

Algebraic structure of exotic Lie-Butcher series for the foundations of stochastic geometric integration

Adrien Busnot Laurent - INRIA Rennes

Joint work with Eugen Bronasco, Baptiste Huguet, and Sébastien Macé

Workshop "Operads, Symmetries for QFT and Singular SPDEs", Nancy, 2025

ANR project MaStoC - Manifolds and Stochastic Computations

Contents

- 1 Numerical motivation: stochastic numerics on manifolds
- 2 New stochastic frozen-flow integrators
- 3 Algebraic foundations of intrinsic stochastic order theory

References of this talk:

- E. Bronasco, A. BL, Hopf algebra structures for the backward error analysis of ergodic stochastic differential equations, *In revision in Numerische Matematikk*.
- E. Bronasco, A. BL, B. Huguet, High order integration of stochastic dynamics on Riemannian manifolds with frozen flow methods, *arXiv:2503.21855*.
- A. BL, S. Macé, Efficient sampling of the invariant measure of Riemannian Langevin dynamics with frozen flow methods, *In preparation*.

Contents

- 1 Numerical motivation: stochastic numerics on manifolds
- 2 New stochastic frozen-flow integrators
- 3 Algebraic foundations of intrinsic stochastic order theory

Riemannian stochastic dynamics

Consider a Riemannian manifold $(\mathcal{M}, \nabla^{\text{LC}})$. Let E_1, \dots, E_D be a smooth **frame**:

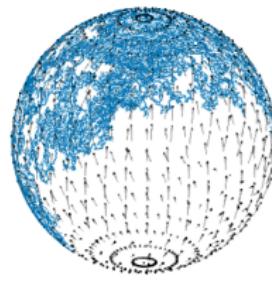
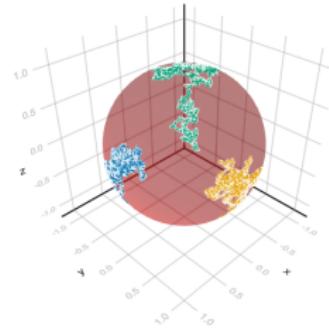
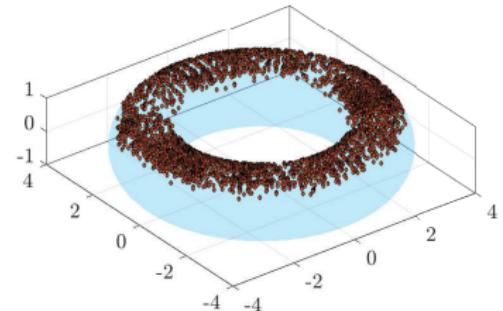
$$\text{Span}_{\mathbb{R}}(E_1(p), \dots, E_D(p)) = T_p \mathcal{M}, \quad p \in \mathcal{M}.$$

Given a vector field $F(x) = \sum_{d=1}^D f^d(x)E_d(x)$, we consider (see Hsu)

$$dX(t) = F(X(t))dt + \sqrt{2} \sum_{d=1}^D E_d(X(t)) \circ dW_d(t).$$

Riemannian Langevin dynamics for E_d orthonormal basis:

$$dX(t) = - \sum_{d=1}^D (E_d[V]E_d + \nabla_{E_d}^{\text{LC}} E_d)(X(t))dt + \sqrt{2} \sum_{d=1}^D E_d(X(t)) \circ dW_d(t)$$



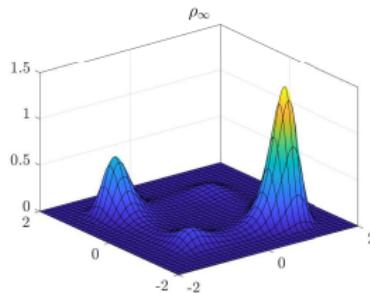
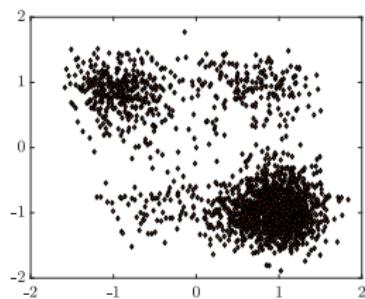
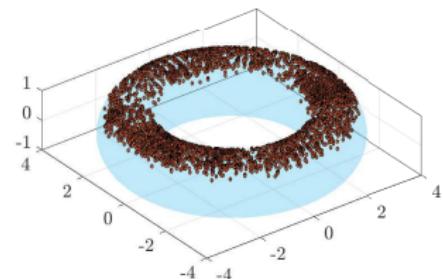
Ergodicity and applications

Weak approximations: Given a test function $\phi \in \mathcal{C}_P^\infty(\mathcal{M})$, an integrator is of weak order p if

$$|\mathbb{E}[\phi(X_n)] - \mathbb{E}[\phi(X(t_n))]| \leq Ch^p, \quad n = 0, \dots, N.$$

Ergodicity property:

$$\lim_{T \rightarrow +\infty} \frac{1}{T} \int_0^T \phi(X(s)) ds = \int_{\mathcal{M}} \phi(y) \rho_\infty(y) d\text{vol}(y) \quad \text{almost surely,} \quad \rho_\infty \propto e^{-V}.$$



Applications of sampling on manifolds: geometric statistics, molecular dynamics, machine learning, PINNs, ...

The idea of geometric integration

Dynamics on a manifold \mathcal{M} : .

