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Abstract

In this report, we study the concept of group representations and character
theory. We will apply the results of this theory to the symmetric group and find
all irreducible representations of the symmetric group in characteristic 0. We then
present a few rules that allow to compute irreducible characters of the symmetric
group1. Finally, we will travel to the confines of space and character theory2 by
describing Brauer’s theory of modular characters.
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Introduction

Notations
We will use the following notations.

— N = {0, 1, 2, . . .}, N∗ = {1, 2, 3, . . .}.

— Elements of a vector space will be denoted in boldface, like for example v.

— The symmetric (resp. alternating) group of order n will be denoted by Sn (resp.
An).

— If G is a group, we write its identity element 1G.

— If V and W are vector spaces, L (V,W ) is the vector space of linear transforms
from V to W .

— If V is a vector space, its general linear group will be denoted by GL(V ).
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— If d ∈ N∗ and K is a field, we write Md(K) for the set of square matrices with
entries in K of dimensions d× d. The group of invertible matrices inMd(K) will
be denoted by GLd(K).

— If n ∈ N∗, we write λ ` n if λ is partition of n, that is to say λ = (λ1, . . . , λk) is
a non-increasing sequence of integers such that n = λ1 + · · ·+ λk.

— If λ = (λ1, . . . , λk) ` n, we let λ! := λ1! · · ·λk!.
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1 K[G]-MODULES

1 K[G]-modules

1.1 Linear actions and matrices

Let K be a field (usually C, or an algebraically closed field of characteristic zero),
and let V be a vector space over K (generally of finite dimension d). Let G be a group
(usually finite).

Definition 1.1.1. V is said to be a G-module if there exists a group homomor-
phism

ρ : G −→ GL(V ).

It is equivalent to say that G acts linearly on V . The integer dimV is called the
degree of ρ (denotated by deg ρ).

Remark 1.1.2. (V, ρ) is called a group representation of G. We usually only write V
instead of (V, ρ). In this case if v ∈ V , we write

g · v = ρ(g)(v),

or simply gv.

Such an homomorphism endows V with a K[G]-module structure. Conversely, if
V is a K[G]-module, we can define a group representation on V . This K[G]-module
structure is often shortened to “G-module” like in the definition, or even “module” when
the context is clear.

We also define matrix representations in the same way.

Definition 1.1.3. A matrix representation of the group G is a group homomor-
phism

X : G −→ GLd(K).

The integer d is called the degree of X. Similarly, dimV is called the degree of ρ.

Remark 1.1.4. Amatrix representation of degree d is nothing than aG-module on V =
Kd. Conversely, a G-module V defines a matrix representation: choose a basis B of V
and let X(g) = MatB(ρ(g)). We will go back and forth between matrix representations
and G-modules as they are the same thing.

1.2 Examples

Let us now consider a few examples. Some are trivial while the others will be used
extensively here.
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1 K[G]-MODULES

1.2.1 Trivial representation

Given any group G and K-vector space V , we can define

ρ : G −→ GL(V )
g 7−→ idV

,

which is clearly a group homomorphism.

1.2.2 Representations of the cyclic groups

Let n ≥ 1 and K = C. Let us find all one-dimensional representations of Z/nZ =
{0̄, . . . , n− 1}. Let X : (Z/nZ,+) −→ (C∗, · ) be such a (matrix) representation (note
that we identify GL1(C) with C∗). We have

1 = ρ(0̄) = ρ(n̄) = ρ(1̄)n.

This means that ρ(1̄) is an n-th root of unity in C. As Z/nZ is cyclic and generated
by 1̄, this determines the whole representation. Set ω := ρ(1̄) (an n-th root of unity),
then

ρ(k̄) = ωk

for all k̄ ∈ Z/nZ. Conversely, a n-th root of unity gives a group representation in the
same way, and so we have found all one-dimensional group representations of the cyclic
groups.

1.2.3 Matrix representations of the symmetric group

Let n ≥ 1. We define two matrix representation of the symmetric group.

— Sign representation. Let sgn : Sn −→ {−1, 1} be the sign function. Then, sgn
(seen as a function taking its values in K∗) is a one-dimensional matrix represen-
tation.

— Defining representation. We define the following degree n representation: if π ∈
Sn, set

X(π) = (δi,π(j)).

X(π) is often known as the permutation matrix of π.
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1 K[G]-MODULES

1.2.4 Permutation representation

Let S = {s1, . . . , sn} be a set upon which acts G. We can transform this action into
a G-module: let KS = K{s1, . . . , sn} be the vector space generated by S over K, which
consists of the formal sums

n∑
i=1

λisi = λ1s1 + · · ·+ λnsn.

If g ∈ G, we can define the action by

g

(
n∑
i=1

λisi

)
=

n∑
i=1

λi(g · si).

In this way, we found a G-module structure on KS by linearly extending the action of
G. This representation is called the permutation representation.

1.2.5 Left regular representation

Let G = {g1, . . . , gn} be a finite group. G acts naturally on itself by setting g ·h = gh
for all g, h ∈ G. We consider the algebra K[G] consisting of the formal sums

n∑
i=1

λigi = λ1g1 + · · ·+ λngn.

Its G-action is defined by

g

(
n∑
i=1

λigi

)
=

n∑
i=1

λiggi.

Obviously, this is a special case of the permutation representation with S = G but this
structure is richer as K[G] is an algebra. For this reason, it is called the group algebra
of G over K, denoted K[G]. The square brackets are used to indicate that it is an
algebra and not only a vector space (denoted by KS). This representation is called the
left regular representation.

1.2.6 Left coset representation

Let G be a finite group and let H be a subgroup of G. Let H := G/H and let
g1, . . . , gk be a transversal for H (or a set of distinguished representatives of H in G).
This means we have H = {g1H, . . . , gkH}. The group G acts on H = G/H by setting
g′ · gH := (g′g)H for all g, g′ ∈ G. As G acts on H, we can consider the G-module KH.
For λ1g1H + · · ·+ λngnH ∈ CH and g ∈ G, we have

g(λ1g1H + · · ·+ λngnH) = λ1gg1H + · · ·+ λnggnH.
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1 K[G]-MODULES

If H = G, this representation is the trivial representation. If H = {1G}, H = G and
this is the regular representation.

1.2.7 Tensor product

We now give a way to construct a tensor product of G-modules: if (V1, ρ1) and
(V2, ρ2) are representations of G, we define ρ1 ⊗ ρ2 to be the representation given by

(ρ1 ⊗ ρ2)(g)(v1 ⊗ v2) = ρ1(g)(v1)⊗ ρ2(g)(v2)

for all g ∈ G, and v1 ∈ V1, v2 ∈ V2. It is a well defined representation of G on V1 ⊗ V2.

1.3 Submodules

In all fields of algebra after defining a structure, one quickly wants to study the
“substructures” associated to an object (group–subgroup, vector space–subspace, . . . ).
Obviously in our case, we will want submodules to be vector spaces. Not only that, a
submodule will have to be closed under the action of G.

The introduction of submodules will help us decompose representations into “smaller”
already known representations. In matrix terms, if ρ : G −→ GL(V ) is a matrix repre-
sentation, we want to find a basis B of V such that for all g ∈ G,

X(g) := MatB(ρ(g)) =

(
A(g) B(g)
(0) C(g)

)
where the sizes of the matrices A(g), B(g), and C(g) are independant of g. Ultimately,
we will want to find a basis such that MatB(ρ(g)) are all block diagonal matrices of
dimensions independant of g. This motivates the idea of submodules and the necessity
of decomposing modules into submodules until they cannot be decomposed furthermore.

Definition 1.3.1. Let V be a G-module and W a subspace of V . W is said to
be a submodule of V if

gw ∈ W

for all g ∈ G and w ∈ W .

Example 1.3.2. {0V } and V are always submodules of V (and are said to be its trivial
submodules).

Example 1.3.3. Let n ≥ 2 and G = Sn. Consider the G-module V = K[1, . . . ,n], and
W = K[1 + 2 + · · · + n] (the subspace spanned by 1 + 2 + · · · + n). If π ∈ G, then
g(1 + 2 + · · ·+ n) = 1 + 2 + · · ·+ n because π is a permutation of [[1, n]]. This means4
W is a submodule of V .

