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A class of singular SPDEs

Let M Riemannian manifold,E → M a vector bundle with a connection
and metric.Consider sub-critical equations of the form

(∂t + L)u = F (u,∇u, ...,∇ku, ξ) ,

where

u (generalised) section of a vector bundle E → M

L is an elliptic operator of order > k on E ,

ξ is an irregular bundle valued (stochastic) noise.

Solution theories:

Para-controlled Calculus [GIP15],(geometric setting [BB16]).

Regularity Structures [Hai14],(geometric setting [DDD18], [HS23]).

Renormalisation group flow [Kup14, Duc21].

Multi-indices [OSSW21].
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Some important examples

Φ4
d -equation

Let E → M vector bundle with metric and connection.

(∂t +△E )u = −|u|2 · u + ξ ,

for ξ an E valued space time white noise.

Stochastic Yang–Mills heat flow

Let P → M principle G -bundle, | · |g an Ad-invariant scalar product on g.
Consider principal connections ω = ωref + A

∂tA = −(dω)∗Fω − dω(dω)∗(A) + ξ ,

for ξ a Ω1(M,Ad(g))-valued space time white noise.
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Meta Theorem of subcritical SPDEs

Section 1

Meta Theorem of subcritical SPDEs
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Meta Theorem of subcritical SPDEs

Setup

Meta equation

Consider a subcritical equation

∂tu + Lu = F (u,∇u, ...,∇nu) + ξ (1)

where

L is an elliptic operator on Td of order > n

∂t + L is space-time translation invariant

ξ ∈ D′(R× Td) space time white noise.

Problem:

Consider (∂t + L)v = ξ

Schauder estimates may not provide enough regularity for the
non-linearity F (v ,∇v , ...,∇nv) to be well defined!
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Meta Theorem of subcritical SPDEs

Naive hope

Let ρϵ smooth mollifiers such that and ξϵ := ρϵ ⋆ ξ → ξ as ϵ→ 0.Consider
solutions uϵ of

∂tuϵ + Luϵ = F (uϵ,∇uϵ, ...,∇nuϵ) + ξϵ. (2)

Generically, uϵ does not converge as ϵ→ 0, one needs renormalisation.
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Meta Theorem of subcritical SPDEs

The theory of regularity structures provides the following type of result:

Metatheorem

Let G , L, ξ as well as ρϵ and ξϵ be as above. Then, there exists a finite
index set T− and non-linearities ΥG [τ ] depending only on G , L, ξ and as
well as constants cτϵ ∈ R depending additionally on ρϵ such for uϵ satisfying

∂t + Luϵ = F (uϵ,∇uϵ, ...,∇nuϵ) +
∑
τ∈T−

cτϵ Υ
F [τ ](uϵ,∇uϵ, ...,∇nuϵ) + ξϵ ,

there exists u ∈ D′((0,T )× Rd) independent of the choice of {ρϵ}ϵ∈(0,1)
such that uϵ → u in probability as ϵ→ 0.

Note that this metatheorem purposefully kept several aspects vague, see
[BCCH20, Theorem 2.22].
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well as constants cτϵ ∈ R depending additionally on ρϵ such for uϵ satisfying

∂t + Luϵ = F (uϵ,∇uϵ, ...,∇nuϵ) +
∑
τ∈T−

cτϵ Υ
F [τ ](uϵ,∇uϵ, ...,∇nuϵ) + ξϵ ,

there exists u ∈ D′((0,T )× Rd) independent of the choice of {ρϵ}ϵ∈(0,1)
such that uϵ → u in probability as ϵ→ 0.

Note that this metatheorem purposefully kept several aspects vague, see
[BCCH20, Theorem 2.22].
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Meta Theorem of subcritical SPDEs

Roadmap of the proof

Some vocabulary

A structure space is a vector space/bundle T .
Elements similar to abstract Taylor polynomials.

A model Z gives analytic “meaning” to elements of T ,
similarly to the map P(X ) 7→ p(x) abstract polynomial to polynomial
function.

Let M the space of models.

Given a model Z ∈ M and γ > 0 we denote by Dγ the space of
modelled distributions (maps (t, x) 7→ f (x) ∈ T ).

