|2

)1/2

.

In the sequel to this paper, we will further use the Wasserstein metric in statements of
quantitative equidistribution in compact Lie groups, with applications to exponential sums
over finite fields.

Example 1.4. For illustration, it is worth looking concretely at the meaning of the Wasser-
stein distance between a measure of the type

µN =
1

N

N∑
i=1

δxi

on R/Z and the uniform Lebesgue measure λ. We assume for simplicity that the xi’s are
different, and denote X = {xi, 1 6 i 6 N}. Any measure π ∈ Π(µN, λ) must be supported
in X ×R/Z ⊂ (R/Z)2, since X is the support of µN. Hence we may write

π =
1

N

N∑
i=1

δxi ⊗ πi,

for some probability measure πi on R/Z. Any such measure has projection on the first
coordinate equal to µN. On the other hand, the projection on the second coordinate is the
combination

1

N

N∑
i=1

πi,

and thus π ∈ Π(µN, λ) is equivalent with

1

N

N∑
i=1

πi = λ.

In particular, suppose that πi = fi(y)dy for some measurable function fi > 0 with integral
equal to 1. Then the condition above becomes

1

N

N∑
i=1

fi = 1.

The corresponding integral for the p-Wasserstein distance is∫
(R/Z)2

d(x, y)pdπ =
1

N

N∑
i=1

∫
R/Z

d(xi, y)pfi(y)dy.

As a simple illustration, let N > 2 and consider xi = (i − 1)/N for 1 6 i 6 N. Let ϕi be
the indicator function of the (image modulo Z of the) interval[i− 1

N
− 1

2N
,
i− 1

N
+

1

2N

[
,
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and let fi = Nϕi. Then fi has integral 1, and∑
i

fi = N

since any x ∈ R/Z belongs to a single interval, where the corresponding fi takes the value N.
For the measure π described above, using the usual circular distance on R/Z, we get∫

(R/Z)2
d(x, y)pdπ =

1

N

N∑
i=1

∫
R/Z

d(xi, y)pfi(y)dy =
N∑
i=1

∫ (i−1)/N+1/(2N)

(i−1)/N−1/(2N)

∣∣∣i− 1

N
− y
∣∣∣pdy.

By a simple integration, this is

2N

p+ 1

( 1

2N

)p+1

=
1

(p+ 1)2p
1

Np
,

proving that

W p

( 1

N

N∑
i=1

δ(i−1)/N, λ
)
6

1

2(p+ 1)1/p

1

N
6

1

2N

for all p > 1. For p = 1, this result is of the same quality as the outcome of Corollary 1.3,
since in this case the Weyl sum Wh(N) is zero unless N | h, in which case it is equal to 1, so
that the estimate in loc. cit. is

W 1(µN, λ) 6
4
√

3

T
+
( ∑

16|h|6T
N|h

1

|h|2
)1/2

� 1

T
+

1

N
,

and taking T = N gives the result. This is of course comparable to the well-known fact that
the discrepancy of equally-spaced points is of size 1/N.

Note that as a consequence of Theorem 1.2, (5), we deduce also that for the uniform

measure µ
(k)
N on the finite grid

{0, 1/N, . . . , (N− 1)/N}k ⊂ (R/Z)k,

we have

W p(µ
(k)
N , λk)�

1

N
where the implied constant depends on k only (and the Wasserstein distance is computed
for the standard metric). Here again, taking T = N in Theorem 1.2, (7) gives a bound of
the same shape for p = 1.

2. Ultra-short sums of trace functions

Our previous paper [16] considers an equidistribution problem on a torus for which the
quantitative features of the Wasserstein metric are particularly useful. This concerns the
distribution properties of sums of the form

(4) Sg(q, a) =
∑
x∈Fq

g(x)≡0 (mod q)

e
(ax
q

)
,

7



where g ∈ Z[X] is a fixed monic polynomial and q is a prime number (subject to suitable
conditions).

We associated to these sums the probability measures

νq =
1

q

∑
a∈Fq

δSg(q,a)

on C. In [16, Th. 1.1], we proved that these measures converge weakly to an explicit prob-
ability measure µg which is related to the additive relations among the complex roots of g,
as recalled in Section 3. In this work, we refine these results and prove the following rates
of convergence in 1-Wasserstein metric:

Theorem 2.1 (Cor. 3.5). Let g ∈ Z[X] be a monic and separable polynomial of degree d > 1,
with splitting field Kg over Q. Then for all prime numbers q totally split in Kg that do not
divide the discriminant of g, the upper bound

W 1(νq, µg)�g q
− 1

[Kg :Q]

holds.

The quantitative results in Wasserstein metrics also allow us to consider some problems
involving varying polynomials. As an example, in Section 4 we exploit the explicit depen-
dency on k in the inequality of Theorem 1.2, (7) to study the distribution of exponential
sums over very small multiplicative subgroups of prime order, i.e. sums of the form∑

x∈H

e

(
ax

q

)
where H is a subgroup of F×q whose cardinality is a prime divisor of q−1 which is very small
compared to q. Precisely, we prove in Theorem 4.1 that the sums

1√
|H|

∑
x∈H

e

(
ax

q

)
become equidistributed with respect to a standard complex normal distribution as q tends
to infinity and |H| tends to infinity while satisfying

|H| = o

(
log q

log log q

)
as q → +∞.

Notation. For x = (x1, . . . , xd) ∈ Rd, we denote by |x| its euclidean norm.