4Note that we have only checked that W is closed under the action of G on a basis of W , which is
enough.
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1 K[G]-MODULES

More generaly, consider a finite group G and the module V = K[G]. Then the
subspace W = K[

∑
g∈G g] is a submodule of W : if h ∈ G then

h

(∑
g∈G

g

)
=
∑
g∈G

hg =
∑
g∈G

g.

Example 1.3.4. If V = K[Sn], then the submodule K[
∑

π∈Sn sgn(π) π] has the sign
representation.

Definition 1.3.5. A G-module is irreducible (or simple) if it contains no non-
trivial submodule.

Example 1.3.6. Any 1-dimensional module is irreducible. Representations of examples
1.3.3 and 1.3.4 are not irreducible when n ≥ 2 and |G| ≥ 2 as we described some of
their nontrivial submodules.

1.4 Maschke’s theorem

It is extremely convenient in linear algebra to describe a vector space in terms of
direct sums of vector spaces. The first necessity given a vector space V and a subspace
W is to be able to find another subspace W ′ such that V = W ⊕ W ′. Now if V is
a G-module and W is a submodule, nothing can ensure that W ′ is also a submodule.
However, W ′ is not unique as a vector space complement of V , so there is a chance to
find one that is also a submodule. To achieve this, we will use inner products.

Notation. If n,m ≥ 1, A ∈Mn(K), and B ∈Mm(K), let

A⊕B =

(
A (0)
(0) B

)
∈Mn+m(K).

If X is a matrix representation and X(g) = A(g) ⊕ B(g) for all g ∈ G (such that the
sizes of A(g) and B(g) are independant of g), we write X = A⊕B.

1.4.1 K = C

First, we study reduction of submodules when K = C.

Proposition 1.4.1. Suppose K = C. Let V be a G-module and let W be a
submodule of V . Let 〈·, ·〉 be an inner product on V invariant under the action
of G, i.e

〈gv1, gv2〉 = 〈v1,v2〉

for all v1,v2 ∈ V and g ∈ G. Then, W⊥ is also a submodule.
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1 K[G]-MODULES

Proof. Let w ∈ W , u ∈ W⊥ and g ∈ G. We can write

〈gu,w〉 =
〈
g−1gu, g−1w

〉
=
〈
u, g−1w

〉
= 0

(because g−1w ∈ W ). This means that 〈gu,w〉 = 0 for all w ∈ W , and so gu ∈ W⊥

for all g ∈ G.

Example 1.4.2. Consider V = C{1,2,3} upon which S3 acts, and the submodule
W = C{1 + 2 + 3} (example 1.3.3). As vector spaces, we have

C{1,2,3} = C{1 + 2 + 3} ⊕ C{2,3}

but C{2,3} is not a submodule as (1 2)(2) = 1 6∈ C{2,3}. To find a complement to W
that is also a submodule, we can consider the inner product defined by 〈i, j〉 = δi,j for
all i, j ∈ {1, 2, 3} and then extended linearly on the left and antilinearly on the right.
It is invariant under the action of S3 as for every π ∈ S3 and i, j ∈ {1, 2, 3},

〈πi, πj〉 = δπ(i),π(j) = δi,j = 〈i, j〉

for π is injective (note we only checked the invariance on a basis of C{1,2,3}). We can
now consider

W⊥ = {v ∈ V | ∀w ∈ W, 〈v, w〉 = 0}
= {λ11 + λ22 + λ33 ∈ C{1,2,3} | 〈λ11 + λ22 + λ33,1 + 2 + 3〉 = 0}
= {λ11 + λ22 + λ33 ∈ C{1,2,3} |λ1 + λ2 + λ3 = 0}.

Theorem 1.4.3 (Maschke, K = C). Suppose G is a finite group, K = C and let
V be a G-module. If V is nonzero, there exists irreducible submodules (W (i))1≤i≤k
such that

V =
⊕
i=1

W (i).

Proof. The proof is a done by induction on d = dimV : if V is irreducible, we are done.
If not, there exists a submodule W ⊂ V . Let (e1, . . . , ek, ek+1, . . . , ed) be a base of V
such that (e1, . . . , ek) is a basis of W . Then, let (ei, ej) = δi,j for all i, j ∈ [[1, d]] and
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1 K[G]-MODULES

extend it to an inner product on V . Although (· , ·) may not be G-invariant, the inner
product defined for all v1,v2 ∈ V by

〈v1,v2〉 =
∑
g∈G

(gv1, gv2)

is G-invariant. We can then consider the submodule W⊥ (where “⊥” is the orthogonal
for 〈·, ·〉) and induct on W and W⊥.

Remark 1.4.4. As we will see, Maschke’s theorem also holds for all fields K such
that its characteristic does not divide the order of |G|. However, the theorem becomes
furiously wrong when G is infinite. Take for example the action of Z on C2 defined by

n · (z1, z2) =

(
1 n
0 1

)(
z1
z2

)
= (z1 + nz2, z2)

for all n ∈ Z and (z1, z2) ∈ C2. V = C2 contains the submodule W = C(1, 0). This
means V is reducible and so the matrices

An :=

(
1 n
0 1

)
for n ∈ Z are all diagonalizable. However, An has the double eigenvalue 1, which means
An = I2 for all n ∈ Z which is absurd.

We have presented a proof when K = C which is extremely convenient and uses
well known tools of bilinear algebra. Its conveniences also lie in our ability to con-
struct a complement for a submodule: constructing the inner product (given a basis)
is extremely simple, and calculations of orthogonal spaces too.

We now present a different proof which works with a more general statement of the
theorem.

1.4.2 Maschke’s theorem in other fields

Proposition 1.4.5. Let G be a finite group, K a field whose characteristic does
not divide |G|, and (V, ρ) a G-module. If W ⊂ V is a submodule, then there
exists a submodule W ◦ ⊂ V such that

V = W ⊕W ◦.

Proof. Let p be the projector on W . As the characteristic of K does not divide |G|,
|G| = |G| · 1K is invertible in K and so we can define

p◦ =
1

|G|
∑
g∈G

ρ(g) ◦ p ◦ ρ(g)−1.

Let’s show p◦ is a projector on W .
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1 K[G]-MODULES

— p◦(V ) ⊂ W . If g ∈ G then (p◦ρ(g)−1)(V ) ⊂ W and so (ρ(g)◦p◦ρ(g)−1)(V ) ⊂ W
as W is closed under the action of G. In the end, ρ◦(V ) ⊂ W .

— p◦ ◦ p◦ = p◦. Let v ∈ V , we see that

p◦(p◦(v)) =
1

|G|
∑
g∈G

ρ(g) ◦ p ◦ ρ(g)−1(p◦(v)),

but p◦(v) ∈ W and so ρ(g)−1(p◦(v)) ∈ W . This means that p(ρ(g)−1(p◦(v))) =
ρ(g)−1(p◦(v)) as p is a projector on W . Then,

p◦(p◦(v)) =
1

|G|
∑
g∈G

ρ(g) ◦ ρ(g)−1(p◦(v))

=
1

|G|
∑
g∈G

p◦(v)

= p◦(v).

This shows that p◦ is a projector W . Let W ◦ = ker(p◦). We have

V = W ⊕W ◦.

Let’s check W ◦ is a submodule. First, notice that

ρ(g) ◦ p◦ =
1

|G|
∑
h∈G

ρ(h) ◦ p ◦ ρ(h)−1

=
1

|G|
∑
h∈G

ρ(g) ◦ ρ(h) ◦ p ◦ ρ(h)−1

=
1

|G|
∑
h∈G

ρ(gh) ◦ p ◦ ρ(gh)−1 ◦ ρ(g)

= p◦ ◦ ρ(g).

And so for all w◦ ∈ W ◦,

p◦(g ·w◦) = g · p◦(w◦) = 0,

which means g ·w◦ ∈ W ◦ for all g ∈ G and w◦ ∈ W ◦, i.e W ◦ is a submodule of V .

