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The operator

HiF =AF+f-&, onQ :=ZN[-L,L]",

where ¢ : Z9 — R is a random field.

Eigenvalues: A1 > X2y > ...
Eigenfunctions: 1.1, w21, .. -
“Centers"” of localisation: xi,; € Qu where ¢, reaches its maximum

Successive maximas of the field: £(y1,0) > &(y2,L) > - ..

Main questions
As L — oo
1. Statistics of the largest eigenvalues?
2. What do the associated eigenfunctions look like?

3. Relationships between largest eigefunctions and maximas of the field?
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Some intuition

Hif =AF+F-€, onQ :=7ZNn[-LL]".

If we turn off the potential (i.e. H.f = Af) then:
1. eigenvalues and eigenfunctions are explicit

2. eigenfunctions put mass everywhere (delocalised).

If we turn off the Laplacian (i.e. H.f =& - f) then for any k > 1:

1 A = E(yk,L)
2. @k =0y, (localised).
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A motivation

Continuous Anderson Hamiltonian with white noise potential:

Hif =AF+Ff-¢&, onRN[-L,L]7.

Very precise information in d = 1.

Theorem (Dumaz-L.'18)
Ind =1, take a, = (2 In L)?/3. Then:
1. (4@(&4 — aL)) - CVin law as L — oo to a P.P.P. on R of intensity
>1

e “du.

2. For any k > 1:

V2 x ®) 1
(31/4 Prot (L + \/5) x€ loc. unif.  \ cosh(x) €

3. The centers of localisation are uniform:

Xk, L .. , _
(T)k21 = iid. Uniform[-1,1] .
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Theorem

a.s. AL ~ ap
L— oo

1
L > d d = 2 Chouk-van Zuijlen’20
where a; := Cy(log L)*" 2 {d I

Conjectures (Hsu-L.'21):

1. (Ak;i:ﬁ) CVin law as L — oo to a P.P.P. on R of intensity e™“du.
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Much less is known in d = 2, 3.

Theorem

a.s. AL ~ ap
L— oo

1
L > d d = 2 Chouk-van Zuijlen’20
where a; := Cy(log L)*" 2 {d I

Conjectures (Hsu-L.'21):

1. (Ak;i:ﬁ) CVin law as L — oo to a P.P.P. on R of intensity e™“du.
k>1

2. (d/ﬁOkL(XkL—!—\F) xeRd>:>ﬁ

where Q is the optimizer of Gagliardo-Nirenberg inequality

d/a 1-d/4
11l aey < CUVFI A IF 11200y
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The fatter the right tail is, the more localised the eigenfunctions are.

Two settings are well-understood:

1. Weibull tail: for some parameter g > 0

P(£(0) > x) = exp(—x7), x>0.

2. Doubly-exponential tail: for some parameter p > 0

P(£(0) > x) = exp(—exp(x/p)), x>0.
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Literature on the i.i.d. case: Weibull

Hif =AF+F-&, onQ :=2'N[-L L.
£ i.i.d. For some parameter g > 0.

P(£(0) > x) = exp(—x7), x>0.

Theorem (c k Molck Jarev '90, Astrauskas '07, '08, Sidorova-Twarowski ’14)

1. There exist a,, by s.t. ('\kgi;ﬂ) CVin law as L — oo to a P.P.P. on R
k>1

of intensity e~ “du.
2. For any given k > 1, @i is almost a Dirac mass at x,;.

3. (%,1/L)k>1 = iid. Uniform[—1,1]¢.
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Literature on the i.i.d. case: Weibull

Question: relationship between ¢, ; and the maximas of £ on Q.7

) = €(yal) =

Let £.(k) be the integer s.t. xi,. = Ye, (k),L-

Natural guess: £;(k) = k with large probability. J

Theorem (Astrauskas'12)

In the Weibull case: P(£(0) > x) = exp(—x9), x > 0. For any given k > 1:
1. if g < 3, then £,(k) = k w.lp.
2. if g =3, then £.(k) of order 1 w.l.p.
3. if g > 3, then £.(k) — +oo in probability.

Not much explanation in Astrauskas'12 paper...
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Literature on the i.i.d. case: doubly-exponential

Hif =AF+f-€, onRIN[-L,L].

£ i.i.d. For some parameter p > 0.

P(£(0) > x) = exp(—exp(x/p)) , x> 0.
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Literature on the i.i.d. case: doubly-exponential

Hif =AF+f-€, onRIN[-L,L].
£ i.i.d. For some parameter p > 0.

P(£(0) > x) = exp(—exp(x/p)) , x> 0.

