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Riemannian stochastic dynamics
Consider a Riemannian manifold (M,VLC). Let E;,...,Ep be a smooth frame:

SpanR(El(p)7-~-aED(p)) = TPM7 )’EM
Given a vector field F(x) = .0 f9(x)E4(x), we consider (see Hsu)

dX(t) = F(X(t)) dt+\@ZEd ) o dWgy(t).
d=1

Riemannian Langevin dynamics for E4 orthonormal basis:

D
dX(t) = — Y (Ea[V]Eq + VE Eq)(X(t))dt + V2 Z E4(X(t)) o dWy(t)
d=1 d=1
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Ergodicity and applications

Weak approximations: Given a test function ¢ € CF (M), an integrator is of weak
order p if

[E[¢(Xa)] = E[6(X(tn))]] < ChP, n=0,..., N.
Ergodicity property:

-
TL”H; 7 d(X(s))ds = JM d(y)pr(y)dvol(y) almost surely, p oce™"

Applications of sampling on manifolds: geometric statistics, molecular dynamics,
machine learning, PINNs, ...
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The idea of geometric integration
Dynamics on a manifold M: .

Figure: Non-geometric versus geometric methods.
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The idea of geometric integration

Figure: Numerical simulations of a Brownian motion on the sphere.

Idea: numerical methods should try to preserve the geometry as much as
possible.

Challenge: a geometry is not "just a manifold". The numerical approaches have to
satisfy that their definition, convergence analysis, and implementation all
rely on the same geometric framework as the model.
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Existing stochastic integrators on manifolds

Motivations for finding new methods:

e Projection methods rely on an embedding in a bigger
space, are expensive and unstable.

e The high order theory of projection methods is difficult
(BL, 2021 - 7 pages of calculations, no straightforward
algebraic structure, ~ 25 order conditions for order 2).

Example (Euler projection integrator)
The most popular integrator is the Euler scheme with explicit projection direction?
Xny1 = Xn + hf(Xn) + V2hE, + )\VC(X,,), C(XnJrl) =0.

2Ciccotti, Kapral, Vanden-Eijnden, 2005; Lelievre, Le Bris, Vanden-Eijnden, 2008; Leliévre,
Rousset, Stolz, 2010; ...

Example (From Bharath, Lewis, Sharma, Tretyakov, 2024)

The Riemannian Langevin method has order one:

Riem —1/2
Xni1 = expRe™ (hf (X,) + V2hg = 2(X,)€0)
Nancy, 2025 6/22
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Connection and geodesic exponential
An affine connection =>: X(M) x X(M) — X(M) encodes the geometric

structure we equip the manifold with.
A geodesic y(t) = exp(tv)p is a curve on M satisfying

V() =A/(8) =0, 20)=peM, (0)=veT,M
Example: the geodesic Euler method for y’' = F(y) is ynir1 = exp(hF (yn))Ya-

Example

Euclidean case:

- Yot g>"f(p) =f'(p)g(p),

exp(tv)p = p + tv.
Matrix Lie group:

exp(tv)p = Exp(tv)p.

Adrien Busnot Laurent Intrinsic stochastic geometric integration
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Frame and connection
Let Ey,...,Ep be a frame basis (for simplicity):
Spang(E1(p),...,Ep(p)) = TpM, pe M.

Define the Weitzenbock connection

D D
Ge=F =) G[flEs, F(x)= )] fEq,
d=1 d=1

and the bracket
[F,G]=[F,G)l,—F=G+G>F,

where [F, G], is the Jacobi bracket.
Proposition (Ebrahimi-Fard, Lundervold, Munthe-Kaas, '12)
If the frame spans a Lie algebra, the space (X(M),[—,—],>) is a post-Lie
algebra:

F>[G,H]=[F>G,H]+|[G, F>H],

[F,G]>H=F>(G>H)— (FxG)>H—-G>(F>H)+ (G>F)>H.