For a random vector X = (X1, . . . ,Xd) in Rd, we denote its characteristic function by ϕX,
and we recall that it is defined for all s = (s1, . . . , sd) ∈ Rd by ϕX(s) = E

(
eiX·s

)
where X · s

denotes the usual dot product on Rd.

We say that a map u : Rd → R is 2π-periodic if for all m ∈ Zd, for all x ∈ Rd, u(x+2πm) =
u(x).
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For any set X, we denote by C(Zg; X) the set of maps from Zg to X; it is a group if X itself
is a group. For all α ∈ C(Zg;Z), we set

‖α‖1 =
∑
x∈Zg

|α(x)|, ‖α‖∞ = max
x∈Zg
|α(x)|, and |α| =

∑
x∈Zg

α(x)2

1/2

.
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3. Proof of Theorem 2.1

We recall more precisely the setting and results of the article [16], starting with the sums
Sg(q, a) of (4).

Let g be a fixed monic and separable polynomial g ∈ Z[X] of degree d > 1. We denote by
Zg the set of complex roots of g and by Kg = Q(Zg) the splitting field of g over Q. Its ring
of integers is denoted by Og, and since g is monic, the set Zg is contained in Og.

For primes q that are totally split in Kg, we proved that the measures

νq =
1

q

∑
a∈Fq

δSg(q,a)

associated to the sums (4) converge, as q goes to infinity and a varies in Fq, to a limiting
measure µg defined as follows.

Let Rg ⊂ C(Zg;Z) be the subgroup of maps α : Zg → Z such that∑
x∈Zg

α(x)x = 0,

and let

(5) Hg =

f ∈ C(Zg;S
1) | for all α ∈ Rg, we have

∏
x∈Zg

f(x)α(x) = 1


be the orthogonal of Rg in the sense of Pontryagin duality. Let λg denote the probability Haar
measure on the compact group Hg. Then we showed that µg = σ∗λg, where σ : C(Zg;S

1)→ C
is defined by

σ(f) =
∑
x∈Zg

f(x).
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We will apply Theorem 1.2 to estimate the Wasserstein distances W 1(µp, λg) (between
measures on C(Zg;S

1), or Hg) and W 1(σ∗µp, σ∗λg) (between measures on C), where the
measures µp are introduced in §3.1. These distances are defined with respect to the following
metrics on the underlying spaces:

(1) We consider on C the usual metric given by the complex modulus.
(2) We consider on the compact group C(Zg;S

1) the metric % = %g obtained by transport
of structure from the usual flat Riemannian metric on the torus (R/Z)Zg using the
isomorphism

ι : (R/Z)Zg → C(Zg;S
1)

such that ι(ξ) is the map Zg → S1 which maps x ∈ Zg to e(ξx). This metric on
the torus is also the quotient metric of the euclidean distance using the projection
RZg → (R/Z)Zg .

(Concretely, it can also be described as follows when identifying further R/Z with
[0, 1[: if ` denotes the “circular” metric on [0, 1[, identified with R/Z, such that
`(x, y) = min(|x− y|, 1− |x− y|), then the metric % can be identified with the metric
on [0, 1[Zg given by

(6) (x, y) 7→
( d∑
j=1

`(xj, yj)
)1/2

.

3.1. The Weyl sums. The key property of our equidistribution problem is that the relevant
Weyl sums, for the equidistribution at the level of the space C(Zg;S

1), vanish when q is
suitably large, as we observed in [16, Rem. 2.3].

We recall some further notation from [16]. If g is a polynomial as above, we denote by Sg

the set of prime ideals p ⊂ Og which do not divide the discriminant of g and have residual
degree one. For p ∈ Sg, the norm q = |p| = |Og/p| is a prime number, and the restriction
Z→ Og/p of the restriction map $p : Og → Og/p induces a field isomorphism Fq → Og/p,
which we use to identify these two fields.

We view Og/p as a finite probability space with the uniform probability measure and we
consider the random variables Up on Og/p, taking values in C(Zg;S

1), which are defined by

Up(a)(x) = e
(a$p(x)

|p|

)
for all a ∈ Og/p and all x ∈ Zg (the element a$p(x) of Og/p being identified with an element
of F|p| as explained before).

Let µp be the law of Up; concretely, this is the measure

µp =
1

|p|
∑

a∈Og/p

δUp(a)

on C(Zg;S
1). We also view λg as a measure on C(Zg;S

1) by identifying it with j∗λg, where
j : Hg → C(Zg;S

1) is the inclusion.

The next two lemmas compare the Fourier coefficients of the measures µp and λg.
For α ∈ C(Zg;Z), we will denote by ηα the associated character of C(Zg;S

1). For a measure ν
10



on C(Zg;S
1), the corresponding Fourier coefficient is

ν̂(α) =

∫
ηα(x)dν(x).

Lemma 3.1. Let α ∈ C(Zg;Z). If ηα is trivial on Hg, then λ̂g(α) = µ̂p(α) = 1.

Proof. The result about λg simply follows from the fact that it has total mass 1. The case
of µp follows because it is straightforward from the definition that the random variables Up

take values in Hg. �

Lemma 3.2. There exists a positive real number Cg, depending only on the polynomial g,
with the following property : for all α ∈ C(Zg;Z) such that ηα is non-trivial on Hg and for
all p ∈ Sg such that

|p| > Cg‖α‖[Kg :Q]
1 ,

we have λ̂g(α) = µ̂p(α) = 0.