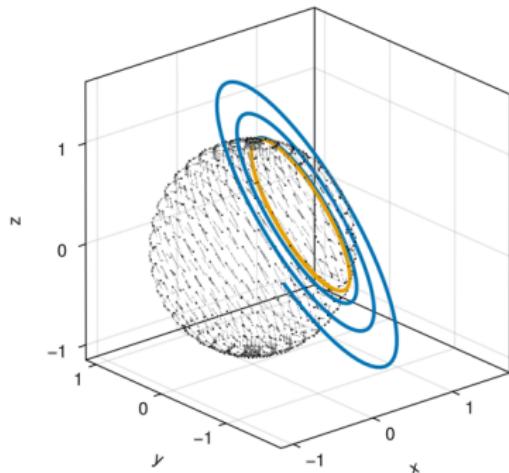
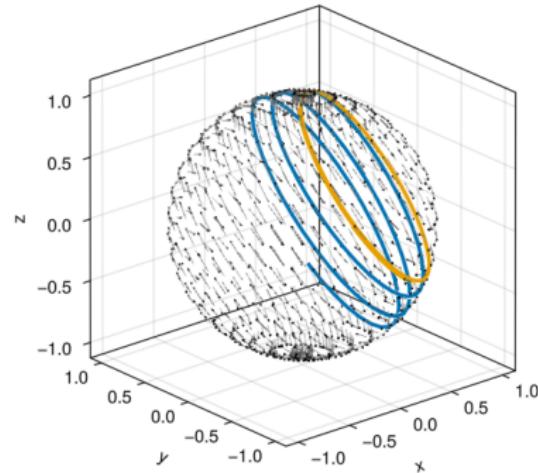


Figure: Non-geometric versus geometric methods.

The idea of geometric integration

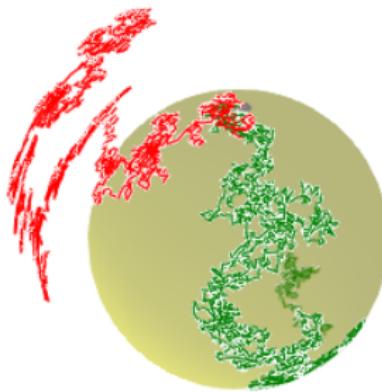


Figure: Numerical simulations of a Brownian motion on the sphere.

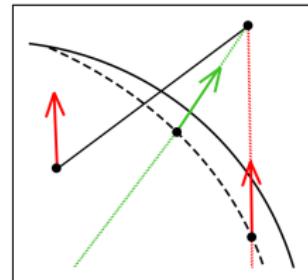
Idea: numerical methods should try to preserve the geometry as much as possible.

Challenge: a geometry is not "just a manifold". The numerical approaches have to satisfy that **their definition, convergence analysis, and implementation all rely on the same geometric framework as the model.**

Existing stochastic integrators on manifolds

Motivations for finding new methods:

- Projection methods rely on an embedding in a bigger space, are expensive and unstable.
- The high order theory of projection methods is **difficult** (BL, 2021 - 7 pages of calculations, **no straightforward algebraic structure**, ~ 25 order conditions for order 2).



Example (Euler projection integrator)

The most popular integrator is **the Euler scheme** with **explicit** projection direction^a

$$X_{n+1} = X_n + hf(X_n) + \sqrt{2h}\xi_n + \lambda \nabla \zeta(X_n), \quad \zeta(X_{n+1}) = 0.$$

^aCiccotti, Kapral, Vanden-Eijnden, 2005; Lelièvre, Le Bris, Vanden-Eijnden, 2008; Lelièvre, Rousset, Stoltz, 2010; ...

Example (From Bharath, Lewis, Sharma, Tretyakov, 2024)

The Riemannian Langevin method has order one:

$$X_{n+1} = \exp_{X_n}^{\text{Riem}}(hf(X_n) + \sqrt{2h}g^{-1/2}(X_n)\xi_n)$$

Contents

- 1 Numerical motivation: stochastic numerics on manifolds
- 2 New stochastic frozen-flow integrators
- 3 Algebraic foundations of intrinsic stochastic order theory

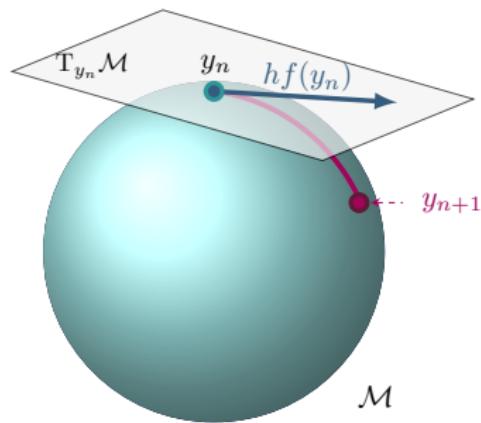
Connection and geodesic exponential

An affine **connection** $\triangleright: \mathfrak{X}(\mathcal{M}) \times \mathfrak{X}(\mathcal{M}) \rightarrow \mathfrak{X}(\mathcal{M})$ encodes the geometric structure we equip the manifold with.

A **geodesic** $\gamma(t) = \exp(tv)p$ is a curve on \mathcal{M} satisfying

$$\gamma'(t) \triangleright \gamma'(t) = 0, \quad \gamma(0) = p \in \mathcal{M}, \quad \gamma'(0) = v \in T_p \mathcal{M}.$$

Example: the **geodesic Euler method** for $y' = F(y)$ is $y_{n+1} = \exp(hF(y_n))y_n$.



Example

Euclidean case:

$$g \triangleright f(p) = f'(p)g(p),$$

$$\exp(tv)p = p + tv.$$

Matrix Lie group:

$$\exp(tv)p = \text{Exp}(tv)p.$$

Frame and connection

Let E_1, \dots, E_D be a **frame basis** (for simplicity):

$$\text{Span}_{\mathbb{R}}(E_1(p), \dots, E_D(p)) = T_p \mathcal{M}, \quad p \in \mathcal{M}.$$

Define the **Weitzenböck connection**

$$G \triangleright F = \sum_{d=1}^D G[f^d] E_d, \quad F(x) = \sum_{d=1}^D f^d E_d,$$

and the bracket

$$[F, G] = [[F, G]]_J - F \triangleright G + G \triangleright F,$$

where $[[F, G]]_J$ is the Jacobi bracket.

