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The problem

Model equations

utt = ∆u −mu + f (x , u) , x ∈ M , (1)

iψt = −∆ψ + V (x)ψ + f (x , |ψ|2)ψ , x ∈ M , (2)

M an arbitrary compact C∞ manifold, f ∈ C∞(M × R).

Question: if the initial datum is small and smooth, does the solution
remain smooth? Small? At least for very long times.

Goal: prove that if (in NLKG)

∥(u0, u̇0)∥Hs×Hs−1 ≤ ϵ , s ≫ 1 ,

then ∀r ,
(u(t), u̇(t)) ∈ Hs × Hs−1 , for |t| ≤ Cr

ϵr

or ∀r ,
∥(u(t), u̇(t))∥Hs×Hs−1 ≤ 2ϵ , for |t| ≤ Cr

ϵr

and similarly for the NLS (2).
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Motivation

Meaning of Sobolev norms:

an example M = Td

u =
∑
k∈Zd

ûke
ik·x , ∥u∥2Hs ≡

√∑
k∈Zd

(1 + |k|2s) |ûk |2

since energy is conserved, growth of high Sobolev norms means that
energy flows to high frequency modes, namely to small scales, it is a
measure of development of turbulence.

Numerical computations: If the solution is smooth, one can use
large discretization steps.
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Main Result: the nonlinear Klein Gordon equation

Let M be a C∞ compact Riemannian manifold without boundary.
Consider the Klein Gordon Equation

utt −∆u +mu = f (x , u) , x ∈ M

with f (x , 0) = 0 and initial datum (u0, u̇0).

Theorem db+Bernier+Grébert+Imekratz (2025)

Let s0 > d/2. For all r ≥ 1, almost all m > 0, ∃C > 0, ε0 > 0 s.t. given
s ≥ Cs0, assume

∥(u0, u̇0)∥Hs×Hs−1 ≤ 1 , ε := ∥(u0, u̇0)∥Hs0×Hs0−1 < ε0

then one has

u(t) ∈ C 0
(
(−ε−r , ε−r );Hs(M)

)
∩ C 1

(
(−ε−r , ε−r );Hs−1(M)

)
.

Furthermore, as long as |t| ≤ ε−r , one has

∥(u(t), u̇(t))∥Hs0×Hs0−1 ≲ ε.
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Main Result, continued

Consider now initial data of the form u0 = εv0, u̇0 = εv̇0.

Corollary

Assume v0, v̇0 ∈ C∞(M), then for any ε ∈ (0, 1) ∃Tε, with

lim
ε→0

εrTε = +∞

s.t. u(.) ∈ C∞((−Tε,Tε);C
∞(M)), furthermore ∀s ≥ 1, one has

∥(u(t), u̇(t))∥Hs×Hs−1 ≤ Cs,v ∥(u0, u̇0)∥Hs×Hs−1

This a particular case of a general theorem assuming

A nonresonance condition

multilinear estimates on the nonlinearity.
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Previous results. Semilinear

1-d: db (2003), db+B Grébert (2006)

Arbitrary dimension: several examples with the same spectral
structure as in 1-d.

NLS on the square with a Fourier Multiplier (2003): db+Grb́ert
Zoll Manifolds: db+Delort+Grebert+Szeftel (2007).
Resonant quantum Harmonic oscillator: Grebert+Imekratz+Paturel
(2009)
Stability of plane waves for NLS on the square torus:
Faou+Gauckler+Lubich (2013).

A new mechanism based on Bourgain’s cluster partition

arbitrary tori, equations of order > 1: db+Feola+Montalto (2024)
Manifolds with integrable geodesic flow: equations of order > 1
db+Langella+Monzani+Feola (2024)

Times slightly shorter than the linear ones: there exists κ > 0 s.t
one has existence and stability for times ϵ−(p+κ), where p + 1 is the
order of the nonlinearity: Delort+Imekratz (2017).

Existence with loss of derivatives: NLW on tori:
Bernier+Faou+Grebert (2020) tori.
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The Hamiltonian Structure

The case of cubic NLKG (assume for simplicity −∂uf (x , 0) = 0):

Let (λj , ej), be the eigenvalues-eigenvectors of the linearized
problem: −∆ on M:

−∆ej = λjej ,

and decompose u =
∑

j qjej , u̇ =
∑

j pjej .

The energy is also the Hamiltonian:

H =

∫
M

u̇2 + u(−∆+m)u

2
dx +

1

4

∫
M

u4dx

=
∑
j

p2
j + ω2

j q
2
j

2
+

∑
j1,...,j4

cj1,...,j4qj1 ...qj4 , ωj :=
√

λj +m .