In particular, = has constant torsion and vanishing curvature.
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Frozen flows
A frozen vector field is

D
Fe(p) = . f4(x)Eq(p).
d=1

The frozen-flow exp(tF,)p is the solution of
Y'(t) = Fly(t),  y(0) =p.
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Frozen flows
A frozen vector field is

Proposition
The frozen-flow Euler method for

dX = F(X)dt + V2E4(X) o dW,
is of weak order one and is given by

D

Yn+1 = exp ( Z (hfd(yn) + \/ﬂfg) Ed) Yna En ~ N(Oa ID)

d=1
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Frozen-flow methods

New frozen-flow integrators®

exp(Z (hz de HY) +Nhz? K)Ed>

d=1 =

H,

..exp(Z (hz L FA(H) +xfz,1)Ed)Y

d=1 j=1

s

D
Yo+1 = exp(Z (hZz,de Hi) +\fzK>Ed)

D s
..exp ( Z (hZ z,-(flfd(H,",) + \sz’) Ed) Y.
d=1 " i=1

where the coefficients are Gaussian.

Remark: the frozen-flow methods work on ANY smooth Riemannian manifold.

Lin the spirit of Crouch-Grossman and commutator-free Lie group methods, see Celledoni,

Marthinsen, Owren and also Iserles, Munthe-Kaas, Quispel, Zanna, ~ 1990’s-2006
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Convergence theorem

Theorem (Bronasco, BL, Huguet)

Consider a vector field F and a frame E4 that are Lipschitz continuous,
2p + 2-times continuously differentiable, satisfy technical polynomial growth
estimates for their derivatives®. Denote the Taylor-Talay-Tubaro expansions

P
E[6(X1)[Xo = x] = 6(x) + Z W Ajb(x) + P IRY(6, ),
E[6(X ()Xo = x] = 6(x) + 2 w + BPHIRA(6,%).
Then, if the operators satisfy

D
Aj:j_lgf, j=1,...p, L¢é=F[g]+ > E4[Eal¢]l,
H d=1

then the integrator has global weak order p.

2in the spirit of the Bakry-Emery criterion Ric + Hess(V) > k.
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New second order intrinsic method
Equation: dX(t) = F(X(t))dt + 225, E4(X(t)) 0 dWi(t), F = fYE,

New explicit frozen flow integrator of weak order two:

H, = 3 Lird vy + Vaed)E, )y,
n_exp(dzl(2 (n)+ gn)d) n
D
Ypi1 = exp ( > ((? —1)hf(Y,) + (2 — V2)hfd(H,)
d=1

+ (- V2R +ReL)E:

D
2
exp ( 3 ((1 - %)hfﬁ’(yn) + (V2 = 1)hfe(H,) + \/2/75;’71) Ed) Y,.
d=1
Notes on the implementation:
@ On homogeneous spaces, exp is the matrix exponential.
@ The frozen-flow exponential can be replaced by high-order retractions.

@ The geometric operations are already implemented in a handful of packages
(see, for instance, Manifolds.jl)
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Brownian dynamics on SO

Frame: E4(y) = Agy with (Ag) an orthonormal basis of the Lie algebra sog.
Brownian dynamics:

() = 3 Ea(X() 0 dWale), D = dim(so) = e
d=1

The new method becomes

Y11 = Exp ( i ((ii —1)Vhed!t + ?\/ﬁﬁ,ﬁ”z)Ad) Exp ( ZD] ﬁgg’:lAd) Y,.

d=1

2 d=1

—h

—
—a— Euler SFF
—¥— SFF2

weak error

timestep &
Remark: There is no timestep restriction for the new methods.
Nancy, 2025 13/22



Ergodic dynamics on the sphere

We now have 3 numerical approaches:
o Projection: Xny1 = X, + hF(X,) +~V2hE, + 2g(X,), ((Xpy1) =0,
e Riemannian: X,.1 = expR*™(hF(X,) + \2h¢,),
o Frozen-flow : X,i1 = exp(hF(X,) + V2hed Eg) X,

—_—h

—_y
—aA— Euler SFF
—¥—SFF2 -~
~—@—Riem. Euler

—&— Projected Euler

error for invariant measure

timestep i

The new second order methods outperforms the other integrators in accuracy for
a similar cost. It is the first high-order intrinsic integrator of the literature.
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Tensor algebra of vector fields
Let the frozen composition in T(X(M)) be the differential operator

(G-F)=¢ =) g fEIE].