Proposition (Ebrahimi-Fard, Lundervold, Munthe-Kaas, '12)

If the frame spans a Lie algebra, the space $(\mathfrak{X}(\mathcal{M}), [-, -], \triangleright)$ is a post-Lie algebra:

$$F \triangleright [G, H] = [F \triangleright G, H] + [G, F \triangleright H],$$

$$[F, G] \triangleright H = F \triangleright (G \triangleright H) - (F \triangleright G) \triangleright H - G \triangleright (F \triangleright H) + (G \triangleright F) \triangleright H.$$

*In particular, \triangleright has **constant torsion and vanishing curvature**.*

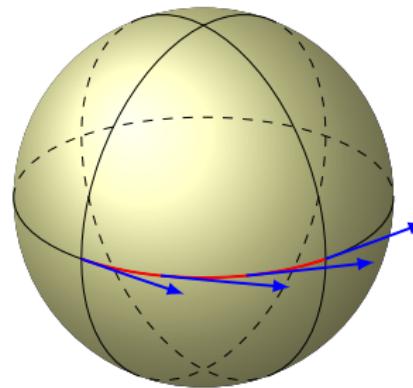
Frozen flows

A **frozen vector field** is

$$F_x(p) = \sum_{d=1}^D f^d(x) E_d(p).$$

The **frozen-flow** $\exp(tF_x)p$ is the solution of

$$y'(t) = F_x(y(t)), \quad y(0) = p.$$



Frozen flows

A **frozen vector field** is

$$F_x(p) = \sum_{d=1}^D f^d(x) E_d(p).$$

The **frozen-flow** $\exp(tF_x)p$ is the solution of

$$y'(t) = F_x(y(t)), \quad y(0) = p.$$

Proposition

The *frozen-flow Euler method* for

$$dX = F(X)dt + \sqrt{2}E_d(X) \circ dW_d$$

is of weak order one and is given by

$$Y_{n+1} = \exp \left(\sum_{d=1}^D \left(hf^d(Y_n) + \sqrt{2h}\xi_n^d \right) E_d \right) Y_n, \quad \xi_n \sim \mathcal{N}(0, I_D)$$

Frozen-flow methods

New frozen-flow integrators¹

$$H_n^i = \exp \left(\sum_{d=1}^D \left(h \sum_{j=1}^s Z_{i,j,K}^0 f^d(H_n^j) + \sqrt{h} Z_{i,K}^d \right) E_d \right) \dots \\ \dots \exp \left(\sum_{d=1}^D \left(h \sum_{j=1}^s Z_{i,j,1}^0 f^d(H_n^j) + \sqrt{h} Z_{i,1}^d \right) E_d \right) Y_n,$$

$$Y_{n+1} = \exp \left(\sum_{d=1}^D \left(h \sum_{i=1}^s z_{i,K}^0 f^d(H_n^i) + \sqrt{h} z_K^d \right) E_d \right) \dots \\ \dots \exp \left(\sum_{d=1}^D \left(h \sum_{i=1}^s z_{i,1}^0 f^d(H_n^i) + \sqrt{h} z_1^d \right) E_d \right) Y_n.$$

where the coefficients are **Gaussian**.

Remark: the frozen-flow methods work on **ANY smooth Riemannian manifold**.

¹in the spirit of **Crouch-Grossman and commutator-free Lie group methods**, see Celledoni, Marthinsen, Owren and also Iserles, Munthe-Kaas, Quispel, Zanna, ~ 1990's-2006

Convergence theorem

Theorem (Bronasco, BL, Huguet)

Consider a vector field F and a frame E_d that are Lipschitz continuous, $2p + 2$ -times continuously differentiable, satisfy technical polynomial growth estimates for their derivatives^a. Denote the Taylor-Talay-Tubaro expansions

$$\mathbb{E}[\phi(X_1)|X_0 = x] = \phi(x) + \sum_{j=1}^p h^j \mathcal{A}_j \phi(x) + h^{p+1} R_p^h(\phi, x),$$

$$\mathbb{E}[\phi(X(h))|X_0 = x] = \phi(x) + \sum_{j=1}^p \frac{h^j}{j!} \mathcal{L}^j \phi(x) + h^{p+1} R_p^h(\phi, x).$$

Then, if the operators satisfy

$$\mathcal{A}_j = \frac{1}{j!} \mathcal{L}^j, \quad j = 1, \dots, p, \quad \mathcal{L}\phi = F[\phi] + \sum_{d=1}^D E_d[E_d[\phi]],$$

then the integrator has global weak order p .

^ain the spirit of the Bakry-Émery criterion $\text{Ric} + \text{Hess}(V) \geq \kappa$.

New second order intrinsic method

Equation: $dX(t) = F(X(t))dt + \sqrt{2} \sum_{d=1}^D E_d(X(t)) \circ dW_d(t)$, $F = f^d E_d$

New explicit frozen flow integrator of **weak order two**:

$$H_n = \exp \left(\sum_{d=1}^D \left(\frac{1}{2} hf^d(Y_n) + \sqrt{h} \xi_n^{d,1} \right) E_d \right) Y_n$$

$$Y_{n+1} = \exp \left(\sum_{d=1}^D \left(\left(\frac{\sqrt{2}}{2} - 1 \right) hf^d(Y_n) + (2 - \sqrt{2}) hf^d(H_n) \right. \right. \\ \left. \left. + (1 - \sqrt{2}) \sqrt{h} \xi_n^{d,1} + \sqrt{h} \xi_n^{d,2} \right) E_d \right)$$

$$\exp \left(\sum_{d=1}^D \left(\left(1 - \frac{\sqrt{2}}{2} \right) hf^d(Y_n) + (\sqrt{2} - 1) hf^d(H_n) + \sqrt{2h} \xi_n^{d,1} \right) E_d \right) Y_n.$$