Group representations 11



1 K[G]-MODULES

Theorem 1.4.6 (Maschke). Let G be a finite group, K a field whose character-
istic does not divide |G|, and let V be a G-module. If V is nonzero, there exists
irreducible submodules (W (i))1≤i≤k such that

V =
⊕
i=1

W (i).

Proof. By induction on dimV like in theorem 1.4.3 but using proposition 1.4.5.

1.5 Schur’s lemma

Let K be a field and G a group.

Definition 1.5.1 (G-homomorphism). Let V and W be G-modules. A linear
transformation θ : V −→ W is said to be a G-homomorphism if for all v ∈ V
and g ∈ G,

θ(g · v) = g · θ(v).

In other words, θ◦ρV (g) = ρW (g)◦θ for all g ∈ G. The set of G-homomorphisms
is denoted by HomG(V,W ).

Remark 1.5.2. This means that θ preserves the action of G on V and transports it to
W . In matrix terms, if BV and BW are respective bases of V and W , and X and Y are
the respective matrix representations of V and W , then

TX(g) = Y (g)T

for all g ∈ G, where T = MatBV ,BW (θ). If T is invertible, this means X(g) and Y (g)
are similar.

Example 1.5.3. Let G = Sn. Consider V = C with the trivial representation and
W = C{1,2, . . . ,n} with the defining action. Define θ : V 7−→ W by letting θ(1) =
1 + 2 + · · ·+ n. If λ ∈ C and π ∈ Sn, then

θ(π · λ) = θ(λ) = λ(1 + 2 + · · ·+ n) = π · θ(λ).

As in all fields of algebra, we define aG-isomorphism to be a bijectiveG-homorphism.
In this case, we say V and W are G-isomorphic (or G-equivalent), denoted by V ∼= W .
In the case of matrices, two matrix representations are isomorphic if they differ by a
change of basis.
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1 K[G]-MODULES

Proposition 1.5.4. If θ : V −→ W is a G-homomorphism, ker θ is a submodule
of V and Im θ is a submodule of W .

Remark 1.5.5. The proof is simple, and we have already come across its reasoning
in the proof of 1.4.5. In fact, p◦ is a G-homorphism and we basically showed that
W ◦ = ker p◦ was a submodule of V .

Theorem 1.5.6 (Schur’s lemma). Let θ : V −→ W be a G-homomorphism
between two irreducible G-modules V and W . Either θ = 0L (V,W ), or θ is an
isomorphism.

Proof. Im θ and ker θ are necessarily trivial submodules because V and W are irre-
ducible.

Corollary 1.5.7. Suppose K = C and let V and W be irreducible G-modules.
Then, either HomG(V,W ) = {0} or HomG(V,W ) ∼= C.

Proof. Let θ ∈ HomG(V,W ) and let λ ∈ C be an eigenvalue of θ. If θ is non-zero,
we can suppose V = W . Then, θ − λ idV is also an homomorphism with a nontrivial
kernel. By the same arguments as in the last theorem, θ = λ idV . It is also clear that
every homothety is an homomorphism, so HomG(V, V ) = C idV .

Remark 1.5.8. This statement is true over all fields of characteristic 0.

Corollary 1.5.9. Let V and W be irreducible modules and suppose V is irre-
ducible. Then, HomG(V,W ) is the multiplicity of V in W .

1.6 Characters

1.6.1 Induced representation

We now consider what happens when we consider a representation of a group G and
its restriction on a subgroup H and vice-versa. Here, G will be a finite group.

Group representations 13



1 K[G]-MODULES

Definition 1.6.1. Let (V, ρ) be a group representation of G and let H be a sub-
group of H. Then,

ρ↓GH = ρ|H
is a representation of H.

Notations. If χ is the character5 of (V, ρ), we write χ↓GH for the character of ρ↓H
(which is also the restriction of χ on H). We also write ρ↓H when the context is clear.

Example 1.6.2. Consider the sign representation ρ on K[
∑

π∈Sn sgn(π) π]. Then, ρ↓An
is the trivial representation.

We now consider the opposite: from a representation of H, construct an “appropri-
ate” representation of G.

Definition 1.6.3. If (V, ρ) is an H-module, then we call induced representation
from H to G the representation associated to

K[G]⊗K[H] V.

It is denotated by ρ↑GH .

Remark 1.6.4. We will not give further details about the formal construction of the
induced representation. However, it is far more interesting to consider what happens
with matrices. Consider {t1, . . . , t`} a system of left coset representatives for H, i.e

G =
⊔̀
i=1

tiH.

Consider a matrix representation Y of H and set Y (g) = 0 if g 6∈ H. For every g ∈ G,
Y ↑GH(g) is the block matrix

Y ↑GH(g) = (Y (t−1i gtj))1≤i,j≤j.

More explicitely,

Y ↑GH(g) =


Y (t−11 gt1) Y (t−11 gt2) · · · Y (t−11 gt`)
Y (t−12 gt1) Y (t−12 gt2) · · · Y (t−12 gt`)

...
... . . . ...

Y (t−1` gt1) Y (t−1` gt2) · · · Y (t−1` gt`)

 .

5We will soon talk about characters.
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1 K[G]-MODULES

1.6.2 Definition and properties of characters

We have studied modules and how they can be decomposed into irreducible sub-
modules. However, group representation can contain a lot of information and so, it
would be extremely convenient if there existed a scalar valued function that could de-
termine irreducible modules. This is exactly what characters are for when studying
representations of finite groups (with G = {g1, . . . , gn}).

G will denote a finite group.

Definition 1.6.5. Let V be a K-vector space, and ρ : G −→ GL(V ) a group
representation. The character of (V, ρ) is the function

χ : G −→ K
g 7−→ Tr(ρ(g))

.

Remark 1.6.6. Obviously, we define characters for matrix representations the same
way. Furthermore, χ is said to be irreducible if V is.

Example 1.6.7. Let’s compute the characters of the regular representation of K[G],
and let χ denote its character. First, χ(1G) = idK[G], and so χ(1G) = |G|. If g 6= 1G, set
B = (g1, . . . ,gn) (a natural basis of K[G]), and let’s study the matrix representation
associated to B. Notice that X(g) is a permutation matrix, and so χ(g) = Tr(X(g)) is
the number of fixed points of B. If that number was nonzero, there would exists a gi
such that ggi = gi and so g = 1G, which is not possible. In conclusion,

χ(g) =

{
|G| if g = 1G,
0 otherwise.

The first property of characters is one that will interest us throughout this subsec-
tion: characters are class functions.

Definition 1.6.8. A function f : G −→ K is said to be a class function if it is
constant on conjugacy classes, that is to say

f(ghg−1) = f(h)

for all g, h ∈ G.

Now, we give (without proof) a few properties of characters.
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Proposition 1.6.9. Characters verify the following properties.

(i) If V and W are G-modules of respective characters ϕ and ψ, and V ∼= W
then ϕV = ψW .

(ii) χ(1G) = dimV .

(iii) If V = V1 ⊕ V2 and χ1 and χ2 are the respective characters of V1 and V2,
then χV = χ1 + χ2.

(iv) If dimV = 1, χ = ρ.

(v) If K = C, χ(g−1) = χ(g).

Characters table. At first, characters seem to be extremely restrictive functions.
However, we will see that a character determines its associated representation. Fur-
thermore, characters are class function. This means that if χ is a character and K is a
conjugacy class in G, we can define χK = χ(g) where g ∈ K. This remark makes the
study of characters easier and so we can study characters table. A character table of
a group is an array where its rows are indexed by its characters χ, and its columns by
the conjugacy classes K of G.

· · · K · · ·
...

...
χ · · · χK
...

By convention, the first row is the trivial character and the first column is K = {1G}.

Example 1.6.10. In appendix A are presented a few characters table.

1.6.3 Characters in characteristic 0

We will now see the importance of introducing characters, and why they determine
representation. As suggested by the title of this subsection K will be a characteristic 0
field. As usual, G will be a finite group (G = {g1, . . . , gn}).