Similarly, define the Grossman-Larson product (extend by Guin-Oudom)

(GxF)=¢ =) gE[fE¢]] =G> (F=¢) = (G>F)=¢+ (G- F)=¢.

ij
In RY, we have
(G- F)=¢=¢"(G,F), (GxF)=¢=(¢'F)GC.
Then, (T(X(M)), -, AL, ) and (T(X(M)), *, Ay,) are (post-)Hopf algebras.
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Tensor algebra of vector fields
Let the frozen composition in T(X(M)) be the differential operator

(G- F)=¢ = g EIE].

Similarly, define the Grossman-Larson product (extend by Guin-Oudom)

(GxF)=¢ =) gE[fE¢]] =G> (F=¢) = (G>F)=¢+ (G- F)=¢.

ij
In RY, we have
(G- F)=¢=0¢"(G,F), (G+F)=¢=(¢'F)G.
Then, (T(X(M)), -, AL, ) and (T(X(M)), *, Ay,) are (post-)Hopf algebras.
Proposition
The Taylor expansions of the geodesic and exact flow exponentials are
¢(exp(Fp)p) = exp'(F) & ¢(p),  p(exp(F)p) = exp™(F) =o(p),

where exp*(F) = id+F + LF« F+ 3 F«Fx F+ ...
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Example of the Euler method

The Taylor expansion of the Euler frozen-flow method is

d(exp(hF, + N2he?E4)p) = exp (hF + N2heEy) & ¢

2see Isserlis-Wick theorem.
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Example of the Euler method

The Taylor expansion of the Euler frozen-flow method is

d(exp(hF, + N2he?E4)p) = exp (hF + N2heEy) & ¢
— (id+h2V2E9E, + h(F + €26% By, - Ey)

V2 V2 V2
+ h3/2(7§dF : Ed + ?ngd -F+ ?fd3fd2£d1Ed3 . Ed2 . Edl) +. ) l>(b.

2see Isserlis-Wick theorem.
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Example of the Euler method
The Taylor expansion of the Euler frozen-flow method is
d(exp(hFp + V2he9Ey)p) = exp (hF + V2h¢Ey) & ¢
— (id+h2V2E9E, + h(F + €26% By, - Ey)

V2 V2 V2

2
+h3/2(7£dF_Ed+7§dEd.F+?§d3€dz£d1Ed3 .Ed2 'Ed1)+-~-> > ¢.

Then, the expectation pairs the Gaussians together? and vyields
E[¢( exp(hF, + N2ht?Eg)p)] = (id +h(F + Eq - Ej)

1 1 1 1
+h(ZF F+ZF -Eqy-Ey+ ZE4-F-Ey+ -E4-E4 - F

2 3 3 3
1 1 1
+6 d2'Ed2'Ed1'Ed1+6 d2'Ed1'Ed2'Ed1+6 dl'Ed2'Ed2'Ed1)
+...)>¢.

2see Isserlis-Wick theorem.
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Planar exotic forests?
Definition

A planar exotic forest is an ordered list of planar trees decorated by N s.t.
- o stands for the decoration 0,

- the other decorations only appear 0 or 2 times, and only on leaves.

Examples of exotic planar forests:

EF = Span]R(lv * Ia <$7 O @?7 @%D@a s )

3see L., Vilmart, 2020-2022; L., Munthe-Kaas, 2024
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Planar exotic forests?
Definition

A planar exotic forest is an ordered list of planar trees decorated by N s.t.
- o stands for the decoration 0,

- the other decorations only appear 0 or 2 times, and only on leaves.