ṗj = −∂H

∂qj
, q̇j =

∂H

∂pj
⇐⇒ NLKG

Infinitely many Harmonic oscillators plus nonlinear perturbation.
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Finite dimensional case: the problem of normal form

Consider
H = H2 + H3 + H4 + ....

where

H2 =
N∑
j=1

p2j + ω2
j q

2
j

2

and Hr is a homogeneous polynomial of degree r .

Question: do there exist a canonical transformation T s.t.
H ◦ T = H2?

Try to construct it iteratively: construct first T1 eliminating terms of
order 3, namely s.t.

H ◦ T1 = H2 + H̃4 + H̃5 + ...

Lie transform: T1 =time 1 flow of Xg1 , with a suitable g1
(ṗ = −∂qg1, q̇ = −∂pg1) of degree 3, then

H ◦ T1 = H + {H; g1}+ h.o.t. = H2 + {H2; g1}+ H3 +O4
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Homological equation

Find g1 s.t. the red part vanishes. Rewrite it as

LH2g1 = −H3 , LH2 := {H2; .} (3)

This is a linear equation in the finite dimensional space of
polynomials of degree 3 over R2N .

Eigenvalues and eigenvectors: make the canonical change of
variables

zj :=
1√
2

(
pj√
ωj

+ i
√
ωjqj

)
, z̄j :=

1√
2

(
pj√
ωj

− i
√
ωjqj

)
,

H2 =
∑
j

ωj |zj |2

For α = (α1, ..., αN) and β = (β1, ..., βN) define

zαz̄β := zα1
1 ...zαN

N z̄β1

1 ...z̄βN

N ,

then a simple computation gives LH2z
αz̄β = [i(α− β) · ω] zαz̄β .

Eigenvectors zαz̄β , eigenvectors i(α− β) · ω.
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Solution of the Homological equation

Just write Hr+2 =
∑

α,β Hα,βz
αz̄β and define

gr (z , z̄) =
∑
α,β

Hα,β

−i(α− β) · ω
zαz̄β

provided (α− β) · ω ̸= 0.

gr (z , z̄) =
∑

(α−β)·ω ̸=0

Hα,β

−i(α− β) · ω
zαz̄β

provided (α− β) · ω ̸= 0.
In the nonresonant case (ω · k ̸= 0 ∀k ̸= 0) one gets

LH2gr + Hr+2 =
∑
α

Hα,α|z |2α .

The normal form depends only on the actions |z |2.
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Weaker normal form

One can decide to “keep” more terms:

fix a set R ⊂ N2N and define

gr (z , z̄) =
∑

(α,β) ̸∈R

Hα,β

−i(α− β) · ω
zαz̄β

one gets

LH2gr + Hr+2 =
∑

(α,β)∈R

Hα,βz
αz̄β

Gain: One has to consider only small denominators

ω · (α− β) , with (α, β) ̸∈ R .

Price: one gets a weaker “normal form”:∑
(α,β)∈R

Hα,βz
αz̄β
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Take home message

To eliminate a monomyal
zαz̄β

you have to control a denominator

(α− β) · ω
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Nonresonance condition

Classical nonresonant situation: assume

ω · k ̸= 0 , ∀k ∈ Zn \ {0} ,

then, to go to order r one considers

inf
k ̸=0

|k|≤r

|
n∑

j=1

ωjkj | = γr (n) .

What happens in the case of PDEs, when n → ∞?
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1. Know your enemy

To eliminate terms of order 4 from H one has to put denominators
ω · k , |k | ≤ 4

In 1-d NLKG on T ωj =
√
j2 +m = |j |+O

(
1
|j|

)
Remark (Small denominators)

There exists a sequence of integers vectors k(ℓ), with |k(ℓ)| = 4 s.t.

k(ℓ) · ω → 0 .

Just take

k
(ℓ)
ℓ = 2 , k

(ℓ)
ℓ−1 = −1 , k

(ℓ)
ℓ+1 = −1 , k

(ℓ)
j = 0 otherwise ,

so that

k(ℓ) · ω = −ωℓ+1 + 2ωℓ − ωℓ−1 = O
(
1

ℓ

)
.

The denominators go to zero as the index increases.
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Tame estimate and cutoffs

A powerfull tool: in PDEs the nonlinearity is not general, but, due to
Leibnitz formula∥∥ur+1

∥∥
Hs ≤ C ∥u∥r

H
d
2
+ ∥u∥Hs , s ≥ d

2
+ (4)

for s ≫ d/2, the H
d
2+ norm is much smaller than the s one.

One can use this estimate to show that polynomials quadratic in
high modes are small and do not count.This means terms which in
the Hamiltonian are cubic.
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Small denominators

Fix the order r of normalization. We only have to care about monomyals
with 2 large modes: what small denominators actually appear?