Notes on the implementation:

- On homogeneous spaces, \exp is the **matrix exponential**.
- The frozen-flow exponential can be replaced by **high-order retractions**.
- The geometric operations are **already implemented** in a handful of packages (see, for instance, `Manifolds.jl`)

Brownian dynamics on SO

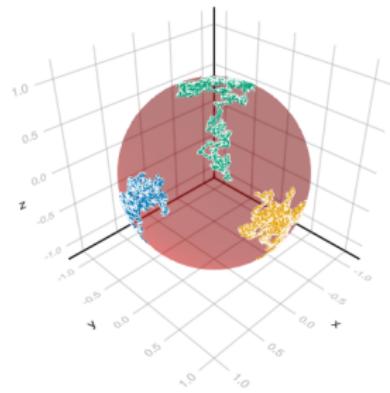
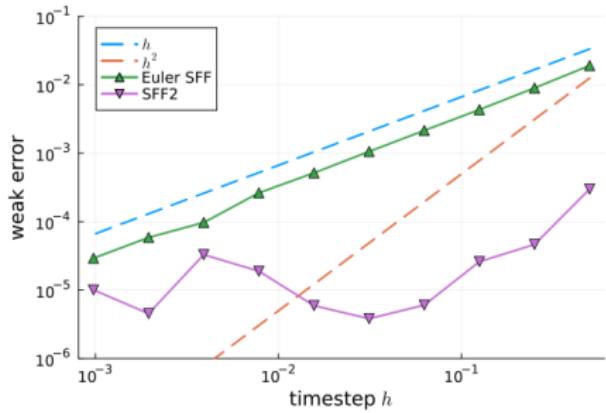
Frame: $E_d(y) = A_d y$ with (A_d) an orthonormal basis of the Lie algebra \mathfrak{so}_d .

Brownian dynamics:

$$dX(t) = \sum_{d=1}^D E_d(X(t)) \circ dW_d(t), \quad D = \dim(\mathfrak{so}_p) = \frac{p(p-1)}{2}.$$

The new method becomes

$$Y_{n+1} = \text{Exp} \left(\sum_{d=1}^D \left(\left(\frac{\sqrt{2}}{2} - 1 \right) \sqrt{h} \xi_n^{d,1} + \frac{\sqrt{2}}{2} \sqrt{h} \xi_n^{d,2} \right) A_d \right) \text{Exp} \left(\sum_{d=1}^D \sqrt{h} \xi_n^{d,1} A_d \right) Y_n.$$

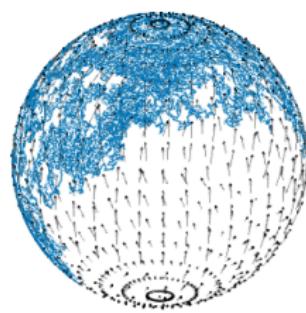
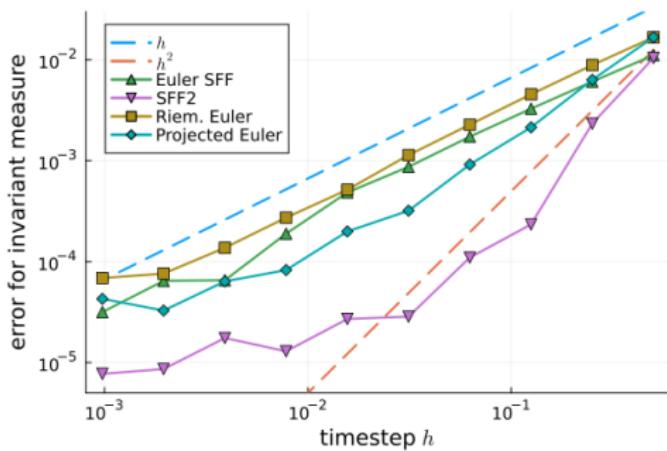


Remark: There is no timestep restriction for the new methods.

Ergodic dynamics on the sphere

We now have **3 numerical approaches**:

- **Projection**: $X_{n+1} = X_n + hF(X_n) + \sqrt{2h}\xi_n + \lambda g(X_n)$, $\zeta(X_{n+1}) = 0$,
- **Riemannian**: $X_{n+1} = \exp_{X_n}^{\text{Riem}}(hF(X_n) + \sqrt{2h}\xi_n)$,
- **Frozen-flow** : $X_{n+1} = \exp(hF(X_n) + \sqrt{2h}\xi_n^d E_d)X_n$.



The new second order methods outperforms the other integrators in accuracy for a similar cost. It is the **first high-order intrinsic integrator of the literature**.

Contents

- 1 Numerical motivation: stochastic numerics on manifolds
- 2 New stochastic frozen-flow integrators
- 3 Algebraic foundations of intrinsic stochastic order theory

Tensor algebra of vector fields

Let the **frozen composition** in $T(\mathfrak{X}(\mathcal{M}))$ be the differential operator

$$(G \cdot F) \triangleright \phi = \sum_{i,j} g^j f^i E_j [E_i[\phi]].$$

Similarly, define the **Grossman-Larson product** (extend by Guin-Oudom)

$$(G * F) \triangleright \phi = \sum_{i,j} g^j E_j [f^i E_i[\phi]] = G \triangleright (F \triangleright \phi) = (G \triangleright F) \triangleright \phi + (G \cdot F) \triangleright \phi.$$

In \mathbb{R}^d , we have

$$(G \cdot F) \triangleright \phi = \phi''(G, F), \quad (G * F) \triangleright \phi = (\phi' F)' G.$$

Then, $(T(\mathfrak{X}(\mathcal{M})), \cdot, \Delta_{\mathbb{W}}, \triangleright)$ and $(T(\mathfrak{X}(\mathcal{M})), *, \Delta_{\mathbb{W}})$ are **(post-)Hopf algebras**.