Definition 1.6.11. Let ϕ, ψ : G −→ K be two functions. The inner product of
ϕ and ψ is defined by

〈ϕ, ψ〉 =
1

|G|
∑
g∈G

ϕ(g)ψ(g−1).
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Remark 1.6.12. If K = C and χ and ψ are characters of G, then

〈χ, ψ〉 =
1

|G|
∑
g∈G

χ(g)ψ(g).

Proposition 1.6.13. If χ and ψ are irreducible characters of G, then

〈χ, ψ〉 = δχ,ψ.

Basically, characters form an orthonormal family with respect to this bilinear form.

Proof. Let (V, ρ) and (W,σ) be irreducible representations of G of respective characters
χ and ψ. If f : W −→ V is a linear map, define

f 0 =
1

|G|
∑
g∈G

ρ(g) ◦ f ◦ σ(g−1).

If h ∈ G, we have

ρ(h) ◦ f 0 ◦ σ(h)−1 =
1

|G|
∑
g∈G

ρ(h) ◦ ρ(g) ◦ f ◦ σ(g−1) ◦ σ(h−1)

=
1

|G|
∑
g∈G

ρ(hg) ◦ f ◦ σ((hg)−1)

= f 0

and so ρ(g) ◦ f 0 = f 0 ◦ σ(g) for all g ∈ G. This means f 0 : W −→ V is a G-
homomorphism. According to Schur’s lemma 1.5.6 and corollary 1.5.7, f 0 = 0 if V
and W are non-isomorphic. If V ∼= W , we can assume V = W and so there must exists
some λ ∈ K such that f 0 = λ idV .

— Case χ 6= ψ. In this case, V and W must non-isomorphic and so f 0 = 0. Let
BV and BW be respective bases of V and W and let n = dimV and m = dimW .
Consider R = (ri,j)i,j the matrix representation associated to ρ given by BV . In
the same way, let us consider S = (si,j)i,j for σ and X = (Xi,j)i,j the matrix of f
in bases BW and BV . As f 0 = 0,

1

|G|
∑
g∈G

R(g)X(g)S(g−1) = 0.

For every i, j, this means

1

|G|
∑
k,`

∑
g∈G

ri,k(g)xk,`s`,j(g
−1) = 0
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but as f : W −→ V can be any map, it is necessary that

1

|G|
∑
g∈G

ri,k(g)s`,j(g
−1) = 0

for all i, j, k, `. In other words,

〈ri,k, s`,j〉 = 0

for all i, j, k, `. Furthermore,

〈χ, ψ〉 =
1

|G|
∑
g∈G

χ(g)ψ(g−1)

=
1

|G|
∑
g∈G

Tr(ρ(g)) Tr(σ(g−1))

=
1

|G|
∑
g∈G

∑
i,j

ri,i(g)sj,j(g
−1)

=
∑
i,j

1

|G|
∑
g∈G

ri,i(g)sj,j(g
−1)

= 0.

— Case χ = ψ. We can suppose V = W . Since we only care about traces, we
can also assume R = S. We already know there exists some λ ∈ C such that
f 0 = λ idV . This means

1

|G|
∑
k,`

∑
g∈G

ri,k(g)xk,`s`,j(g
−1) = λδi,j

and so 〈ai,k, b`,j〉 = 0 when i 6= j. If i = j, we use the equation

1

|G|
∑
g∈G

R(g)XR(g−1) = λIn

and let us consider the traces:

λn =
1

|G|
∑
g∈G

Tr(X) = Tr(X),

and so λ = 1
n

Tr(X). Going back to our previous equations,

1

|G|
∑
k,`

∑
g∈G

ri,k(g)xk,`r`,i(g
−1) =

1

n
TrX =

1

n
(x1,1 + · · ·+ xn,n).

Group representations 18



1 K[G]-MODULES

When comparing coefficients of monomials, we get

〈ri,k, r`,i〉 =
1

|G|
ri,k(g)r`,i(g

−1) =
1

n
δk,`.

Finally,

〈χ, χ〉 =
∑
i,j

〈ri,i, rj,j〉 =
n∑
i=1

〈ri,i, ri,i〉 =
n∑
i=1

1

n
= 1.

Corollary 1.6.14. Let ρ : G −→ GL(V ) be a group representation of G and let
χ be its character. Suppose

V =
k⊕
i=1

miVi

is the decomposition of V into irreducible G-modules where each Vi has character
χi. We have the following results.

(i) Its character verifies χ =
∑k

i=1miχi.

(ii) For all j ∈ [[1, k]], 〈χ, χj〉 = mj.

(iii) We have 〈χ, χ〉 =
∑k

i=1m
2
i .

(iv) V is irreducible if and only if 〈χ, χ〉 = 1.

(v) If (W,σ) is another representation of G with character ψ, then V and W
are isomorphic G-modules if and only if χ = ψ.

1.6.4 Frobenius reciprocity

We know study a link between induction and restriction on characters. The next
theorem will basically that induction and restriction are in some way adjoint operators.

Theorem 1.6.15 (Frobenius reciprocity). Let H be a subgroup of G and let χ
and ψ be characters respectively of H and G. Then,〈

ψ↑G, χ
〉

= 〈ψ, χ↓H〉 .

Remark 1.6.16. Note that the left inner product is in taken in the space of class
functions in G, while the right inner product is in the space of class functions in H.
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Lemma 1.6.17. For every g ∈ G,

ψ↑G(g) =
1

|H|
∑
x∈G

ψ(x−1gx)

where we have set ψ(y) = 0 if y 6∈ H.

Proof. Take the trace of the matrix of 1.6.4.

Proof (Frobenius reciprocity).〈
ψ↑G, χ

〉
=

1

|G|
∑
g∈G

ψ↑G(g)χ(g−1)

=
1

|G|
∑
g∈G

1

|H|
∑
x∈G

ψ(x−1gx)χ(g−1).

Now set g′ = x−1gx. This gives

〈
ψ↑G, χ

〉
=

1

|G||H|
∑
x∈G

∑
g′∈G

ψ(g′)χ(xg′−1x−1)

=
1

|G||H|
∑
x∈G

∑
g′∈G

ψ(g′)χ(g′−1)

=
1

|H|
∑
g∈G

ψ(g′)χ(g′−1)

=
1

|H|
∑
h∈H

ψ(h)χ(h−1)

= 〈ψ, χ↓H〉 .

2 Application to the symmetric group

2.1 Tableaux and Young subgroups

Now that we know more about representations and how they can be decomposed,
we wish to find all irreducible representations of the symmetric group. In this section
n will denote a positive integer. If λ = (n1, . . . , nk) is a partition of n, its Ferrers
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diagram is a left-justified array of n dots with k rows, the i-th row containing ni points.
For example if n = 9 and λ = (4, 2, 2, 1), the Ferrers diagram of λ is

• • • •
• •
• •
•

We say the shape of a Ferrers diagram is the partition λ associated. They will be
particularly important as partitions determine conjugacy classes of Sn: two permuta-
tions σ and τ ∈ Sn are conjugate if and only if they have the same number of cycles of
the same length. Furthermore, we know that the number of irreducible representations
of a group G is exactly its number of conjugacy classes. This is why studying Fer-
rers diagrams will help us greatly when constructing those irreducible representations.
Before that, we need to find a subgroup of Sn corresponding to λ ` n.

Definition 2.1.1 (Young subgroup). Let λ = (λ1, . . . , λk) ` n be a partition of
n. Its Young subgroup is the group

Sλ = S[[1,λ1]] × S[[λ1+1,λ1+λ2]] × · · · S[[n−λk+1,λk]].

Example 2.1.2. Take n = 9 and λ = (4, 2, 2, 1). Then,

Sλ = S{1,2,3,4} × S{5,6} × S{7,8} × S{9}.

Remark 2.1.3. If λ ` n, Sλ is isomorphic to

Sλ1 × Sλ2 × · · · × Sλk .

In the last example, S(4,2,2,1) ∼= S4 × S2 × S2 × S1.
Furthermore, we can always consider Sλ as a subgroup of Sn.