More precisely, the value

(7) Cg =
∏

σ∈Gal(Kg/Q)

max
x∈Zg
|σ(x)|

has this property.

Proof. Let α ∈ C(Zg;Z) be such that ηα is non-trivial on Hg. It is then a classical property

of the Haar measure that λ̂g(α) = 0.

Let p ∈ Sg. As in [16, Prop. 2.2], we have

µ̂p(α) =
1

|p|
∑

a∈Og/p

e
( a
|p|
$p

(∑
x∈Zg

α(x)x
)))

,

and therefore

µ̂p(α) =

{
1 if

∑
x∈Zg

α(x)x ∈ p,
0 otherwise.

by orthogonality of characters. We now analyze this condition further.

Let

γ(α) =
∑
x∈Zg

α(x)x.

Note that since ηα is non-trivial on Hg, we have α /∈ Rg (by definition), and therefore
γ(α) 6= 0.

If µ̂p(α) 6= 0, then γ(α) ∈ p, so γ(α)Og ⊂ p, and in particular |p| | N(γ(α)Og). In
particular, since γ(α) is non-zero, we obtain

(8) |NKg/Q(γ(α))| > |p|.
11



On the other hand, we have

NKg/Q(γ(α)) =
∏

σ∈Gal(Kg/Q)

σ(γ(α)) =
∏

σ∈Gal(Kg/Q)

(∑
x∈Zg

α(x)σ(x)
)
,

and with the value Cg given by (7), this implies that

(9) |NKg/Q(γ(α))| 6 Cg

(∑
x∈Zg

|α(x)|
)[Kg :Q]

= Cg‖α‖[Kg :Q]
1 .

Combining (8) and (9) we deduce that

|p| 6 Cg‖α‖[Kg :Q]
1

if µ̂p(α) 6= 0, which is the desired conclusion. �

3.2. Quantitative equidistribution.

Proposition 3.3. There exists an explicit constant C
′
g > 0 (depending only on g) such that

for all p ∈ Sg we have

W 1(µp, λg) 6 C′g|p|
− 1

[Kg :Q] .

Proof. let T > 0 be an auxiliary parameter to be fixed below. By Theorem 1.2, (7), the
inequality

(10) W 1(µp, λg) 6
4
√

3
√
d

T
+
( ∑
α∈C(Zg ;Z)
0<‖α‖∞6T

1

|α|2
|µ̂p(α)− λ̂g(α)|2

)1/2

holds. We take

T =
1

d+ 1

(
|p|
Cg

) 1
[Kg :Q]

.

Lemma 3.1 and Lemma 3.2 together imply that the sum on the right-hand side of (10) is
zero (using the inequality ‖α‖1 6 d‖α‖∞), and therefore we obtain

W 1(µp, λg) 6
4
√

3
√
d

T
= 4
√

3
√
d(d+ 1)C

1
[Kg :Q]

g |p|−
1

[Kg :Q] ,

which immediately implies that result. �

Remark. This result matches the rate of convergence obtained in [21, Th. 5.30], where the
1-Wasserstein metric was replaced by a notion of ϕ-discrepancy, which had the disadvantage
of being non-intrinsic.

We can easily deduce Theorem 2.1 using Theorem 1.2, (3). First we compute a Lipschitz
constant for the summation map σ.

Lemma 3.4. The map σ : C(Zg;S
1)→ C is

√
d-Lipschitz.

12



Proof. Let f and g be elements of C(Zg;S
1). We have

|σ(f)− σ(g)| =
∣∣∣∑
x∈Zg

(f(x)− g(x))
∣∣∣ 6∑

x∈Zg

∣∣∣f(x)− g(x)
∣∣∣.

The euclidean distance on S1 ⊂ C is bounded above by the arc length (Riemannian)
distance `, hence |f(x) − g(x)| 6 `(f(x), g(x)). Applying the Cauchy–Schwarz inequality,
we obtain∑

x∈Zg

|f(x)− g(x)| 6
∑
x∈Zg

`(f(x), g(x)) 6
√
d
(∑
x∈Zg

`(f(x), g(x))2
)1/2

=
√
d× %(f, g),

as desired. �

Corollary 3.5. Let d > 1 and let g ∈ Z[X] be a monic and separable polynomial of degree d.
For all prime numbers q totally split in Kg that do not divide the discriminant of g, define
the measures

νq =
1

q

∑
a∈Fq

δSg(q,a)

and µg = σ∗λg (the pushforward measure via σ of the probability Haar measure on Hg). Then
for all such prime numbers q, we have

W 1(νq, µg)�g q
− 1

[Kg :Q] .

Proof. Let p ∈ Sg. By Proposition 3.3, we have W 1(µp, λg) �g |p|
− 1

[Kg :Q] . It follows from
Theorem 1.2, (3) and Lemma 3.4 that

W 1(σ∗µp, σ∗λg)�g |p|
− 1

[Kg :Q]

(where the implied constant on the right-hand side incorporates the factor
√
d). Then the

conclusion follows from the fact that for all q totally split in Kg and such that it does not
divide the discriminant of g, any p ∈ Og lying above q is a prime ideal that belongs to Sg

and σ∗µp = νq. �

This corollary refines [16, Cor. 2.4], since the latter only stated the weak convergence of
νq to µg, whereas here we obtain a quantitative rate of convergence.