There exists a reconstruction operator

R : Dγ → D′ .
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Meta Theorem of subcritical SPDEs

Diagram

Eq

G

∈

M

Z (ζ)

∈

× Dγ

uG ,Z(ζ)

∈

Eq

G

∈

× C

ζ

∈

D′

uG ,ζ = RuG ,Z(ζ)

∈

RΨ

SA

SC

This factors the classical solution map SC . The maps SA and R are
continuous,but Ψ is not. In general, as ξϵ → ξ the models Ψ(ξϵ) = Z (ξϵ)
do not converge.
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Meta Theorem of subcritical SPDEs

There is a renormalisation group G−

acting on M and “space of right
hand sides” Eq such that the following diagram commutes

Eq

G

∈

M

M

× Dγ

uG ,MZ(ζ)

∈

Eq

M

× C

ζ

∈

D′

uMG ,ζ = RuG ,MZ(ζ)

∈

RΨ

SA

SC

Choosing Mϵ ∈ G− such that ξϵ 7→ MϵΨ(ξϵ) is continuous, concludes the
sketch.
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Meta Theorem of subcritical SPDEs

The corpus of Regularity Structures

The robust and general theory can be subdivided as follows:

1 General analytic solution theory.
“the analytic step”, original breakthrough [Hai14].

2 Construction of the regularity structure, a positive and a negative
renormalisation Group.
“constructive step”, [BHZ19].

3 Action of the renormalisation group on the equation.
“algebraic step”, [BCCH20], [BB21].

4 Convergence of renormalised models.
“the stochastic step”, [CH16], [HS23].

Aim of this talk: Present a generalisation to Manifolds and Vector
bundles. First three steps in full generality.
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4 Convergence of renormalised models.
“the stochastic step”, [CH16], [HS23].

Aim of this talk: Present a generalisation to Manifolds and Vector
bundles. First three steps in full generality.
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Regularity Structures on Manifolds and Vector
Bundles
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Regularity Structures on Manifolds and Vector Bundles

Setting the talk

Let M a Riemannian manifold, E → M and F i → M are vector bundles as
above.

We study subcritical SPDEs of the form

∂tu + Lu =
m∑
i=0

Gi (u,∇u, ...,∇nu)ξi ,

u is a (generalized) section of the vector bundle E → M,

L is an elliptic operator on E of degree > n,

ξi are F i valued random distributions (e.g. F i -valued white noise),

Gi : E ×
(
TM∗ ⊗ E

)
× ...×

(
(TM∗)⊗n ⊗ E

)
→ L(F i ,E ) are

local functions.
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Regularity Structures on Manifolds and Vector Bundles

Solution theory on Manifold and Vector bundles

Main results of [HS23]

Generalises the theory of RS:Automates full solution theory with only the
following steps on equation by equation basis:

Identification of canonical (finite dimensional!) renormalisation
sub-group.

Convergence of models.

As an application construct solutions to

ϕ43(E ):
(∂t +△E )u = −|u|2 · u +∞ · u + ξ

g-PAM:

(∂t +△)u = f (u)(∇u,∇u)−∞· tr f (u)g2(u)+g(u)
(
ξ −∞ · g ′(u)ξ

)
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Regularity Structures on Manifolds and Vector Bundles

We also locally solve ϕ34:

(∂t +△)u = u2 −∞−∞ · s(x) + ξ ,

where s : M → R scalar curvature.

Observation for generalised Laplacians and white noise

If the fastest divergence is slower than 1
ϵ2
, then renomalisation constants

are sufficient.

Previous works:

Previous work using RS:
2d-PAM [DDD18], Paycha et al. (unpublished).

Using Paracontrolled Calculus:
PAM: [BB16], [Mou21]. ϕ43: [BDFT23] based on [JP22].
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Regularity Structures on Manifolds and Vector Bundles

Quick summary: Analytic step

Some important steps are:

Bigrading T =
⊕

α,δ Tα,δ, approximate identity Πpτp ∼ ΠqΓq,pτp .

Polynomials get replaced by Jets.

Schauder estimates are more involved:The lift of K has still the form

Kγf (p) = If (p) + Jf (p) + (Nγf )(p) .

But new term needs Eqτpneeds to be added,to get the crucial
estimate

|Γq,p(Ip + Jp)τp − (Iq + Jq)Γq,pτp − Eqτp|k ≲ |τ |d(p, q)δ−k .

Local non-linearity G : E → F corresponds to section of π∗EF .
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Regularity Structures on Manifolds and Vector Bundles

Quick summary: Constructive & algebraic step

Some important steps are:

Construction of the regularity structure from rule.