Tensor algebra of vector fields

Let the **frozen composition** in $T(\mathfrak{X}(\mathcal{M}))$ be the differential operator

$$(G \cdot F) \triangleright \phi = \sum_{i,j} g^j f^i E_j [E_i[\phi]].$$

Similarly, define the **Grossman-Larson product** (extend by Guin-Oudom)

$$(G * F) \triangleright \phi = \sum_{i,j} g^j E_j [f^i E_i[\phi]] = G \triangleright (F \triangleright \phi) = (G \triangleright F) \triangleright \phi + (G \cdot F) \triangleright \phi.$$

In \mathbb{R}^d , we have

$$(G \cdot F) \triangleright \phi = \phi''(G, F), \quad (G * F) \triangleright \phi = (\phi' F)' G.$$

Then, $(T(\mathfrak{X}(\mathcal{M})), \cdot, \Delta_{\mathbb{W}}, \triangleright)$ and $(T(\mathfrak{X}(\mathcal{M})), *, \Delta_{\mathbb{W}})$ are **(post-)Hopf algebras**.

Proposition

*The Taylor expansions of the **geodesic** and **exact flow exponentials** are*

$$\phi(\exp(F_p)p) = \exp^{\cdot}(F) \triangleright \phi(p), \quad \phi(\exp(F)p) = \exp^{*}(F) \triangleright \phi(p),$$

where $\exp^{*}(F) = \text{id} + F + \frac{1}{2!}F * F + \frac{1}{3!}F * F * F + \dots$

Example of the Euler method

The Taylor expansion of the Euler frozen-flow method is

$$\phi(\exp(hF_p + \sqrt{2h}\xi^d E_d)p) = \exp(hF + \sqrt{2h}\xi^d E_d) \triangleright \phi$$

²see Isserlis-Wick theorem.

Example of the Euler method

The Taylor expansion of the Euler frozen-flow method is

$$\begin{aligned}\phi(\exp(hF_p + \sqrt{2h}\xi^d E_d)p) &= \exp(hF + \sqrt{2h}\xi^d E_d) \rhd \phi \\ &= \left(\text{id} + h^{1/2} \sqrt{2}\xi^d E_d + h(F + \xi^{d_2}\xi^{d_1} E_{d_2} \cdot E_{d_1}) \right. \\ &\quad \left. + h^{3/2} \left(\frac{\sqrt{2}}{2} \xi^d F \cdot E_d + \frac{\sqrt{2}}{2} \xi^d E_d \cdot F + \frac{\sqrt{2}}{3} \xi^{d_3} \xi^{d_2} \xi^{d_1} E_{d_3} \cdot E_{d_2} \cdot E_{d_1} \right) + \dots \right) \rhd \phi.\end{aligned}$$

²see Isserlis-Wick theorem.

Example of the Euler method

The Taylor expansion of the Euler frozen-flow method is

$$\begin{aligned}\phi(\exp(hF_p + \sqrt{2h}\xi^d E_d)p) &= \exp(hF + \sqrt{2h}\xi^d E_d) \rhd \phi \\ &= \left(\text{id} + h^{1/2} \sqrt{2}\xi^d E_d + h(F + \xi^{d_2}\xi^{d_1} E_{d_2} \cdot E_{d_1}) \right. \\ &\quad \left. + h^{3/2} \left(\frac{\sqrt{2}}{2} \xi^d F \cdot E_d + \frac{\sqrt{2}}{2} \xi^d E_d \cdot F + \frac{\sqrt{2}}{3} \xi^{d_3} \xi^{d_2} \xi^{d_1} E_{d_3} \cdot E_{d_2} \cdot E_{d_1} \right) + \dots \right) \rhd \phi.\end{aligned}$$

Then, the expectation pairs the Gaussians together² and yields

$$\begin{aligned}\mathbb{E}[\phi(\exp(hF_p + \sqrt{2h}\xi^d E_d)p)] &= \left(\text{id} + h(F + E_d \cdot E_d) \right. \\ &\quad + h^2 \left(\frac{1}{2} F \cdot F + \frac{1}{3} F \cdot E_d \cdot E_d + \frac{1}{3} E_d \cdot F \cdot E_d + \frac{1}{3} E_d \cdot E_d \cdot F \right. \\ &\quad \left. + \frac{1}{6} E_{d_2} \cdot E_{d_2} \cdot E_{d_1} \cdot E_{d_1} + \frac{1}{6} E_{d_2} \cdot E_{d_1} \cdot E_{d_2} \cdot E_{d_1} + \frac{1}{6} E_{d_1} \cdot E_{d_2} \cdot E_{d_2} \cdot E_{d_1} \right) \\ &\quad \left. + \dots \right) \rhd \phi.\end{aligned}$$

²see Isserlis-Wick theorem.

Planar exotic forests³

Definition

A planar exotic forest is an ordered list of planar trees decorated by \mathbb{N} s.t.

- • stands for the decoration 0,
- the other decorations only appear 0 or 2 times, and only on leaves.

Examples of exotic planar forests

$$\mathcal{EF} = \text{Span}_{\mathbb{R}}(1, \bullet, \bullet, \bullet, \bullet, \bullet, \dots)$$

³see L., Vilmart, 2020-2022; L., Munthe-Kaas, 2024

Planar exotic forests³

Definition

A planar exotic forest is an ordered list of planar trees decorated by \mathbb{N} s.t.

- • stands for the decoration 0,
- the other decorations only appear 0 or 2 times, and only on leaves.