4. Sums of additive characters over growing multiplicative subgroups

So far, we have only been dealing with weak convergence of measures in compact groups
since we were essentially working in (S1)d for a fixed d. However, the Wasserstein metric
metrizes weak convergence in a much more general context, and in this section we give an
application in a non-compact setting.

We consider the sums

Sd(q, a) =
∑

x∈µd(Fq)

e

(
ax

q

)
which are a special case of the sums Sg(q, a) with g = Xd−1. For a fixed integer d and q going
to infinity among the primes congruent to 1 modulo d, their asymptotic behaviour attracted

13



interest partly because of the beautiful visual aspect of the plots: see e.g. [10, 12, 13, 18, 20]
for examples and generalizations. In particular, if d is prime [12, Th. 6.3] states that
they become equidistributed (as q goes to infinity and a varies in Fq) with respect to the
pushforward measure of the Haar probability measure on (S1)d−1 via the Laurent polynomial

gd : (S1)d−1 → C
(z1, . . . , zd−1) 7→ z1 + · · ·+ zd−1 + 1

z1...zd−1

This result explains why the sums appeared to fill out the region of the complex plane
delimited by a d-cusps hypocycloid.

We are now interested in studying the case where d is allowed to vary with q. In more
probabilistic terms, the previous result says that when q is large the subsets

{Sd(q, a), a ∈ Fq}

of the complex plane look like q independent values taken by a sum of the form

Z1 + · · ·+ Zd−1 +
1

Z1 . . .Zd−1

of independent and identically distributed Steinhaus random variables Zi (i.e. uniform on
S1). Thanks to the multidimensional Central Limit Theorem, the random variables

1√
d

(
Z1 + · · ·+ Zd−1 +

1

Z1 . . .Zd−1

)
converge in law to a two dimensional gaussian N (0, 1

2
Id) (the coefficient 1

2
just comes from

the value of the variance of the real and imaginary parts of a uniform random variable on
the circle). Therefore, if we denote by µq,d the measure

1

q

∑
a∈Fq

δ 1√
d

Sd(q,a)

then limd→∞ (limq→∞ µq,d) = N (0, 1
2
Id). However limq→∞ (limd→∞ µq,d) = δ0, so we are

interested in intermediate regimes, in which both q and d tend to infinity, and the limit
of the sequence of measures µq,d can be determined. Equivalently, this means that we are
interested in the distribution of the sums

(11)
1√
d

∑
x∈µd(Fq)

e

(
ax

q

)
as a varies in Fq and both q and d tend to infinity (with q and d prime and q ≡ 1 (mod d)).
These sums of additive characters over multiplicative subgroups whose cardinality grows
with q have been studied before, mostly with the aim of proving non-trivial upper bounds.
In particular, when d grows at least like a small power of q, the groundbreaking work of
Bourgain, Glibichuk and Konyagin [8] shows a power saving bound for Sd(q, a). On the
other hand, [15, Th. 1.8] shows that if d � log(q), it is impossible to obtain a non-trivial
bound.

Combining the results of Section 3.2 and the Central Limit Theorem, we will prove the
following result in a similar setting where d is very small with respect to q.

14



Theorem 4.1. For every odd prime q, we let d = d(q) be a prime divisor of q − 1. If
d(q) −→

q→+∞
+∞ and

d(q) =
q→∞

o

(
log q

log log q

)
then as q tends to infinity and a varies in Fq, the sums (11) become equidistributed in the
complex plane with respect to a normal distribution N (0, 1

2
Id).

The first step of the proof consists in using the following quantitative form of the conver-
gence already obtained in [12, Th. 6.3].

Lemma 4.2. Let d and q be two prime numbers such that q ≡ 1 (mod d). Denote by γd the
pushforward measure of the Haar probability measure on (S1)d−1 via the Laurent polynomial

1√
d
gd (in other words it is the law of the random variable 1√

d

(
Z1 + · · ·+ Zd−1 + 1

Z1...Zd−1

)
where the Zi are independent and identically distributed uniform random variables on S1).

Then W 1(µq,d, γd) 6 2
√

12
√
d(d+ 1)q−

1
d−1 .

Proof. We first use Proposition 3.3 in the particular case where g = Xd − 1. Then Zg = µd
(the set of d–th roots of unity in C) and Kg is the cyclotomic field Q(µd). In particular, [Kg :
Q] = d−1 and we can take Cg = 1 in Lemma 3.2 because the roots of unity have modulus 1.
We recall that for all p ∈ SXd−1, the measure µp denotes the law of the random variable Up

(as introduced in Section 3.1), and λXd−1 is the Haar probability measure on HXd−1. Then
using the explicit constant C′g obtained at the end of the proof of Proposition 3.3, we deduce
that

W 1(µp, λXd−1) 6 4
√

3
√
d(d+ 1)|p|−

1
d−1 .

Then we pushforward via the map σd = d−1/2σ, defined by

σd(f) =
1√
d

∑
x∈µd

f(x).

This map is 1-Lipschitz thanks to Lemma 3.4. This gives

(12) W 1 ((σd)∗ µp, (σd)∗ λXd−1) 6 4
√

3
√
d(d+ 1)|p|−

1
d−1 .

Finally, in [16, §3] we showed that when d is prime the Z-module RXd−1 of additive relations
among the roots of Xd − 1 is generated by the constant map equal to 1, so HXd−1 can be
identitified with (S1)d−1. Then it follows formally from the definitions that for q ≡ 1 (mod d)
the measure µq,d coincides with the measure (σd)∗µp for all p lying above q (and such p
belong to SXd−1 thanks to [17, Cor. 10.4]), and the measure γd coincides with (σd)∗λXd−1.