Definition 2.1.4 (Young tableau). Let λ ` n. A Young tableau of shape λ (or
λ-tableau) is a Ferrers diagram of shape λ where the dots have been bijectively
replace by 1, . . . , n.

Example 2.1.5. Still with n = 9 and λ = (4, 2, 2, 1),

1 2 3 4
5 6
7 8
9

,

2 5 9 1
3 4
6 8
7

, or

9 2 3 4
7 6
8 5
1

are Young tableau of shape λ.
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2 APPLICATION TO THE SYMMETRIC GROUP

If t is a tableau of shape λ, we write sh t = λ. We also can write tλ instead of t.
Note that like matrices, we write ti,j for its entry in row i and column j (when it exists).

Remark 2.1.6. As there are as much Young tableaux as there are elements of Sn,
there are exactly n! Young tableaux of shape λ.

We now define an equivalence relation of λ-tableaux.

Definition 2.1.7. Let s and t be Young tableaux of shape λ. The tableaux s
and t are said to be row equivalent if corresponding rows of s and t contain the
same elements. The equivalence class of a λ-tableau t is called a λ-tabloid, or
tabloid of shape λ, denoted by {t}.

Example 2.1.8. Consider n = 3, λ = (2, 1), and

t =
1 2
3

.

Then,

{t} =

{
1 2
3

,
2 1
3

}
.

If t and its entries are explicitly given, we use lines between to indicate when we are
working with tabloids. With the last example, we have

{t} =
1 2

3

Now let us define an action of Sn on tabloids. If λ ` n, t is a λ-tableau, and σ ∈ Sn,
we can set πt := (σ(ti,j))i,j. This action induces another action on tabloids. We can let

σ{t} := {σt}.

This is a well defined action (independant of the choice of t). Like in 1.2.4, we can
consider an Sn-module associated to this action.

Definition 2.1.9. if n ≥ 1 and λ ` n, the module

Mλ = K{{t1}, . . . ,{tm}}

(where {t1}, . . . , {tm} is a complete of λ-tabloids) is called the permutation mod-
ule associated to λ.

We now consider basic examples of permutation modules.
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Example 2.1.10. If λ = (n), M (n) = K
{
1 · · · n

}
. It has the trivial action.

Example 2.1.11. Let λ = (1n) = (1, . . . , 1) ` n. If t is a tableau of shape λ, it consists
of a single column and n rows. This means there are as many tabloids of shape λ = (1n)
as there tableaux of shape λ = (1n) (i.e n!). This means we have

M (1n) ∼= KSn,

which has the regular representation.

Example 2.1.12. Let λ = (n−1, 1) ` n. Each λ-tabloid is determined by the (unique)
number (between 1 and n) in its second row. This means that

M (n−1,1) ∼= K{1,2, . . . ,n},

which has the defining representation.

Proposition 2.1.13. Permutations modules are cyclic, i.e there exists v ∈ Mλ

such that

Mλ = KSnv.

Proof. Take for v any λ-tabloid.

We now show the link between Young subgroups and tabloids.

Theorem 2.1.14. Let λ ` n and

{tλ} =

1 2 · · · λ1
λ1 + 1 λ1 + 2 · · · λ1 + λ2
...

...
...

...
n− λk + 1 · · · · · · n

.

Then, V λ = KSnSλ and Mλ isomorphic (as Sn-modules).

For typesetting reasons, {tλ} is presented here as a square array. It is obviously not
always the case.

2.2 Orders on partitions

We now study two partial orders.

Group representations 23



2 APPLICATION TO THE SYMMETRIC GROUP

Definition 2.2.1 (dominance order). Let λ = (λ1, . . . , λ`) and µ = (µ1, . . . , µm)
be two partitions of n ≥ 1. We say λ dominates µ (written λ D µ) if for every
i ≥ 1,

i∑
j=1

λi ≥
i∑

j=1

µi

(with the convention that λi = 0 if i > ` and µi = 0 if i > m).

Basically, λ dominating µ means that λ is fat and short, while µ is thin and tall.

Remark 2.2.2. This order is not total. For example with n = 6, (32) does not dominate
(4, 12) and vice versa.

Lemma 2.2.3 (dominance lemma). Let λ, µ ` n be two partitions of n. If there
exists tλ and sµ (two tableaux of respective shape λ and µ) such that for each
index of row i, the elements of the i-th row of sµ are all in different columns in
tλ, then λ D µ.

Proof. By hypothesis, we can permute the elements in each columns of tλ in such a
way that for every index of row i, the elements of rows 1 to i of sµ all appear in rows
1 to i of tµ. This way, λ1 + · · ·+ λi is the number of elements in the first i rows of tλ,
which is no less than the number of elements in the first i rows of smu which is exactly
µ1 + · · ·+ µi.

We now consider the lexicographic order (denoted by ≤). For example when n = 4,
(2, 2) > (2, 1, 1).

Proposition 2.2.4. The lexicographic order is a refinement of the dominance
order, that is to say if λ, µ ` n are two partitions of a positive integer n such that
λ D µ, then λ ≥ µ.

Proof. Let i be the smallest index such that λi 6= µi. Then,
∑i−1

j=1 λj =
∑i−1

j=1 µj. By
hypothesis, we necessarily have

∑i
j=1 λi >

∑i
j=1 µi (as λ D µ) and so λi > µi.

2.3 Specht modules

We now construct all irreducible Sn-modules.
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Definition 2.3.1. Let t be a tableau of shape λ ` n. Let R1, . . . , R` be its rows
and C1, . . . , Ck its columns. We define

Rt = SR1 × · · · × SR` and Ct = SC1 × · · · × SCk .

Rt is called the row-stabilizer of t, while Ct is the column stabilizer of t.

Remark 2.3.2. A tabloid {t} (as an equivalence class) is basically {t} = Rtt.

Definition 2.3.3. Let H be a subgroup of Sn. We define its group algebra sums
by

H+ =
∑
π∈H

π and H− =
∑
π∈H

sgn(π)π.

Furthermore, if t is a tableau of shape λ ` n, we let

κt = C−t .

The element et = κt{t} is called a polytabloid (associated to t).

Notation. If H = {π}, π− := H−.

Lemma 2.3.4. Let t be a tableau and π ∈ Sn. We have the following equalities.

(i) Rπt = πRtπ
−1, and Cπt = πCtπ

−1.

(ii) κπt = πκtπ
−1.

(iii) eπt = πet.

Proof. For (i), we work with equivalences: let σ be a permutation,

σ ∈ Rπt ⇐⇒ σ{πt} = {πt}
⇐⇒ π−1σπ{t} = {t}
⇐⇒ π−1σπ ∈ Rt

⇐⇒ σ ∈ πRtπ
−1.

The proof is the same for Cπt and (ii). For (iv):

eπt = κπt{πt} = πκtπ
−1π{t} = πet.
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Definition 2.3.5. If λ is a partition n, its corresponding Specht module Sλ is
the submodule of Mλ spanned by the polytabloids of shape λ.

Remark 2.3.6. Sλ is indeed a submodule ofMλ: thanks to lemma 2.3.4, we know that
the action of Sn sends polytabloids to polytabloids (as πet = eπt). This also means
that Sλ is a cyclic Sn-module.

2.4 Submodule theorem

In this subsection, K will be a field of characteristic 0. We will show that the Sλ
form a set of irreducible pairwise non isomorphic Sn-modules. This statement fails
when K has positive characteristic.

For this subsection, we will need the unique bilinear form defined by

〈{t},{s}〉 = δ{t},{s}.

Lemma 2.4.1. Let H be a subgroup of Sn.

(i) If π ∈ H then πH− = H−π = sgn(π)H−, and π−H− = H−.

(ii) If u,v ∈Mλ,

〈
H−u,v

〉
=
〈
u, H−v

〉
.

In other words, H− is a self-adjoint operator Mλ −→ K with respect to
〈 · , · 〉.

(iii) If H contains a transposition (b c), then there exists k ∈ K[Sn] such that

H− = k(id[[1,n]]−(b c)).