Examples of exotic planar forests:

$$\mathcal{EF} = \text{Span}_{\mathbb{R}}(1, \bullet, \bullet, \bullet^{\textcircled{1}}, \bullet^{\textcircled{1}}\bullet^{\textcircled{1}}, \bullet^{\textcircled{1}}\bullet^{\textcircled{1}}, \bullet^{\textcircled{1}}\bullet^{\textcircled{2}}, \bullet^{\textcircled{2}}\bullet^{\textcircled{1}}, \dots)$$

Difficulty: An exotic forest is NOT a concatenation of exotic trees in general:

$$\bullet^{\textcircled{1}}\bullet^{\textcircled{1}} \neq \bullet^{\textcircled{1}} \cdot \bullet^{\textcircled{1}}.$$

³see L., Vilmart, 2020-2022; L., Munthe-Kaas, 2024

Planar exotic forests³

Definition

A planar exotic forest is an ordered list of planar trees decorated by \mathbb{N} s.t.

- • stands for the decoration 0,
- the other decorations only appear 0 or 2 times, and only on leaves.

Examples of exotic planar forests:

$$\mathcal{EF} = \text{Span}_{\mathbb{R}}(1, \bullet, \bullet, \bullet, \bullet, \bullet, \dots)$$

Difficulty: An exotic forest is NOT a concatenation of exotic trees in general:

$$\textcircled{1}\textcircled{1} \neq \textcircled{1} \cdot \textcircled{1}$$

\mathcal{EF} is equipped with grafting \curvearrowright , concatenation \cdot , and Grossman-Larson \diamond :

$$\bullet \circlearrowleft \bullet = \bullet \circlearrowleft \bullet + \bullet \circlearrowleft \bullet, \quad \bullet \cdot \bullet = \bullet \cdot \bullet, \quad \bullet \diamond \bullet = \bullet \diamond \bullet + \bullet \diamond \bullet + \bullet \diamond \bullet.$$

³see L., Vilmart, 2020-2022; L., Munthe-Kaas, 2024

Planar exotic forests³

Definition

A planar exotic forest is an ordered list of planar trees decorated by \mathbb{N} s.t.

- • stands for the decoration 0,
- the other decorations only appear 0 or 2 times, and only on leaves.

Examples of exotic planar forests:

$$\mathcal{EF} = \text{Span}_{\mathbb{R}}(1, \bullet, \bullet, \bullet, \bullet, \bullet, \dots)$$

Difficulty: An exotic forest is NOT a concatenation of exotic trees in general:

$$\textcircled{1}\textcircled{1} \neq \textcircled{1} \cdot \textcircled{1}.$$

\mathcal{EF} is equipped with grafting \curvearrowright , concatenation \cdot , and Grossman-Larson \diamond :

$$\bullet \circlearrowleft \begin{array}{c} (1) \\ \bullet \end{array} = \bullet \begin{array}{c} (1) \\ \bullet \end{array} + \bullet \begin{array}{c} (1) \\ \bullet \end{array}, \quad \bullet \circlearrowright \begin{array}{c} (1) \\ \bullet \end{array} = \bullet \begin{array}{c} (1) \\ \bullet \end{array}, \quad \bullet \diamond \begin{array}{c} (1) \\ \bullet \end{array} = \bullet \begin{array}{c} (1) \\ \bullet \end{array} + \bullet \begin{array}{c} (1) \\ \bullet \end{array} + \bullet \begin{array}{c} (1) \\ \bullet \end{array}.$$

Theorem

$(\mathcal{EF}, \cdot, \Delta_{\oplus})$ and $(\mathcal{EF}, \diamond, \Delta_{\oplus})$ are Hopf algebras. $(\mathcal{EF}, \cdot, \Delta_{\oplus})$ is NOT post-Hopf.

³see L., Vilmart, 2020-2022; L., Munthe-Kaas, 2024

Elementary differential map

The elementary differential map $\mathbb{F}: \mathcal{EF} \rightarrow T(\mathfrak{X}(\mathcal{M}))$ translates from exotic forests to differential operators:

$$\mathbb{F}(\bullet) = F, \quad \mathbb{F}(\bullet) = F \triangleright F, \quad \mathbb{F}(\circledcirc \bullet) = E_d \cdot (E_d \triangleright F), \quad \mathbb{F}(\bullet \circledcirc \circledcirc) = (E_d \triangleright F) \cdot E_d.$$

Proposition

\mathbb{F} is a **morphism**: $\mathbb{F}(\pi_1 \curvearrowright \pi_2) = \mathbb{F}(\pi_1) \triangleright \mathbb{F}(\pi_2)$,

$$\mathbb{F}(\pi_1 \cdot \pi_2) = \mathbb{F}(\pi_1) \cdot \mathbb{F}(\pi_2), \quad \mathbb{F}(\pi_1 \diamond \pi_2) = \mathbb{F}(\pi_1) * \mathbb{F}(\pi_2).$$

Example (frozen-flow Euler method)

$$\begin{aligned} \mathbb{E}[\phi(\exp(hF_p + \sqrt{2h}\xi^d E_d)p)] &= \mathbb{F}\left(\mathbf{1} + h(\bullet + \circledcirc \circledcirc) + h^2\left(\frac{1}{2}\bullet \bullet + \frac{1}{3}\bullet \circledcirc \circledcirc \right.\right. \\ &\quad \left.\left. + \frac{1}{3}\circledcirc \circledcirc \bullet + \frac{1}{3}\circledcirc \circledcirc \bullet + \frac{1}{6}\circledcirc \circledcirc \circledcirc \circledcirc \bullet + \frac{1}{6}\circledcirc \circledcirc \circledcirc \circledcirc \bullet + \frac{1}{6}\circledcirc \circledcirc \circledcirc \circledcirc \bullet\right) + \dots\right) \triangleright \phi(p) \\ &= \left(\text{id} + h(F + E_d \cdot E_d) + h^2\left(\frac{1}{2}F \cdot F + \frac{1}{3}F \cdot E_d \cdot E_d + \frac{1}{3}E_d \cdot F \cdot E_d\right.\right. \\ &\quad \left.\left. + \frac{1}{3}E_d \cdot E_d \cdot F + \frac{1}{6}E_{d_2} \cdot E_{d_2} \cdot E_{d_1} \cdot E_{d_1} + \frac{1}{6}E_{d_2} \cdot E_{d_1} \cdot E_{d_2} \cdot E_{d_1} + \dots\right)\right) \triangleright \phi(p). \end{aligned}$$