Examples of exotic planar forests:

EF = Span]R(lv * 17 ﬁv O @?7 @@@@a s )

Difficulty: An exotic forest is NOT a concatenation of exotic trees in general:

00 *O @

3see L., Vilmart, 2020-2022; L., Munthe-Kaas, 2024
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Planar exotic forests?
Definition

A planar exotic forest is an ordered list of planar trees decorated by N s.t.
- o stands for the decoration 0,

- the other decorations only appear 0 or 2 times, and only on leaves.

Examples of exotic planar forests:

EF = Span]R(lv * Iv q?v O @?7 @@@@a s )

Difficulty: An exotic forest is NOT a concatenation of exotic trees in general:

0 7* O @
EF is equipped with grafting —, concatenation -, and Grossman-Larson ©:

R LI SN0 S T 84

3see L., Vilmart, 2020-2022; L., Munthe-Kaas, 2024
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Planar exotic forests?
Definition

A planar exotic forest is an ordered list of planar trees decorated by N s.t.
- o stands for the decoration 0,

- the other decorations only appear 0 or 2 times, and only on leaves.

Examples of exotic planar forests:

EF =Spang(1, o I @{? OO @(?7 @@{@@, o)
Difficulty: An exotic forest is NOT a concatenation of exotic trees in general:
0 7* O @
EF is equipped with grafting —, concatenation -, and Grossman-Larson ©:

R LI SN0 S T 84

Theorem
(EF,-,AL) and (EF, o, Ay)) are Hopf algebras. (EF,-,Ay,) is NOT post-Hopf. J
3see L., Vilmart, 2020-2022; L., Munthe-Kaas, 2024
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Elementary differential map

The elementary differential map F: EF — T(X(M)) translates from exotic
forests to differential operators:

Fo)=F, FQ=F=F Fd)=E (Es=F), FQg) = (Es=F) Eu
Proposition

F is a morphism: F(my — mp) = F(m) =F(m),

F(rmy - mp) = F(my) - F(mp), F(mpoma) = F(m) = F(m).

Example (frozen-flow Euler method)

1
E[¢(exp(hF, + N2h¢9Eg)p)] = (1 + hie + 00) + I ( e ot 5000
1 1 1 1
t 3001 300+t 0000 T ;OO T g@@@@) +. ) > ¢(p)

1 1 1
= (id-+h(F + Eq- Eq) + W(5F - F+ 3F - Eq-Eq+ 3Ea- F - Eg

1 1 1
+§Ed'Ed'F+6Ed2'Ed2'Ed1'Ed1 +6Ed2'Ed1'Ed2'Ed1 +) l>¢(p)
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Exotic Lie-Butcher series

Exotic Lie-Butcher series are formal series indexed by exotic forests with a € EF™:

Sn(a)[¢] = Z h™la(m)F(m)[4], Bn(a) = Z h™la(m)F (7).
weEF TEET
Theorem (Bronasco, BL, Huguet)

The Taylor expansion of the exact flow is the exotic Lie series

E[¢p(X(h))] = exp(hL)[¢] = Sn(e) =, e =exp™ (4, + dpq)-

The numerical flow is also given by an exotic Lie series.
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Exotic Lie-Butcher series
Exotic Lie-Butcher series are formal series indexed by exotic forests with a € EF™:

Sw(a)[e] = D) h™a(mF(n)[¢], Bu(a)= D) hla(r)F(r).

weEF TEET

Proposition (in the spirit of Owren, 2006)

Let o: M — M with ¢(o(p)) = (5(a) = ¢)(p), then the frozen vector field
Fo: p— Fyp)(p) satisfies

F,>¢=(S(a)chF)=>¢ =B(3a) =>¢, a(r)=a(B (1)), ae&T*.