Therefore, (12) actually says that W 1(µq,d, γd) 6 4
√

3
√
d(d+ 1)q−

1
d−1 . �

We will also need a form of the Central Limit Theorem in Wasserstein metric, which we
state in the next Lemma.

Lemma 4.3. Let k > 1 and let (Xi)i>1 be a sequence of independent and identically dis-
tributed random variables taking values in Rk. Assuming further that they admit a moment

15



of order 2, we denote by

m = E(X1) =

E(X1,1)
. . .

E(X1,k)


the mean value of X1 and by Σ = (σi,j)16i,j6k the covariance matrix of X1, meaning that for
all i, j ∈ {1, . . . , k}, σi,j = E((X1,i − E(X1,i))(X1,j − E(X1,j))). Then if µn denotes the law

of (X1+···Xn)−nm√
n

we have

W 1(µn,N (0,Σ)) −→
n→∞

0.

Proof. Thanks to [22, Th. 7.12], convergence with respect to the p-Wasserstein metric is
equivalent to the weak convergence of measures and the convergence of absolute moments
of order p. However, in the setting of the Central Limit Theorem we have (denoting by N a
random variable with distribution N (0,Σ)):

E
(∣∣∣(X1 + · · ·Xn)− nm√

n

∣∣∣2) = E|N|2 = Tr(Σ),

hence the convergence of absolute moments of order 2 is automatically satisfied. Therefore,
the usual Central Limit Theorem (see, e.g., [1, Th. 29.5]) which states the weak convergence
of µn to N (0,Σ) immediately gives the apparently stronger statement

W 2(µn,N (0,Σ)) −→
n→∞

0.

Since W 1 6 W 2, the conclusion follows. �

Remark. We stated a qualitative result that suffices for our application, but there are several
articles investigating the rate of convergence in the Central Limit Theorem with respect
to Wasserstein metrics. Under the assumption that E(|X1|4) is finite, [4, Th. 1] states
that W2(µn,N (0,Σ))�k

1√
n
· The dependence of the implicit constant with respect to the

dimension k is a more subtle question, we refer to [5] and the references therein for a recent
account.

Proof of Theorem 4.1. Let q be an odd prime, and d = d(q) a prime divisor of q− 1. By the
triangle inequality for the metric W 1 we have

W 1(µq,d,N (0,Σ)) 6 W 1(µq,d, γd) + W 1(γd,N (0,Σ)).

The second term converges to zero when d tends to infinity thanks to the central limit
theorem (the term (

√
dZ1 . . .Zd−1)−1 does not cause any issue because it has modulus 1/

√
d

so it converges almost surely to zero). Moreover, thanks to Lemma 4.2 the first term is upper

bounded by 4
√

3
√
d(d+ 1)q−

1
d−1 , so it suffices to show that the condition

d =
q→+∞

o

(
log q

log log q

)
implies that this upper bound converges to zero as q goes to infinity. This comes from the
fact that Lambert W0 function (which is the inverse bijection to x 7→ xex on

[
−1
e
,+∞

[
)
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satisfies W0(x) ∼x→+∞ log(x), so the condition above may be rewritten as

d =
q→∞

o

(
log q

W0(log q)

)
·

Therefore, d = log q
W0(log q)

ε(q) for some function ε that tends to zero as q tends to infinity, so

d log d =
log q

W0(log q)
ε(q) log

(
log q

W0(log q)
ε(q)

)
and for q large enough this is upper bounded by

log q

W0(log q)
ε(q) log

(
log q

W0(log q)

)
,

but by definition of W0 this is equal to log(q)ε(q). This shows that d log(d) =
q→∞

o(log q)

and elementary manipulations show that this implies d3/2 =
q→∞

o
(
q

1
d−1

)
, concluding the

proof. �

Another type of factorization of d for which the limiting distribution can be determined
is when d is a power of fixed prime. Indeed, when d is of the form rb where r is a prime
number and b > 1, the Laurent polynomial gd of [12, 13] can be made more explicit (this
comes from the fact that the coefficients of the cyclotomic polynomial Φrb are known).
Precisely, [13, Cor. 1] states that the sums Sd(a, q) become equidistributed with respect

to the pushforward measure of the Haar measure on (S1)ϕ(rb) with respect to the Laurent
polynomial grb defined by

grb
(
z1, z2, . . . , zϕ(rb)

)
=

ϕ(rb)∑
j=1

zj +
rb−1∑
m=1

r−2∏
`=0

z−1
m+`rb−1 .

Rearranging the terms according to their residue classes modulo rb−1 we can rephrase that
statement as follows: the sums 1√

d
Sd(q, a) become equidistributed with respect to a measure

γd which the law of a random variable

(13)
1

rb/2

rb−1∑
i=1

Zi,1 + · · ·+ Zi,r−1 +
1

Zi,1 . . .Zi,r−1

·

where (Zi,j)16i6rb−1, 16j6r−1 is a family of independent and identically distributed Steinhaus
random variables. Thanks to the proof of Lemma 4.2 (we only used the fact that d is prime
to make γd more explicit, but the lemma holds for arbitrary d, except for the description of
the Laurent polynomial gd), we have

W 1(µq,d, γd) 6 4
√

3
√
d(d+ 1)q−

1
d−1 .
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This upper bound converges to zero as d and q tend to infinity provided d = o
(

log q
log log q

)
.