(iv) If t is tableau such that there exists b and c in the same row of t such that
(b c) ∈ H, then

H−{t} = 0.

Proof. (i) We have
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πH− = π
∑
σ∈H

sgn(σ)σ

=
∑
σ∈H

sgn(σ)πσ

= sgn(π)H−

= H−π,

where the third and fourth lines have been obtained by the changes of variable
σ 7→ πσ and σ 7→ σπ (as H is a group).

(ii) Notice that 〈 · , · 〉 is Sn-invariant. We have

〈
H−u,v

〉
=
∑
π∈H

〈sgn(π)πu,v〉

=
∑
π∈H

sgn(π)
〈
π−1πu, π−1v

〉
=
∑
π∈H

〈
u, sgn(π−1)π−1v

〉
=
〈
u, H−v

〉
(with the change of variable π 7→ π−1).

(iii) Let K ⊂ H be the subgroup K = {id[[1,n]], (b c)}. Let (k1, . . . , kq) be a collection
of distinguished representatives of K in H. Then, H =

⊔q
j=1 kjK and so

H− =

(
q∑
j=1

kj

)
K− = k(id[[1,n]]−(b c))

where we set k =
∑q

j=1 kj.

(iv) As b and c are in the same row of t, we have (b c){t} = {t} and so

H−{t} = k(id[[1,n]]−(b c)){t} = k({t}− (b c){t}) = 0.

Corollary 2.4.2. Let λ, µ ` n. If κt{s} 6= 0, then λ D µ. In case λ = µ,
κt{s} = ±et.
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Proof. Let b and c be two elements in the same row of s. Notice they cannot be in the
same row of t (if it were the case, we would have κt{s} = 0). Thanks to dominance
lemma (2.2.3), we have λ ≥ µ. If λ = µ, the argument that proved the dominance
lemma establishes that there exists some π ∈ Ct such that {s} = π{t}. We then have

κt{s} = κtπ{t} = sgn(π)κt{t} = ±et.

Corollary 2.4.3. Let u ∈ Mµ and let t be a tableau of shape µ. Then, κtu is a
multiple of et.

Proof. Write u =
∑q

j=1 cj{sj} and use previous corollary with linearity.

Theorem 2.4.4 (submodule theorem). Let U be a submodule of Mµ. Then,
either

Sµ ⊂ U or U ⊂ Sµ⊥.

In the case where K is of characteristic 0, Sµ is irreducible.

Remark 2.4.5. This second part of the theorem does not hold when K has positive
characteristic. However, it is always true that Sλ/(Sλ ∩ Sλ⊥) is irreducible.

Proof. Let u ∈ U and let t be a tableau of shape µ. According to the previous corollary,
κtu = fet for some scalar f ∈ K (f depends on u and t).

Let us suppose we can find u and t such that their associated f is nonzero. Then
et = f−1κtu is an element of U (κtu ∈ U because U is a submodule). As Sµ is cyclic
and contains a polytabloid (which spans Sµ in a cyclic sense), this means Sµ ⊂ U .

Now suppose f = 0 for all u ∈ U and tableaux t of shape µ. Let u ∈ U and let et
be a polytabloid of shape µ (whose set spans Sµ). We have

〈u, et〉 = 〈u, κt{t}〉 = 〈κtu,{t}〉 = 0

as κtu = 0.

Proposition 2.4.6. If K has characteristic 0 and θ ∈ Hom(Sλ,Mµ) is a nonzero
homomorphism, then λ D µ. If λ = µ, θ is an homothety.

Group representations 28



2 APPLICATION TO THE SYMMETRIC GROUP

Proof. As θ is nonzero, there exists a polytabloid et such that θ(et) 6= 0. Since K is of
chracteristic 0 and 〈 · , · 〉 is an inner product, we have Mλ = Sλ⊕Sλ⊥. We can extend
θ to Mλ by setting θ(v) for every v ∈ Sλ⊥. We now have θ ∈ Hom(Mλ,Mµ) and it
satisfies

0 6= θ(et) = θ(κt{t}) = κtθ({t}).

We can write θ({t}) =
∑q

j=1 cj{sj} where sj have shape µ. We first conclude with
2.4.2 as there must be some j ∈ [[1, q]] such that κt{sj} 6= 0 and so λ D. If λ = µ

If λ = µ, corollary 2.4.3 gives that there exists some c ∈ K such that θ(et) = cet. If
π ∈ Sn,

θ(eπt) = θ(πet) = πθ(et) = πcet = ceπt,

and so θ is an homothety.

Theorem 2.4.7. If K has characteristic 0, (Sλ)λ`n is a complete list of irreducible
Sn-modules pairwise non-isomorphic.

Proof. Those modules are irreducible and Sλ ∩ Sλ⊥ = {0} for every λ ` n. We have
the right number of irreducible modules as they are indexed by the partitions of n. We
then have to show those modules are pairwise inequivalent: let λ, µ ` n and suppose
Sλ ∼= Sµ. There must exist some θ ∈ Hom(Sλ,Mµ) and so λ D µ according to the
previous proposition. We conclude by symmetry of λ and µ.

Corollary 2.4.8. If µ ` n and K has characteristic 0, then

Mµ =
⊕
λDµ

mλ,µS
λ.

Furthermore, mµ,µ = 1.

Proof. If Sλ appears in a direct sum decomposition of Mµ, then we know according
to proposition 2.4.6 that λ D µ. Also according to this proposition, if λ = µ then
Hom(Sµ,Mµ) ∼= K and

mµ,µ = dim Hom(Sµ,Mµ) = 1.
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2.5 Branching rule

We now want to know what happens to the Sn-modules we have studied after
restriction to Sn−1 or induction to Sn+1. If λ is a partition of an integer n, recall its
Ferrers’ diagram is a Young tableau of shape λ, but represented with dots instead
of integers. For example with λ = (4, 4, 2, 1) ` 11,

• • • •
• • • •
• •
•

is its Ferrers diagram. For every λ ` n, a inner corner in the Ferrers diagram
of shape λ is a dot such that after its removal, the remaining dots form a Ferrers
diagram of a partition λ− ` n− 1. An outer dot is a dot such that it can be added to
the Ferrers diagram to make a Ferrers diagram of λ+ ` n + 1. For example with
λ = (4, 4, 2, 1) ` 11, we represent inner corners with larger dots and outer corners with
circles.

• • • • ◦
• • • •
• • ◦
• ◦

With this example, λ+ can be

(5, 4, 2, 1) :

• • • • •
• • • •
• •
•

, (4, 4, 3, 1) :

• • • •
• • • •
• • •
•

, (4, 4, 2, 2) :

• • • •
• • • •
• •
• •

,

and λ− can be

(4, 3, 2, 1) :

• • • •
• • •
• •
•

, (4, 4, 1, 1) :

• • • •
• • • •
•
•

, (4, 4, 2) :
• • • •
• • • •
• •

.

Those methods of “diminishing” or “augmenting” λ ` n correspond exactly to restriction
and induction of representations. In fact,

S(4,4,2,1)↑S12 ∼= S(5,4,2,1) ⊕ S(4,4,3,1) ⊕ S(4,4,2,2)

and

S(4,4,2,1)↓S10 ∼= S(4,3,2,1) ⊕ S(4,4,1,1) ⊕ S(4,4,2).
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This decomposition is called the branching rule.
To study and give a proof to this rule, we will describe (without proof) a basis for

the Specht module Sλ. Let λ be a partition of n. A tableau t of shape λ is said to be
standard if its columns and rows are both increasing sequences. The tabloid {t} and
polytabloid et are also said to be standard if t is.

Theorem 2.5.1. The set of standard polytabloids of shape λ ` n is a basis of Sλ.

Proof. See [Sag01], theorem 2.6.5, page 74.

Notation. We denote by fλ the number of polytabloid of shape λ ` n. Thanks to
the theorem above, dimSλ = fλ.

Lemma 2.5.2. Let n ∈ N∗ and λ ` n. Then,

fλ =
∑
λ−

fλ
−
.