Theorem (iskup-Konig'z6)

. N = .
1. There exist a., b, s.t. (%) converges in law as L — oo to a
k>1
Poisson point process on R of intensity e~ “du.
2. For any given k > 1, ¢, puts a macroscopic mass at distance O(1) from
Xk,L-

3. (,L/L)k>1 = iid. Uniform[—1,1]¢. )
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Our work

We investigate the case where £ is a correlated Gaussian field.

Almost no results in the literature:
® Gartner-Konig-Molchanov'00 on the continuum PAM,

® Astrauskas'03 on the discrete Anderson Hamiltonian

Our goal:
1. cover the counterpart of the “Weibull tail” i.i.d. case.

2. obtain a precise understanding of the relationship of the top of the
spectrum with the maxima of the fields.
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Our framework

The (sequence of) potential(s)

Consider a sequence (£;)1>1 of Gaussian fields on Z¢ s.t.:
1. centred, stationary, unit variance

2. the covariance function

vi(x) == E[€(0)éu(x)], xeZ?,

only depends on Euclidean norm |x| of x.

Two parameters:

® correlation length:

ci=inf{r>1:Vr>r v (r')=0}.

® decay parameter:
diel,00) st vi(l)=1— ~ .
d
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Three examples:
1. iid. M(0,1) rv. Then g =d. = 1.

2. Gaussian correlated field independent with a compactly supported
covariance function.

3. Continuum Gaussian field evaluated at grid points.
Let 1 be a white noise on R?. Let u be a radial function supported in
B(0,1/2). Set
C:=nx*xu.

FOI’ some sequence C; — 00, set
&x)=C(x/a), xeZ’.

Then d; — +o00.
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Analysis of &;

To understand the top of the spectrum of
Hi=A+&, on QL::Zdﬂ[—L,L]d,

one needs to understand the largest peaks of £, on Q.

The maxima of £, over Q, are of order

ar~vadinL.

If £L(x0) = aL, then for x close to xo
€u(x) = €ilx0) = St(x = x0) + (Lo (X)

where
1. Si(y) = ac(1 — vi(y)) is a deterministic shape

2. (L, is a Gaussian field independent of &, (xo).

13/17



Local eigenproblem

€(x) ~ €L(x0) = St(x = x0) + Crxo () -
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Local eigenproblem

€u(x) = &1(x0) = St(x = x0) + CLxo(x) -
What local eigenvalue does this large peak produces?

Introduce the deterministic operator
H=A— Si(x),

Let X, and @; be its main eigenvalue and eigenfunction.

Then the local eigenvalue produced by the large peak at xo is
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Local eigenproblem

€u(x) = &1(x0) = St(x = x0) + CLxo(x) -
What local eigenvalue does this large peak produces?

Introduce the deterministic operator
H=A— Si(x),
Let X, and @; be its main eigenvalue and eigenfunction.

Then the local eigenvalue produced by the large peak at xo is
well-approximated by

(o) + A+ D Brlx —x0)C(x) -

x close to xg

Competition between two terms:
1. & (x0) which is of order a; and fluctuates at scale 1/ay,
20 D7 close to xp PL(X — x0)?C1 % (x) which fluctuates at scale 7, where

TL2 = var| Z Pr(x *XO)ZCL,xo(X)] .
X close to xg
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Main results - Cannizzaro-L.-van Zuijlen (in progress)

Assume d; < ay.

Theorem (Eigenvalue order statistics)

The point process

Xk, L \/72 \ )
—a 1472 —
( Lo —an/itmi=A))

CVin law as L — oo towards a P.P.P. on [—1,1]¢ x R of intensity dx ® e™"du.
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Main results - Cannizzaro-L.-van Zuijlen (in progress)

Assume d; < ay.

Theorem (Eigenvalue order statistics)

The point process

Xk, L \/72 \ )
— - 1 -
( Lo —an/itmi=A))

CVin law as L — oo towards a P.P.P. on [—1,1]¢ x R of intensity dx ® e™"du.

Theorem (Localisation)

For any k > 1, the r.v.

aL —
da H@k,L() SOL( Xk,L) @)’

converges to 0 in probability.
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Main results - Cannizzaro-L.-van Zuijlen (in progress)

Recall that

T = var]| Z Pr(x = x0) (Lo ()] -

x close to xg

Theorem (Relationship with the maxima of &)

1. if 7 < - then for any given k > 1, P({1(k) = k) — 1 as L — oo,

2. ifT ~ bi for some constant b > 0 then (¢.(k), k > 1) converges in law
to (Lo s(K), k > 1),

3. ifm. > i then for any given k > 1, £, (k) converges to +oco in probability.
V.

Let uy > up > ... be distributed according to a P.P.P. of intensity e~“du. Draw an
independent sequence (v;)j>1 of i.i.d. AN(0,1) r.v. Let (w;)i>1 be the order statistics
of (uj + bv;)i>1. Then for any k > 1, £, p(k) is defined through wy = uy__, (4
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Thank you for your attention!
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