Now, if r is fixed and only b varies, the sum (13) may be rewritten as

1√
r

 1√
rb−1

rb−1∑
i=1

Xi


where the Xi = Zi,1 + · · · + Zi,r−1 + 1

Zi,1...Zi,r−1
are independent and identically distributed

random variables which have mean 0. Thanks to the Central Limit Theorem, we have

1√
rb−1

rb−1∑
i=1

Xi
law−→ N (0,Σ)

where Σ = r
2
Id is the covariance matrix of X1 (viewed as a random variable with values in

R2). Taking into account the factor 1/
√
r in front of the sum, we obtain the following result:

Theorem 4.4. Let r be a fixed prime. For all integers b and all prime numbers q such that
d = rb divides q − 1, we define the sums 1√

d
Sd(q, a) as above. Then as d and q both tend to

infinity with d = o
(

log q
log log q

)
, they become equidistributed in the complex plane with respect to

the normal distribution N (0, 1
2
Id).

Appendix: proof of the Bobkov–Ledoux inequality

In this section, we reproduce and combine the arguments of Bobkov and Ledoux in [2, 3]
to obtain the variant of [2, Eq. (1.6)] stated in Theorem 1.2, (7). Following the original
source, for an integer d > 1, we identify here the torus (R/Z)d with Qd = [0, 2π[d⊂ Rd with
the distance %d defined in (6).

Lemma 4.5. Denote by Lip2π
1 (Rd,R) the set of maps v : Rd → R that are 2π-periodic and

1-Lipschitz (with respect to the euclidean norm on Rd). Then we have that for all Borel
probability measures µ and ν on (Qd, %d),

sup
v∈Lip2π

1 (Rd,R)

∣∣∣∫
Qd
vdµ−

∫
Qd
vdν
∣∣∣ = sup

w∈Lip2π
1 (Rd,R)∩C∞

∣∣∣∫
Qd
wdµ−

∫
Qd
wdν

∣∣∣.
Proof. This is a standard smoothing argument by convolution. If v ∈ Lip2π

1 (Rd,R) then one
easily checks that for all ε > 0,

vε(x) =
1

(2πε2)d/2

∫
Rd

v(x− y)e−
|y|2

2ε2 dy

defines a function in Lip2π
1 (Rd,R) ∩ C∞ that satisfies ‖vε − v‖∞,Rd −→

ε→0
0. Then the result

follows from this approximation by a smooth function. �

Lemma 4.6. Let µ and ν be two Borel probability measures on (Qd, %d). The following
inequality holds:

sup
w∈Lip2π

1 (Rd,R)∩C∞

∣∣∣∫
Qd
wdµ−

∫
Qd
wdν

∣∣∣ 6 ( ∑
m∈Zd {0}

|µ̂(m)− ν̂(m)|2

|m|2
)1/2

·
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Proof. Let w ∈ Lip2π
1 (Rd,R) ∩ C∞. Since w is smooth, it admits a Fourier series expansion

that converges absolutely:

w(x) =
∑
m∈Zd

ame
im·x.

Moreover, one can differentiate term by term, so that for all k ∈ {1, . . . , d},

∂w

∂xk
(x) =

∑
m∈Zd

imkame
im·x.

Then thanks to Parseval’s equality (the L2-norm of ∂w
∂x`

equals the `2-norm of its sequence of

Fourier coefficients):

1

(2π)d

∫
Qd

∣∣∣ ∂w
∂xk

(x)
∣∣∣2dx =

∑
m∈Zd

|mk|2|am|2.

Summing over k ∈ {1, . . . , d} yields

1

(2π)d

∫
Qd

∣∣∣∇w(x)
∣∣∣2dx =

∑
m∈Zd

|m|2|am|2.

Finally, we use the fact that w is 1-Lipschitz to deduce that the norm of its gradient is always
bounded above by 1. Therefore,

(14)
∑
m∈Zd

|m|2|am|2 6 1.

To conclude, we first write∣∣∣∫
Qd
wdµ−

∫
Qd
wdν

∣∣∣2 =
∣∣∣∑
m∈Zd

am

(∫
Qd
eim·xdµ(x)−

∫
Qd
eim·xdν(x)

)∣∣∣2
=
∣∣∣∑
m∈Zd

am

(
µ̂(m)− ν̂(m)

)∣∣∣2
then we observe that the two Fourier coefficients coincide at m = 0, so the right-hand side
may be rewritten as ∣∣∣ ∑

m∈Zd {0}

|m|am
( µ̂(m)− ν̂(m)

|m|

)∣∣∣2
and the conclusion follows from the Cauchy–Schwarz inequality and (14). �

One deduces quickly the following corollary:

Corollary 4.7. Let µ, ν be two Borel probability measures on (Qd, %d). The following in-
equality holds:

W 1(µ, ν) 6
( ∑
m∈Zd {0}

|µ̂(m)− ν̂(m)|2

|m|2
)1/2

.
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Proof. Thanks to the dual formulation of Th. 1.2 (6), we have

W 1(µ, ν) = sup
u∈Lip1(Qd,R)

∣∣∣∫
Qd
udµ−

∫
Qd
udν

∣∣∣.
Now, if u : (Qd, %d) → R is a 1-Lipschitz map (with respect to %d) then its 2π-periodic

extension to Rd is a 1-Lipschitz map with respect to the euclidean norm on Rd. Conversely,
any v ∈ Lip2π

1 (Rd,R) satisfies that v|Qd is 1-Lipschitz with respect to %d. Therefore,

sup
u∈Lip1(Qd,R)

∣∣∣∫
Qd
udµ−

∫
Qd
udν

∣∣∣ = sup
v∈Lip2π

1 (Rd,R)

∣∣∣∫
Qd
vdµ−

∫
Qd
vdν
∣∣∣

and thanks to Lemma 4.5 and 4.6, the right-hand side is bounded by( ∑
m∈Zd {0}

|µ̂(m)− ν̂(m)|2

|m|2
)1/2

.