Proof. A standard tableau of shape λ ` n is exactly a standard tableau of a shape of
size n− 1 where an outer corner has been added.

Lemma 2.5.3. Let G be a group and W be a submodule of a G-module V . Then,

V ∼= W ⊕ (V/W ).

Theorem 2.5.4 (branching rule). Let λ ` n. Then,

Sλ↓Sn−1 =
⊕
λ−

Sλ
−

and Sλ↑Sn+1 =
⊕
λ+

Sλ
+

Proof. We detail the proofs one after the other.

— Restriction. Let r1 < r2 < · · · < rk be the rows of the inner dots of λ. For each
i ∈ [[1, k]], let λi be the partition obtained by removing the inner dot in row i. If t
is a tableau of shape λ where n is at the last entry of row i, let ti be the tableau
of shape λi obtained by removing n.

According to the previous lemma, it is sufficient to find a chain of subspace
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{0} = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vk = Sλ

such that Vi/Vi−1 ∼= Sλ
i for each i ∈ [[1, k]]. For this, we choose Vi to be the

vector spanned by the polytabloids et where n appears in a row j ∈ [[r1, ri]]. Let
θi : Mλ −→ Mλi be the map defined by θi({t}) = {ti} if n is in row ri of {t},
and 0 otherwise. Let π ∈ Sn−1 and let {t} be a tabloid contaning n in its ri-th
row. Then,

πθi({t}) = π{ti} = {πti}.

As π fixes n (seen as an element of Sn), n is still in row ri of πt and so {πti} =
θi(π{t}). This means θi is a Sn−1-homomorphism.

Furthermore, if t is standard, θ(et) = eti if n is in row ri of t and θ(et) = 0 if n is
in row rj with j < i. As standard polytabloids form a basis of their corresponding
Specht modules, we have

θi(Vi) = Sλ
i

and Vi−1 ⊂ ker θi.

This means we have the chain

{0} = V0 ⊂ V1 ∩ ker θ1 ⊂ V1 ⊂ V2 ∩ ker θ2 ⊂ V2 ⊂ · · · ⊂ Vk = Sλ,

but as θi(Vi) = Sλ
i , we have Vi/(Vi∩ker θi) = dim θi(Vi) = fλ

i . As fλ =
∑

λ− f
λ− ,

the inclusions Vi ⊂ Vi+1 ∩ ker θi+1 must be equalities. We have a chain

{0} = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vk = Sλ

with

Vi/Vi−1 ∼= Vi/(Vi ∩ ker θi) ∼= Sλ
i

.

— Restriction. We will use Frobenius reciprocity and the first statement of the
branching rule: let χλ be the character of Sλ. There exists coefficients (mµ)µ`n+1

such that Sλ↑Sn+1 ∼=
⊕

µ`n+1mµS
µ. Consider their characters: we then have

χλ↑Sn+1 =
∑

µ`n+1mµχ
µ. Furthermore,
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mµ =
〈
χλ↑Sn+1 , χµ

〉
=
〈
χλ, χµ↓Sn−1

〉
=

〈
χλ,
∑
µ−

χµ
−

〉
=
∑
µ−

〈
χλ, χµ

−
〉

= δλ+,µ.

Remark 2.5.5. We also could have first prove the induction rule, and then use Frobe-
nius reciprocity to prove the restriction rule.

2.6 The Littlewood-Richardson rule

We know want to study the coefficients mλ,µ appearing in the decomposition

Mµ =
⊕
λDµ

mλ,µS
λ.

Note that we already know mµ,µ = 1. For this we need to introduce a new kind of
tableaux and we will then give a combinatorial interpretation to those tableaux.

Definition 2.6.1. Let n ≥ 1 be an integer. A composition of n is a sequence
α = (α1, . . . , αk) such that

n =
k∑
i=1

αi.

In opposition to partitions, composition are not needed to be non-decreasing se-
quences.

Example 2.6.2. (2, 0, 2, 1) an (1, 2, 0, 1, 1) are compositions of 5.

Definition 2.6.3. A generalized Young tableau of shape λ ` n is a Ferrers
diagram (of shape λ) where nodes have been replaced with integers in [[1, n]] (with
repetitions allowed). If T is a tableau and µi is the numbers of i ∈ [[1, n]] in T ,
then the composition µ = (µ1, . . . , µm) is called the content of T .
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Example 2.6.4. If n = 7,

T =
1 2 4 4
3 2 2

is a tableau of shape (4, 3) and content (1, 3, 1, 2).

Notation. If λ is partition of n and µ a composition of n, Tλ,µ denotes the set of
tableaux of shape λ and content µ.

Remark 2.6.5. Let T be a tableau of shape λ and content µ. If i ∈ [[1, n]], let us denote
by T (i) the i-th entry of the tableau line after line. For example if λ = (4, 2, 2, 1),

T =

T (1) T (2) T (3) T (4)
T (5) T (6)
T (7) T (8)
T (9)

.

With this notation, we can give a Sn-module structure to K[Tλ,µ] for every λ, µ ` n: if
π ∈ Sn and T ∈ Tλ,µ, set (πT )(i) := T (π−1i) for every i ∈ [[1, n]]. With this definition,
Mµ and K[Tλ,µ] are isomorphic Sn-modules.

Semistandard tableaux. A tableau T of shape λ and content µ is said to be semi-
standard if its columns are increasing and its rows are weakly increasing. Let T 0

λ,µ be
the set of semistandard tableaux of shape λ and content µ, and Kλ,µ = card T 0

λ,µ. It
can be proven that a basis of Hom(Sλ,Mµ) is indexed by T 0

λ,µ. This means that

Mµ =
⊕
λDµ

Kλ,µS
λ.

The Kλ,µ are called the Kotska numbers. This decomposition in terms of Specht
modules and Kotska numbers is called Young’s rule.

Skew tableaux. Let λ and µ be partitions such that µ ⊂ λ (as Ferrers diagrams).
We define λ/µ to be the diagram of points that are in λ and not in µ. For example
with (3, 3, 2, 1) and (2, 1, 1),

λ/µ =

Skew tableaux will helps us find coefficients when considering tensor products of Specht
modules.
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Definition 2.6.6. Let µ and ν be partitions of two integers such that |µ|+|ν| = n.
Then,

(Sµ ⊗ Sν)↑Sn =
⊕
λ

cλµ,νS
λ.

We call Littlewood-Richardson coefficients the numbers cλµ,ν.

To understand those coefficients, we need to introduce some combinatorial concepts.

Definition 2.6.7. A lattice permutation of positive integers π = (i1 i2 · · · in) is
a sequence such that for every prefix πk = (i1 i2 · · · ik) and ` ≥ 1, the number of
`’s in in πk is greater or equal to the number of (`+ 1)’s. We call inverse lattice
permutation a sequence π such that the reversed word πr is a lattice permutation.

Example 2.6.8. The sequence (1 1 2 1 2 3) is a lattice permutation.

Definition 2.6.9. If T is a tableau of any shape with rows R1, . . . , R`, the row
word of T is the permutation

πT = R`R`−1 · · ·R1.

Theorem 2.6.10 (Littlewood-Richardson rule). Let λ, µ, ν be partitions
such that |µ| + |ν| = |λ|. The Littlewood-Richardson coefficient cλµ,ν is
equal to the number of semistandard tableaux T such that

— T has shape λ/µ and content ν ;

— the permutation word πT is a reverse permutation lattice.

Proof. We omit the proof for clarity reasons. To prove this, we would need to show that
Littlewood-Richardson coefficients appear in some formal series when studying
symmetric functions.

2.7 The Murnaghan-Nakayama rule

Definition 2.7.1. A skew hook (or rim hook) is a skew diagram that is edgewise
connected and contains no 2× 2 subset of cells.
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Basically, a skew hook is a skew diagram where we have started from the bottom,
and then a cell is added by choosing to go North or East. We call leg length of a skew
hook ξ its number of rows minus one denotated by ``(ξ).

Example 2.7.2. The following skew diagram

ξ =

has leg length ``(ξ) = 4− 1 = 3.