Make a cutoff N:

small index : |j | ≤ N

large index : |j | > N

One has to control

monomyals with only small indexes:

inf
|k|≤r

∣∣∣∣∣∣
N∑
j=1

ωjkj

∣∣∣∣∣∣ = γ(r ,N) ≥ γ̃(r)

Nτ
(5)

called 0-Melnikov condition. Typically it holds when the parameters
are in a set of full measure.
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Small denominators

Polynomials with one large index∑
|j|≤N

ωjkj ± ωi , i > N . (6)

called 1st-Melnikov condition.

Polynomials with two large indexes∑
|j|≤N

ωjkj ± ωi ± ωℓ , i , ℓ > N . (7)

called 2nd -Melnikov condition.

In d = 1 the 1st and 2nd -Melnikov conditions typically hold due to

ωj ∼ jρ , ρ ≥ 1

(see below for the reason).
This is also true in some particular higher dimensional situations (Zoll
Manifolds and so on).
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Know your enemy: 2nd episode.

By Weyl law the eigenvalues of the Lapalcian λj ∼ j2/d in NLKG

ωj =
√
λj +m ∼ j1/d

and tyically ωj − ωi is dense on R. The second Melnikov condition is
violated, but we can do weaker normal form.
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Eliminate what you can

Fix the order of normalization r , assume ω · k ̸= 0 ∀k ∈ Z∞.

Fix a cutoff N and split high and low mode z = (z≤, z⊥), eliminate
from the perturbation

Terms involving only low modes which are non resonant: you need
the 0th-Melnikov condition; proceed!
Terms linear in z⊥. You have to control small denominators of the
form

N∑
i=1

kiωi ± ωℓ , ℓ > N

∣∣∣∣∣
N∑
i=1

kiωi

∣∣∣∣∣ ≥ γ

Nτ
=⇒

∣∣∣∣∣
N∑
i=1

kiωi ± ωℓ

∣∣∣∣∣ ≥ γ′

Nτ ′

Indeed, with ωj ≃ jρ, ρ > 0 one has

ωℓ −

∣∣∣∣∣
N∑
i=1

kiωi

∣∣∣∣∣ ≥ ℓρ −

∣∣∣∣∣
N∑
i=1

kiωi

∣∣∣∣∣ ≥ ℓρ − |k| sup
j≤N

ωj ≥ ℓρ − rNρ

so the inequality is authomatic for ℓ > 2r 1/ρN. For smaller values
apply the estimate with N ′ = 2r 1/ρN; proceed!
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Eliminate what you can II

Eliminate terms quadratic in high modes involving quantities of the
form zjzℓ and z̄j z̄ℓ. You have to consider small denominators of the
form

N∑
i=1

kiωi ± (ωj + ωℓ) , j > ℓ > N :

same mechanism as above∣∣∣∣∣
N∑
i=1

kiωi

∣∣∣∣∣ ≥ γ

Nτ
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∣∣∣∣∣
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so the inequality is authomatic for ℓ > r1/ρN. For smaller values
apply the estimate with N ′ = r1/ρN; proceed!
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Nothing more

Can you eliminate terms quadratic in high modes involving
quantities of the form zj z̄ℓ?

You have to consider small
denominators of the form

N∑
i=1

kiωi ± (ωj − ωℓ) , j > ℓ > N ,

but ωj − ωℓ is typically dense on R; stop here!
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A very weak normal form

Lemma

For any r and any s0 large enough there exists a canonical transformation
conjugating to

H2 + Z0 + Z2 + R ,

with Zk homogeneous of degree k in z⊥ and in normal form:

{
|zj |2;Z0

}
= 0 , ∀|j | ≤ N and

{∑
|j|>N |zj |2;Z0

}
= 0

and ∥XR(z)∥ = O(∥z∥r+2).
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Dynamical consequence:

Hamiltonian in normal form: H = H2 + Z0 + Z2+R

Write the equation as a system{
ż≤ = XH2(z

≤) + XZ0(z
≤) + Π≤XZ2(z)+Π≤XR(z) ,

ż⊥ = XH2(z
⊥) + Π⊥XZ2(z)+Π⊥XR(z) .

(8)

or {
ż≤ = XH2(z

≤) + XZ0(z
≤) + Π≤XZ2(z) + Π≤XR(z) ,

ż⊥ = Λz⊥ + A1(z
≤)z⊥+Π⊥XR(z) .

(9)

Dynamics of high modes

ż⊥ = Az⊥+Π⊥XR(z) . (10)

with A := Λ + A1(z
≤), skewsymmetric A = −A∗.
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ż⊥ = XH2(z
⊥) + Π⊥XZ2(z)+Π⊥XR(z) .