�

This corollary is not suitable for all applications because the series on the right-hand
side may well diverge. In order to obtain a more useful inequality, the method is the usual
application of convolution by a measure whose sequence of Fourier coefficients is compactly
supported. Recall that if µ and ν are Borel probability measures on (R/Z)d, the convolution
µ ∗ ν is the unique Borel probability measure on (R/Z)d such that∫

(R/Z)d
ud(µ ∗ ν) =

∫
(R/Z)2d

u(x+ y)dµ(x)dν(y)

for all continuous functions u : (R/Z)d → C. As usual, one can identify µ, ν and µ ∗ ν with
measures on Qd, and then∫

Rd

ud(µ ∗ ν) =

∫
Rd×Rd

u(x+ y)dµ(x)dν(y)

for all functions u : Rd → C which are continuous and 2π-periodic.

Lemma 4.8. Let µ and ν be two Borel probability measures on (Qd, %d) and let H =
(H1, . . . ,Hd) be a random vector in Rd. For x ∈ R, denote by M(x) the unique element
of (x+ 2πZ)∩ (−π, π]. Let N be the random vector (M(H1), . . . ,M(Hd)) and let η denote the
law of N. Then

W 1(µ, ν) 6 W 1(µ ∗ η, ν ∗ η) + 2E(|H|).

Proof. Let u ∈ Lip2π
1 (Rd,R). By the triangle inequality, we have∣∣∣∫

Qd
udµ−

∫
Qd
udν

∣∣∣ 6 ∣∣∣∫
Qd
udµ−

∫
Qd
ud(µ ∗ η)

∣∣∣+
∣∣∣∫

Qd
ud(µ ∗ η)−

∫
Qd
ud(ν ∗ η)

∣∣∣
+
∣∣∣∫

Qd
ud(ν ∗ η)−

∫
Qd
udν

∣∣∣
and thanks to Theorem 1.2 (6),∣∣∣∫

Qd
ud(µ ∗ η)−

∫
Qd
ud(ν ∗ η)

∣∣∣ 6 W 1(µ ∗ η, ν ∗ η).
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Thus, it suffices to show that∣∣∣∫
Qd
udµ−

∫
Qd
ud(µ ∗ η)

∣∣∣ 6 E(|H|),

since the same proof will also show the inequality for the term with ν and ν ∗ η. Now, by
definition of the convolution and the fact that η is a probability measure, we have∣∣∣∫

Qd
ud(µ ∗ η)−

∫
Qd
udµ

∣∣∣ =
∣∣∣∫

Qd

(∫
Qd
u(x+ y)− u(x)dµ(x)

)
dη(y)

∣∣∣
6
∫

Qd

(∫
Qd
|u(x+ y)− u(x)|dµ(x)

)
dη(y).

Using the fact that u ∈ Lip2π
1 (Rd,R), we deduce that∣∣∣∫

Qd
ud(µ ∗ η)−

∫
Qd
udµ

∣∣∣ 6 ∫
Qd
|y|dη(y) = E(|N|).

Finally, since for all x ∈ R, |M(x)| 6 |x|, we have E(|N|) 6 E(|H|), hence the conclusion. �

Lemma 4.9. For all integers T > 1, there exists a random variable H with values in Rd

whose characteristic function is supported on the cube [−T,T]d and such that E(|H|) 6 2
√

3
√
d

T
.

Proof. As a first attempt (that will require some adjustments) let us use what is known on
the Fourier transform of the triangle function: it is a classic fact that if X is a real random
variable whose density function is

f(x) =
2(1− cos(x/2))

πx2

then its characteristic function ϕX(•) = E(eiX·•) is given by

ϕX(s) = (1− 2|s|)+

where (−)+ denotes the positive part. In particular, ϕX is supported on
[
−1

2
, 1

2

]
, so that

suitable renormalizations of X will allow us to construct random variables with support in
[−T,T] for all T. However, the issue is that E(|X|) = +∞, which would make the inequality
of Lemma 4.8 useless. This is why the following adjustment is needed: rather than working
with X, we will work with the random variable ξ whose characteristic function is given by

(15) w(s) = 3(ϕX ∗ ϕX)(s) = 3

∫
R

ϕX(s− t)ϕX(t)dt.