Exotic Lie-Butcher series

Exotic Lie-Butcher series are formal series indexed by exotic forests with $a \in \mathcal{EF}^*$:

$$S_h(a)[\phi] = \sum_{\pi \in EF} h^{|\pi|} a(\pi) \mathbb{F}(\pi)[\phi], \quad B_h(a) = \sum_{\tau \in ET} h^{|\tau|} a(\tau) \mathbb{F}(\tau).$$

Theorem (Bronasco, BL, Huguet)

The Taylor expansion of the exact flow is the exotic Lie series

$$\mathbb{E}[\phi(X(h))] = \exp(h\mathcal{L})[\phi] = S_h(e) \rhd \phi, \quad e = \exp^*(\delta_{\bullet} + \delta_{\circledcirc \circledcirc}).$$

The numerical flow is also given by an exotic Lie series.

Exotic Lie-Butcher series

Exotic Lie-Butcher series are formal series indexed by exotic forests with $a \in \mathcal{EF}^*$:

$$S_h(a)[\phi] = \sum_{\pi \in EF} h^{|\pi|} a(\pi) \mathbb{F}(\pi)[\phi], \quad B_h(a) = \sum_{\tau \in ET} h^{|\tau|} a(\tau) \mathbb{F}(\tau).$$

Proposition (in the spirit of Owren, 2006)

Let $\varphi: \mathcal{M} \rightarrow \mathcal{M}$ with $\phi(\varphi(p)) = (S(a) \triangleright \phi)(p)$, then the **frozen vector field** $F_\varphi: p \rightarrow F_{\varphi(p)}(p)$ satisfies

$$F_\varphi \triangleright \phi = (S(a) \triangleright hF) \triangleright \phi = B(\tilde{a}) \triangleright \phi, \quad \tilde{a}(\tau) = a(B^-(\tau)), \quad \tilde{a} \in \mathcal{ET}^*.$$

Frozen flow: $\phi(\exp(B_p(\tilde{a}))) = S(a) \triangleright \phi, \quad a(\tau_1 \cdots \tau_n) = \frac{1}{n!} \tilde{a}(\tau_1) \dots \tilde{a}(\tau_n).$

Frozen composition:

$$\phi(\varphi^1 \cdot \varphi^2) = (S(a^2) \cdot S(a^1)) \triangleright \phi = S(a^2 \cdot a^1) \triangleright \phi, \quad a^2 \cdot a^1 = \mu \circ (a^2 \otimes a^1) \circ \Delta..$$

Composition (see Munthe-Kaas, Wright, 2008):

$$\phi(\varphi^1 \circ \varphi^2) = S(a^2) \triangleright (S(a^1) \triangleright \phi) = S(a^2 * a^1) \triangleright \phi, \quad a^2 * a^1 = \mu \circ (a^2 \otimes a^1) \circ \Delta_{MKW}.$$

Order conditions

Exotic forest π	Differential $\mathbb{F}(\pi)[\phi]$	Order condition $a(\pi) = e(\pi)$
•	$f^i E_i[\phi]$	$z_{i,k_1}^0 = 1$
①①	$E_{d_1}[E_{d_1}[\phi]]$	$\sum_{k_1 \geq k_2}^! \mathbb{E}[z_{k_2}^{d_1} z_{k_1}^{d_1}] = 1$
• •	$f^j E_j[f^i] E_i[\phi]$	$z_{i,k_2}^0 Z_{i,j,k_1}^0 = \frac{1}{2}$
①① • •	$E_{d_1}[E_{d_1}[f^i]] E_i[\phi]$	$\sum_{k_2 \geq k_3}^! \mathbb{E}[Z_{i,k_3}^{d_1} Z_{i,k_2}^{d_1}] z_{i,k_1}^0 = \frac{1}{2}$
①① ① ①	$f^j f^i E_j[E_i[\phi]]$	$\sum_{k_1 \geq k_2}^! z_{j,k_2}^0 z_{i,k_1}^0 = \frac{1}{2}$
①① ① ①	$E_{d_1}[f^i] E_i[E_{d_1}[\phi]]$	$\sum_{k_1 \geq k_2}^! z_{i,k_2}^0 \mathbb{E}[Z_{i,k_3}^{d_1} z_{k_1}^{d_1}] = 0$
① ①	$E_{d_1}[f^i] E_{d_1}[E_i[\phi]]$	$\sum_{k_2 \geq k_1}^! z_{i,k_2}^0 \mathbb{E}[Z_{i,k_3}^{d_1} z_{k_1}^{d_1}] = 1$
• ①①	$f^i E_i[E_{d_1}[E_{d_1}[\phi]]]$	$\sum_{k_1 \geq k_2 \geq k_3}^! z_{i,k_3}^0 \mathbb{E}[z_{k_2}^{d_1} z_{k_1}^{d_1}] = \frac{1}{2}$
① • ①	$f^i E_{d_1}[E_i[E_{d_1}[\phi]]]$	$\sum_{k_1 \geq k_3 \geq k_2}^! z_{i,k_3}^0 \mathbb{E}[z_{k_2}^{d_1} z_{k_1}^{d_1}] = 0$
①① •	$f^i E_{d_1}[E_{d_1}[E_i[\phi]]]$	$\sum_{k_3 \geq k_1 \geq k_2}^! z_{i,k_3}^0 \mathbb{E}[z_{k_2}^{d_1} z_{k_1}^{d_1}] = \frac{1}{2}$
②②①①	$E_{d_2}[E_{d_2}[E_{d_1}[E_{d_1}[\phi]]]]$	$\sum_{k_1 \geq k_2 \geq k_3 \geq k_4}^! \mathbb{E}[z_{k_4}^{d_2} z_{k_3}^{d_2}] \mathbb{E}[z_{k_2}^{d_1} z_{k_1}^{d_1}] = \frac{1}{2}$
②①②①	$E_{d_2}[E_{d_1}[E_{d_2}[E_{d_1}[\phi]]]]$	$\sum_{k_1 \geq k_2 \geq k_3 \geq k_4}^! \mathbb{E}[z_{k_4}^{d_2} z_{k_2}^{d_2}] \mathbb{E}[z_{k_3}^{d_1} z_{k_1}^{d_1}] = 0$
①②②①	$E_{d_1}[E_{d_2}[E_{d_2}[E_{d_1}[\phi]]]]$	$\sum_{k_1 \geq k_2 \geq k_3 \geq k_4}^! \mathbb{E}[z_{k_3}^{d_2} z_{k_2}^{d_2}] \mathbb{E}[z_{k_4}^{d_1} z_{k_1}^{d_1}] = 0$