Remark 2.7.3. A skew hook ξ is said to be the rim hook of a partition λ if ξ is an
edgewise connected subdiagram of the right border of λ seen as a Ferrers’ diagram,
such that the cells remaining in λ after removing ξ is still a partition. For example,

ξ =

can be the rim hook of

λ =

• • •
• •

• •
•

or µ =

• • •
• •

• •
•

If ξ is the rim hook of a partition λ, we write λ\ξ for the diagram remaining after
removing the cells of ξ. With this notations if µ = λ\ξ, then ξ = λ/µ.

Notations. We will the following notations.

— If α = (α1, . . . , αk) is a composition, we let α\α1 = (α2, . . . , αk).

— If λ ` n and α is a composition of n, χλα is the restriction of the irreducible
character χλ on the conjugacy class given by α.

— if λ ` n and m ≥ 1, let Rh(λ,m) be the set of rim hooks ξ of λ having m cells.
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Theorem 2.7.4 (Murnaghan-Nakayama rule). Let λ be a partition of n and
let α = (α1, . . . , αk) be a composition of n. Then,

χλα =
∑

ξ∈Rh(λ,α1)

(−1)``(ξ)χ
λ\ξ
α\α1

.

Remark 2.7.5. The branching rule is a special case of the Murnaghan-Nakayama
rule with α1 = 1.

3 Modular characters

3.1 Definition

We have seen that characters are extremely convenient tools to describe K[G]-
modules when K has characteristic 0. Unfortunately, the proofs and reasoning behind
this theory do not carry well to positive characteristic field. Characters as they have
been defined before cannot determine representations of a group G: if p > 0 is the
characteristic of K and (Kn, ρ) is a representation of G of character χ, then the repre-
sentation ρ⊕ · · · ⊕ ρ : G −→ (Kn)p (added to itself p-times) has character pχ = 0. For
this reason, the theory behind modular characters is different.

In this section, G denotes a finite group. K is a field of characteristic 0 complete
with respect to a discrete valuation ν. This means that we consider K with a function
ν : K −→ Z ∪ {∞} such that

(i) for all x ∈ K, ν(x) =∞ ⇐⇒ x = 0 ;

(ii) for all x, y ∈ K, ν(xy) = ν(x) + ν(y) ;

(iii) for all x, y ∈ K, ν(x+ y) ≥ min(ν(x), ν(y)).

K is complete in the sense that it is complete with respect to the metric

d : K×K −→ R
(x, y) 7−→ 2−ν(x−y)

.

With this discrete valuation, we can consider the subring A = {x ∈ K | ν(x) ≥ 0}
(called a discrete valuation ring). A is a local ring, which means it contains a unique
maximal ideal m. Here,

m = {x ∈ K | ν(x) > 0} ⊂ A.

This means that k := A/m is a field. For the purpose of this presentation, we will
suppose k has characteristic p > 0.
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Let Greg be the set of p-regular elements of G (i.e the set of elements whose order
is not divisible by p). Finally, let m be the LCM of the orders of elements of G and
let m′ be the LCM of the orders of elements of Greg. We will suppose K is sufficiently
large, i.e it contains all m-th roots of unity.

Proposition 3.1.1. Let µK and µk be the groups of m′-th roots of unity of K and
k respectively. The function

Γ : µK −→ µk
λ 7−→ λ mod m

is a group isomorphism.

Proof. We only show Γ is bijective. First, notice that µK is contained in A. Let
π : A −→ k = A/m be the canonical map and let x ∈ µK be a primitive m′-th root of
unity, i.e µK = 〈x〉. Consider the following polynomial

P =
m′−1∏
j=1

(X − xj) ∈ K[X].

Its image by π is

Q =
m′−1∏
j=1

(X − Γ(xj)) ∈ k[X].

We know that P (1) = m′, but since m′ and p are coprime, this means that m′ is
invertible (more specifically nonzero) in k and so π(P (1)) 6= 0, that is to say Q(1) 6= 0.
We have showed that Γ(x)j 6= 1 for all j ∈ [[1,m′ − 1]]. This shows that Γ is injective.
Furthermore, Γ is surjective because the set {1, x, x2, . . . , xm′−1} has cardinality m and
there cannot be more m′-th roots of unity in k.

Notation. If λ ∈ µk, we will write λ̃ := Γ−1(λ). This way, λ̃ is the unique element of
K such that λ = λ̃ mod m.

Proposition 3.1.2. Let E be a k[G]-module of dimension n, let s ∈ Greg and let
sE be its associated endomorphism. Then, sE is diagonalizable.

Proof. Since G is finite, sE has finite order j prime to p (as s ∈ Greg). This means that
Xj − 1 annihilates sE. In particular, j divise m′ so Xj − 1 has j distinct roots, and so
sE is diagonalizable.
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Definition 3.1.3. Let E be a k[G]-module of dimension n. Let s ∈ Greg and
λ1, . . . , λn be its eigenvalues. We define

ϕE(s) =
n∑
j=1

λ̃j.

The mapping ϕE : Greg −→ A is called the modular character (or Brauer
character) of E.

Remark 3.1.4. Notice that ϕE takes its values in K (more specifically A) and not in
k.

3.2 Properties and main theorem

We first detail a few basic properties that will convince us that this definition of
modular character is adapted to what we already know in characteristic 0.

Proposition 3.2.1. If E is a k[G]-module of finite dimension n, then

ϕE(1G) = n.

Proof. If s = 1G, sE = idE, λ1 = · · · = λn = 1k and λ̃1 = · · · = λ̃n = 1K.

Proposition 3.2.2. Consider an exact sequence of k[G]-modules

0 −→ E −→ E ′ −→ E ′′ −→ 0.

Then,

ϕE′ = ϕE + ϕE′′ .

In other words, modular characters are compatible with the group structure of
Grothendieck groups over categories of finitely generated k[G]-modules.

Remark 3.2.3. Consequently, if E = E1 ⊕ E2 is a direct sum of k[G]-modules, then
ϕE = ϕE1 + ϕE2 .

Theorem 3.2.4 (Brauer). Let Sk be the set of isomorphism classes of simple
k[G]-modules. The set {ϕE |E ∈ Sk} forms a basis of the K-vector space of class
functions Greg −→ K.
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Example 3.2.5. With this theorem, we know we can study character tables in positive
characteristics. A few examples are given in appendix B.
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Appendices
A Examples of characters table in characteristic 0

A.1 Cyclic group of order 3

Let j = e
2iπ
3 .

0̄ 1̄ 2̄
χ1 1 1 1
χj 1 j j2

χj2 1 j2 j

A.2 Cyclic group of order 4

0̄ 1̄ 2̄ 3̄
χ1 1 1 1 1
χ−1 1 −1 1 1
χi 1 i −1 −i
χ−i 1 −i −1 i

A.3 Symmetric group of order 3

id[[1,3]] (1 2) (1 2 3)
χtriv 1 1 1
χsgn 1 −1 1
χ⊥ 2 0 −1

Taken from [Sag01], chapter 1 section 1.9. The calculations are given throughout
the first chapter of the book.

A.4 Symmetric group of order 4

id[[1,4]] (1 2) (1 2)(3 4) (1 2 3) (1 2 3 4)
χ1 1 1 1 1 1
χ2 1 −1 1 1 −1
χ3 2 0 2 −1 0
χ4 3 1 −1 0 −1
χ5 3 −1 −1 0 1

Taken from [Ser98], chapter 18 section 18.5.



B Examples of characters table in positive character-
istic

In this appendix, we will present a few characters table of S4 in positive characteris-
tic. Contrary to characteristic 0 character tables, we only have to consider the p-regular
classes.

Both tables are (also) taken from [Ser98], chapter 18 section 18.5.

B.1 p = 2

id[[1,4]] (1 2 3)
ϕ1 1 1
ϕ2 2 −1

B.2 p = 3

id[[1,4]] (1 2) (1 2)(3 4) (1 2 3 4)
ϕ1 1 1 1 1
ϕ2 1 −1 1 −1
ϕ4 3 1 −1 −1
ϕ5 3 −1 −1 1
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