Here, the factor 3 is just a normalization factor to ensure that w(0) = 1, which is a necessary
condition in order to be a characteristic function. Then thanks to the convolution theorem
for the Fourier transform, w is the characteristic function ϕξ of a random variable ξ with
density

g(x) = 6πf(x)2 =
24(1− cos(x/2))2

πx4
·

Since w = 3(ϕX ∗ ϕX), it is supported on [−1, 1], and this time E(|ξ|) < +∞. Even better,
E(ξ2) is also finite, and can be explicitly computed! Indeed, since w is the characteristic
function of ξ, the second moment of ξ is equal to −w′′(0), and this can be calculated from
(15), yielding E(ξ2) = 12. To conclude, it suffices to define H as 1

T
(ξ1, . . . , ξd) for independent
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random variables ξi having the same distribution as ξ. Indeed, E(|H|2) = 12d
T2 and (E|H|)2 6

E(|H|2) so E(|H|) 6 2
√

3
√
d

T
. Moreover, for all s = (s1, . . . , sd) ∈ Rd,

ϕH(s) =
d∏
j=1

w(sj/T)

so the choice of a w supported on [−1, 1] implies that ϕH is supported on [−T,T]d. �

Remark. Among all random vectors H such that ϕH is supported on [−T,T]d, what is the
lowest E(|H|) one can hope for? In this remark, we show that the result of Lemma 4.9 is
close to optimal.

Let us denote by (e1, . . . , ed) the canonical basis of Rd and by

ϕH : Rd → C
t = (t1, . . . , td) 7→ E(eit·H)

the characteristic function of H. Then for all j ∈ {1, . . . , d},
∂ϕH

∂tj
(t) = iE(Hje

it·H).

Therefore, if ϕH is supported on [−T,T]d, we have ϕH(Tej) = 0, hence

1 =
∣∣∣ϕH(Tej)− ϕH(0)

∣∣∣ =
∣∣∣∫ T

0

∂ϕH

∂tj
(sej)ds

∣∣∣ 6 TE(|Hj|)

thanks to the triangle inequality. Summing over j and using Cauchy–Schwarz inequality
yields

d 6 TE(|H1|+ · · ·+ |Hd|) 6 T
√
dE(|H|)

hence √
d

T
6 E(|H|).

Therefore the construction of H in Lemma 4.9 gives the best possible dependence with respect

to T and d. The only question that remains is whether one can obtain E(|H|) = c
√
d

T
for

some 1 6 c < 2
√

3.

Proof of Theorem 1.2, (7). Let T > 1 and let H be a random vector as given by the previous
lemma. If µ and ν are two Borel measures on (Qd, %d), then thanks to Lemma 4.8 we have

W 1(µ, ν) 6 W 1(µ ∗ η, ν ∗ η) + 2E(|H|)

The choice of H ensures that E(|H|) 6 2
√

3
√
d

T
, so it just remains to prove that

W 1(µ ∗ η, ν ∗ η) 6
( ∑

m∈Zd
0<‖m‖∞6T

|µ̂(m)− ν̂(m)|2

|m|2
)1/2

.

This follows from Corollary 4.7 and the fact that η̂(m) = 0 for all m /∈ [−T,T]d. �
22



References

[1] Patrick Billingsley, Probability and measure, Third, Wiley Series in Probability and Mathematical Sta-
tistics, John Wiley & Sons, Inc., New York, 1995. A Wiley-Interscience Publication.

[2] Sergey G. Bobkov and Michel Ledoux, Transport inequalities on Euclidean spaces for non-Euclidean
metrics, J. Fourier Anal. Appl. 26 (2020), no. 4, 27.

[3] , A simple Fourier analytic proof of the AKT optimal matching theorem, Ann. Appl. Probab. 31
(2021), no. 6, 2567–2584.

[4] Thomas Bonis, Stein’s method for normal approximation in Wasserstein distances with application to
the multivariate central limit theorem, Probab. Theory Relat. Fields 178 (2020), no. 3-4, 827–860.

[5] , Improved rates of convergence for the multivariate central limit theorem in Wasserstein distance,
Electron. J. Probab. 29 (2024).

[6] Bence Borda, Berry-Esseen smoothing inequality for the Wasserstein metric on compact Lie groups, J.
Fourier Anal. Appl. 27 (2021), no. 2, 24.

[7] , Equidistribution of random walks on compact groups. II: The Wasserstein metric, Bernoulli 27
(2021), no. 4, 2598–2623.

[8] J. Bourgain, A. A. Glibichuk, and S. V. Konyagin, Estimates for the number of sums and products and
for exponential sums in fields of prime order, J. London Math. Soc. (2) 73 (2006), no. 2, 380–398.

[9] L. Brown and S. Steinerberger, On the Wasserstein distance between classical sequences and the Lebesgue
measure, Trans. Am. Math. Soc. 373 (2020), 8943–8962.

[10] Paula Burkhardt, Alice Zhuo-Yu Chan, Gabriel Currier, Stephan Ramon Garcia, Florian Luca, and
Hong Suh, Visual properties of generalized Kloosterman sums, J. Number Theory 160 (2016), 237–253.

[11] Michael Drmota and Robert F. Tichy, Sequences, discrepancies and applications, Lect. Notes Math.,
vol. 1651, Berlin: Springer, 1997.

[12] William Duke, Stephan Ramon Garcia, and Bob Lutz, The graphic nature of Gaussian periods, Proc.
Am. Math. Soc. 143 (2015), no. 5, 1849–1863.

[13] Stephan Ramon Garcia, Trevor Hyde, and Bob Lutz, Gauss’s hidden menagerie: from cyclotomy to
supercharacters, Notices Am. Math. Soc. 62 (2015), no. 8, 878–888.

[14] C. Graham, Irregularity of distribution in Wasserstein distance, J. Fourier Anal. Appl. 26–75 (2020).
[15] S. V. Konyagin, Exponential sums over multiplicative groups in fields of prime order and related com-

binatorial problems, Lecture notes available at https://www.mathtube.org/sites/default/files/

lecture-notes/Konyagin_Lectures.pdf.
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