Efficient indexing of vector bundles.
Use symmetric sets to “attach” jets to trees.

Coloring operations replace coproducts.

Large renormalisation group G− built from {DifT}T∈T− , spaces of
differential operators associated to negative trees in T−.

Effect of g ∈ G− on equation ∂u + Lu = F (u, ξ):

∂tu
g + Lug = F (ug , ξ) +

∑
T∈T−

⟨(DTF )(u
g ), g(T )⟩ .

All these steps are done in full generality.
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Construction of {DifT }T∈T− on Manifolds

Symmetric sets and Vector bundle assignments

Let S a set of types. Let Iso(T 1,T 2) the set of all type preserving
bijections T 1 → T 2.

Definition: Symmetric sets [CCHS22]

A symmetric set s consists of an index set As and a triple

s=
(
{T a

s }a∈As , {tas}a∈As, {Γ
a,b
s }a,b∈As

)
,

where (T a
s , t

a
s) are finite typed sets and Γa,bs ⊂ Iso(T b

s ,T
a
s ) a non-empty

set satisfying for a, b, c ∈ As

γ ∈ Γa,bs ⇒ γ−1 ∈ Γb,as ,

γ ∈ Γa,bs , γ̄ ∈ Γb,cs ⇒ γ ◦ γ̄ ∈ Γa,cs .

(Connected groupoid in the category of typed sets.)
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Construction of {DifT }T∈T− on Manifolds

Let W = (W t)t∈S be vector bundle assignment.

1 For T a typed set, let

W⊗T :=
⊗
x∈T

W t(x) .

2 Any ψ ∈ Iso(T , T̄ ) gives a map W⊗T → W⊗T̄ characterised by

W⊗T
p ∋ wp = ⊗x∈Tw

x
p 7→ ψ · wp = ⊗y∈T̄w

ψ−1(y)
p .

3 Define

W⊗s =
{
w ∈

∏
a∈As

W⊗T a
s : w (a) = γa,b · w (b)

∀a, b ∈ As , ∀γa,b ∈ Γa,bs

}
.
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2 Any ψ ∈ Iso(T , T̄ ) gives a map W⊗T → W⊗T̄ characterised by

W⊗T
p ∋ wp = ⊗x∈Tw

x
p 7→ ψ · wp = ⊗y∈T̄w

ψ−1(y)
p .

3 Define

W⊗s =
{
w ∈

∏
a∈As

W⊗T a
s : w (a) = γa,b · w (b)

∀a, b ∈ As , ∀γa,b ∈ Γa,bs

}
.
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Construction of {DifT }T∈T− on Manifolds

Trees for regularity structures

Consider T with edge types E = E+ ∪ E0 ∪ E− .

E+ will encode kernels

E0 place holder for jets

E− will encode noises.

A subcritical rule R defines T. For a fixed tree T we define

E−
T := {e ∈ ET |e(e) ∈ E−},

T−
T := {TE ⊂ T | E ⊂ E−

T },
Let

T− :=
⋃
T∈T

T−
T/∼ .

One renormalises equations by associating to each T ∈ T− a multi-linear
differential operator dT ∈ DifT .
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Construction of {DifT }T∈T− on Manifolds

Multi-linear differential operators associated to negative
trees

Let S be a finite set. Let {W s}s∈S and W be vector bundles over M. A
map

A :
∏
s∈S

C∞(W s) → C∞(W )

is called multi-linear differential operator of order k , if it factors through
the k-jet bundle via a multi-linear bundle morphism, i.e. there exists
TA ∈ L(⊗s∈SJ

kW s ,W ), such that the following diagram commutes∏
s∈S C∞(W s) C∞(W )

C∞(
∏

s∈S J
kW s) .

A

jk· ×...×jk·
TA
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Construction of {DifT }T∈T− on Manifolds

Let γ be a permutation of the set S such that W s = W γ(s) for each
s ∈ S .