(8)

or {
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The main computation

Denote D :=
√
1−∆ so that ∥z∥2s0 = ∥Ds0z∥20. Denote also

⟨z ;w⟩ :=
∑

j z̄jwj

Compute

d

dt

∥∥z⊥∥∥2
s0
= ⟨Ds0 ż⊥;Ds0z⊥⟩+ ⟨Ds0z⊥;Ds0 ż⊥⟩

= 2Re⟨Ds0 ż⊥;Ds0z⊥⟩ = 2Re⟨Ds0Az⊥;Ds0z⊥⟩

= 2Re⟨ADs0z⊥;Ds0z⊥⟩+ 2Re⟨[Ds0 ;A]z⊥;Ds0z⊥⟩
= 2Re⟨[Ds0 ;A]z⊥;Ds0z⊥⟩

[Ds0 ;A] = [Ds0 ; Λ + A1] = [Ds0 ;A1] =⇒
∥∥[Ds0 ;A1]z

⊥
∥∥
0
⪯
∥∥z⊥∥∥

s0−1

d

dt

∥∥z⊥∥∥2
s0
⪯
∥∥z⊥∥∥

s0−1

∥∥z⊥∥∥
s0
⪯
∥∥z⊥∥∥ 1

s0

0

∥∥z⊥∥∥1− 1
s0

s0

∥∥z⊥∥∥
s0

⪯
∥∥z⊥0 ∥∥ 1

s0

0

∥∥z⊥∥∥2− 1
s0

s0
⪯
∥∥z⊥0 ∥∥ 1

s0
s

Ns/s0

∥∥z⊥∥∥2− 1
s0

s0
≪ 1
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= ⟨Ds0 ż⊥;Ds0z⊥⟩+ ⟨Ds0z⊥;Ds0 ż⊥⟩
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Main result: the abstract theorem

H = H2 + P , P = O(|z |3) , H2 =
∑
j≥1

ωj |zj |2 .

Assumptions

Frequencies:

Weyl law: ∃β > 0: # {j : ωj < λ} ∼ λβ

Clustering (corollary of Weyl law) Exists a sequence of disjont orderd
segments [an, bn] with an ∼ n, bn ∼ n s.t.⋃

j

{
ω

1/α
j

}
⊂

⋃
n

[an, bn] ,

Define Cn :=
{
j : ω

1/α
j ∈ [an, bn]

}
Nonresonance condition:
for all r ≥ 1, there exists τ > 0 such that ∀j ∈ Nr , ∀σ ∈ {−1, 1}r

if ∃k ∈ N,
∑

i s.t. ji∈Ck

σi ̸= 0 then |σ1ωj1+· · ·+σqωjq | ≥
γ

|max ji |τ
,
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Assumptions on P

Tame estimate: Assume that the vector field of P is smooth and
tame: there exists s0 and U ⊂ Hs0 bounded, s.t. ∀s large enough
XP ∈ C∞(U ∩ Hs ;Hs) and

∥XP(z)∥Hs ⪯ ∥z∥Hs , ∀z ∈ Hs ∩ U

Multilinear estimate (following Delort-Szeftel). Denote

Πn := projector on span {ej : j ∈ Cn}

We assume that forall choices of z (k) s.t. z (k) = Πkz
(k), one has

∣∣dqP(0)(z (1), · · · , z (q))∣∣ ≲ (k⋆
3 )

ν+n(k⋆
4 )

ν · · · (k⋆
q )

ν

(k⋆
1 − k⋆

2 + k⋆
3 )

n

q∏
ℓ=1

∥z (ℓ)∥ℓ2 .

where k⋆
j is the decreasing reordering of kj
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Abstract Theorem

Theorem db+Bernier+Grebert+Imekratz (2025)

For all r ≥ 1, s ≫ 1, ∃ε0 s.t. ∀z (0) ∈ Hs with ε := ∥z (0)∥Hs ≤ ε0, there
exists a unique solution

z ∈ C 0
(
(−ε−r , ε−r );Hs

)
∩ C 1

(
(−ε−r , ε−r );Hs− 1

β
)
.

Furthermore, as long as |t| ≤ ε−r , one has ∥u(t)∥Hs0 ≲ ε.

Other examples: stability Hs of the ground state of NLS in arbitray
manifolds, Klein Gordon type equation on Rd with a quadratic potential.
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Open Problems

Quasilinear problems

it is known how to prove almost global existence in 1-d both for the
case of semilinear and quasilinear perturbations
(Berti-Maspero-Murgante 2024)

Nothing is known in higher dimensions

Domains with boundary

Essentially nothing is known.
For the smoothness of solutions there are compatibility conditions
which are different in the linear and in the nonlinear case: It is
difficult to consider the nonlinear case as a perturbation of the linear
one.
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