Primitive elements and shuffle relations

Shuffle product:

$$\begin{aligned}\bullet \boxplus \textcircled{1}\textcircled{1} &= \bullet \textcircled{1}\textcircled{1} + \textcircled{1} \bullet \textcircled{1} + \textcircled{1}\textcircled{1} \bullet, \\ \textcircled{2}\textcircled{2} \boxplus \textcircled{1}\textcircled{1} &= 2\textcircled{2}\textcircled{2}\textcircled{1}\textcircled{1} + 2\textcircled{2}\textcircled{1}\textcircled{2}\textcircled{1} + 2\textcircled{2}\textcircled{1}\textcircled{1}\textcircled{2},\end{aligned}$$

The coefficient maps of numerical flows are **characters** of (\mathcal{EF}, \boxplus) :

$$a(\pi_1 \boxplus \pi_2) = a(\pi_1)a(\pi_2).$$

Following Owren, '06, we have **shuffle relations**:

$$\begin{aligned}a(\bullet)^2 &= 2a(\bullet \bullet), \\ a(\bullet)a(\textcircled{1}\textcircled{1}) &= a(\bullet \textcircled{1}\textcircled{1}) + a(\textcircled{1}\textcircled{1} \bullet) + a(\textcircled{1} \bullet \textcircled{1}), \\ a(\textcircled{1}\textcircled{1})^2 &= 2a(\textcircled{2}\textcircled{2}\textcircled{1}\textcircled{1}) + 2a(\textcircled{2}\textcircled{1}\textcircled{2}\textcircled{1}) + 2a(\textcircled{1}\textcircled{2}\textcircled{2}\textcircled{1}).\end{aligned}$$

Proposition

The order conditions are indexed by the exotic forests, modulo the shuffle relations. In particular, there are 2, 8, and 73 conditions for order 1, 2, and 3 (against 2, 11, and 95 exotic forests).

Conclusion

Summary:

- We provide a brand new class of **intrinsic** high-order methods for solving stochastic dynamics on manifolds.
- We give a **convergence analysis** and the **Talay-Tubaro methodology**.
- The order theory relies on a new formalism of **planar exotic forests**, which extends the existing deterministic works.

Outlooks:

- The analysis and implementation rely on an **artificial connection**. Ongoing extension of Lie-group methods to geodesic methods.
- Creation of efficient **high-order sampling method** (PhD thesis of Sébastien Macé).
- Geometric **universal characterisation** of planar exotic series, algebraic study of the **evenly decorated/aromatic exotic series and applications**.
- Implementation of the new methods in the Julia package **Manifolds.jl** (with P. Navaro and R. Bergmann).
- **Available ANR postdoc position** starting Sept. 2026 in Rennes (2 years).

Exotic MKW structure

Theorem

Let the Munthe-Kaas-Wright coproduct:

$$\Delta_{MKW}(\tau) := \sum_{\text{adm. cut } c} P^c(\tau) \otimes R^c(\tau), \quad \Delta_{MKW}(\pi) := (id \otimes B^-) \Delta_{MKW}(B^+(\pi)).$$

Then, $(\mathcal{EF}, \sqcup, \Delta_{MKW})$ is a Hopf algebra dual to $(\mathcal{EF}, \diamond, \Delta_{\sqcup})$. Its convolution product represents the composition of exotic series:

$$S(a) \circ S(b) = S(a * b), \quad a * b = \mu_{\mathbb{R}} \circ (a \otimes b) \circ \Delta_{MKW},$$

Example

$$\Delta_{MKW}(\textcircled{1}\textcircled{1}) = \textcircled{1}\textcircled{1} \otimes \mathbf{1} + \mathbf{1} \otimes \textcircled{1}\textcircled{1},$$

$$\Delta_{MKW}(\textcircled{1}\textcircled{1}) = \textcircled{1}\textcircled{1} \otimes \mathbf{1} + \textcircled{1}\textcircled{1} \otimes \bullet + \mathbf{1} \otimes \textcircled{1}\textcircled{1},$$

$$\Delta_{MKW}(\textcircled{1}\bullet\textcircled{1}) = \textcircled{1}\bullet\textcircled{1} \otimes \mathbf{1} + 2\textcircled{1}\textcircled{1} \otimes \bullet + (\textcircled{1}\textcircled{1} + \textcircled{1}\textcircled{1}) \otimes \bullet\bullet + (\textcircled{1}\textcircled{1} + \textcircled{1}\textcircled{1}) \otimes \bullet$$

$$+ (\textcircled{1}\bullet\textcircled{1} + \textcircled{1}\bullet\textcircled{1}) \otimes \bullet + 2\textcircled{1}\textcircled{1} \otimes \bullet + \mathbf{1} \otimes \textcircled{1}\bullet\textcircled{1}.$$