The operator A is called γ-invariant if for all fs ∈ C(W s) one has

A(
∏
s∈S

fs) = A(
∏
s∈S

fγ(s))

(i.e. TA is γ-symmetric.)
For σ ∈ L, α ∈ R and a symmetric set s= (S , i , Γ) where the type set is
given by L and the index set As consists only of one element. We define

Difα
(
s, σ

)
(3)

as the set of all multilinear differential operators which are

of order max{n ∈ N ∪ {−∞} : n ≤ −α}∏
s∈S C∞(V i(s)) to C∞(V σ)

γ invariant for all γ ∈ Γ.
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of order max{n ∈ N ∪ {−∞} : n ≤ −α}∏
s∈S C∞(V i(s)) to C∞(V σ)

γ invariant for all γ ∈ Γ.
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Construction of {DifT }T∈T− on Manifolds

Definition of DifT

For a tree T ∈ T−,we set

DifT := Dif|T |
(
sT , ind(ρT )

)
(4)

where sT = (ST , iT , ΓT ) is given by

ST = NT \ ({ρT} ∪ LT ) ,

iT = difT ,

ΓT consists of all tree symmetries restricted to ST .

Harprit Singh Renormalisation of singular SPDEs on Riemannian manifoldsMay 28, 2024 25 / 27



Construction of {DifT }T∈T− on Manifolds

Definition of DifT

For a tree T ∈ T−,

we set

DifT := Dif|T |
(
sT , ind(ρT )

)
(4)

where sT = (ST , iT , ΓT ) is given by

ST = NT \ ({ρT} ∪ LT ) ,

iT = difT ,

ΓT consists of all tree symmetries restricted to ST .

Harprit Singh Renormalisation of singular SPDEs on Riemannian manifoldsMay 28, 2024 25 / 27



Construction of {DifT }T∈T− on Manifolds

Definition of DifT

For a tree T ∈ T−,we set

DifT := Dif|T |
(
sT , ind(ρT )

)

(4)

where sT = (ST , iT , ΓT ) is given by

ST = NT \ ({ρT} ∪ LT ) ,

iT = difT ,

ΓT consists of all tree symmetries restricted to ST .

Harprit Singh Renormalisation of singular SPDEs on Riemannian manifoldsMay 28, 2024 25 / 27



Construction of {DifT }T∈T− on Manifolds

Definition of DifT

For a tree T ∈ T−,we set

DifT := Dif|T |
(
sT , ind(ρT )

)
(4)

where sT = (ST , iT , ΓT ) is given by

ST = NT \ ({ρT} ∪ LT ) ,

iT = difT ,

ΓT consists of all tree symmetries restricted to ST .

Harprit Singh Renormalisation of singular SPDEs on Riemannian manifoldsMay 28, 2024 25 / 27



Construction of {DifT }T∈T− on Manifolds

Definition of DifT

For a tree T ∈ T−,we set

DifT := Dif|T |
(
sT , ind(ρT )

)
(4)

where sT = (ST , iT , ΓT ) is given by

ST = NT \ ({ρT} ∪ LT ) ,

iT = difT ,

ΓT consists of all tree symmetries restricted to ST .

Harprit Singh Renormalisation of singular SPDEs on Riemannian manifoldsMay 28, 2024 25 / 27



Construction of {DifT }T∈T− on Manifolds

Definition of DifT

For a tree T ∈ T−,we set

DifT := Dif|T |
(
sT , ind(ρT )

)
(4)

where sT = (ST , iT , ΓT ) is given by

ST = NT \ ({ρT} ∪ LT ) ,

iT = difT ,

ΓT consists of all tree symmetries restricted to ST .

Harprit Singh Renormalisation of singular SPDEs on Riemannian manifoldsMay 28, 2024 25 / 27



Construction of {DifT }T∈T− on Manifolds

Definition of DifT

For a tree T ∈ T−,we set

DifT := Dif|T |
(
sT , ind(ρT )

)
(4)

where sT = (ST , iT , ΓT ) is given by

ST = NT \ ({ρT} ∪ LT ) ,

iT = difT ,

ΓT consists of all tree symmetries restricted to ST .

Harprit Singh Renormalisation of singular SPDEs on Riemannian manifoldsMay 28, 2024 25 / 27



Some open (algebraic) avenues

Some open (algebraic) avenues

It would be nice to better understand the algebraic structure behind the
following settings:

Regularity structures on Manifolds and Vector bundles [HS23].

Identify (local) divergences for non-translation invariant SPDEs
[HS23, Sin23].

Regularity structures for ultra-parabolic SPDEs (via homogeneous Lie
groups) [MS23].

It would also be interesting to make sense of wedge products and Hodge
star in Rough Geometric Integration [CCHS19],[CS24].
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Some open (algebraic) avenues

Thank you for your attention!
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