Frozen flow : ¢(exp(B,(3))) = S(a) =@, a(mi---7a) = %5(7’1) ... 3(7h).

Frozen composition:
P(p' - ¢?) = (5(a%) - S(a')) =9 = S(a® - a') =9, a*-a'=po(a®®a')oA.

Composition (see Munthe-Kaas, Wright, 2008):

Ot og?) = S()=(5(a") =6) = S(F+al) =0, P wa = po(2®a')o Aw-
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Order conditions

Exotic forest w | Differential F(m)[¢] Order condition a(m) = e(7)
. fiE'[¢] :Okl =1
00 Eq, [Eq, [¢]] Sz Elzez0] = 1
I fJE[ ] [¢] :kaZi(ijq:%
&P Ea[Ea[FIIELS] Shsi E [Z,d;3 Zf’lkz] P =1
fIf ElEil¢]] Z)qzkz i ko ik1 =3
o Ea[fE[Eald]] Mt szE[z,dgzkl]—o
of ARIAE) Sosi 2ElZ8 28] = 1
e DO f'Ei[Eq,[Eq,[¢]]] Zk1>k2>k3 ,-,kgE[Zf;fo] = %
©e® F Eq,[Ei[Eq, []]] Stz 2k ElzEzE] = 0
00 1 Eq, [Ea, [E[6]]] st 2 ElzE 28] =
0000 | EblEalEaEaldll] | Sisisksk Blze 2 1Bz 2]
0000 | EalEalEnlEaldlll] | Yisrsisk ElzE 2z B[z 2]
0000 | EalEnlEnlEaldlll] | Yisrsiok Bz 22 1Bz 2]
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Primitive elements and shuffle relations
Shuffle product:

OO T e TOe@ T OO
00 Y00 = 20000 + 20000 T 20000
The coefficient maps of numerical flows are characters of (EF, L):
3(71'1 L 7T2) = 3(71'1)3(71'2).
Following Owren, '06, we have shuffle relations:
3(0)2 = 2a(e o),
a(e)2(@@) = A @) T 2(@@0) T (@« @)
(0 = 22ee00) + 220000 +22(00ew)-

Proposition

The order conditions are indexed by the exotic forests, modulo the shuffle
relations. In particular, there are 2, 8, and 73 conditions for order 1,2, and 3
(against 2, 11, and 95 exotic forests).
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Conclusion

Summary:

@ We provide a brand new class of intrinsic high-order methods for solving
stochastic dynamics on manifolds.

@ We give a convergence analysis and the Talay-Tubaro methodology.

@ The order theory relies on a new formalism of planar exotic forests, which
extends the existing deterministic works.

Outlooks:

@ The analysis and implementation rely on an artificial connection. Ongoing
extension of Lie-group methods to geodesic methods.

o Creation of efficient high-order sampling method (PhD thesis of Sébastien
Macé).

@ Geometric universal characterisation of planar exotic series, algebraic study of
the evenly decorated /aromatic exotic series and applications.

@ Implementation of the new methods in the Julia package Manifolds.jl (with
P. Navaro and R. Bergmann).

o Available ANR postdoc position starting Sept. 2026 in Rennes (2 years).
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Exotic MKW structure
Theorem

Let the Munthe-Kaas-Wright coproduct:

AMKW(T) = Z PC(T)®RC(T), AMKW(T") = (Id@ B_)AMKw(B+(7T)).

adm. cut c

Then, (EF, W, Aykw) is a Hopf algebra dual to (EF,¢,A,). Its convolution
product represents the composition of exotic series:

S(a)oS(b) =S(a#b), axb=puro(a®b)oAyxkw,

Example
Avkw (o) =00 ®1+1Q g
AMKW(%D) -1 +o0®e+ 1®Q§9,

AMKW(??) Z??(@l +200®. L+ (@?4_?@)@. ot (@?"‘?@)@I
v (@?+?@)®.+2??®.+1®??
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