Renormalisation of singular SPDEs on Riemannian manifolds

Harprit Singh

May 28, 2024

Harprit Singh

Renormalisation of singular SPDEs on Rieman

May 28, 2024

(∃) ∃

イロト イヨト イヨト イヨト

王

Let M Riemannian manifold,

<ロト <回ト < 回ト < 回ト < 回ト -

E

Let M Riemannian manifold, $E \rightarrow M$ a vector bundle with a connection and metric.

イロト イポト イヨト イヨト

王

Let *M* Riemannian manifold, $E \rightarrow M$ a vector bundle with a connection and metric.Consider sub-critical equations of the form

$$(\partial_t + \mathfrak{L})u = F(u, \nabla u, ..., \nabla^k u, \xi)$$

イロト イ理ト イヨト イヨト

э

Let *M* Riemannian manifold, $E \rightarrow M$ a vector bundle with a connection and metric.Consider sub-critical equations of the form

$$(\partial_t + \mathfrak{L})u = F(u, \nabla u, ..., \nabla^k u, \xi)$$

where

• u (generalised) section of a vector bundle $E \rightarrow M$

イロト イ理ト イヨト イヨト

э

Let *M* Riemannian manifold, $E \rightarrow M$ a vector bundle with a connection and metric.Consider sub-critical equations of the form

$$(\partial_t + \mathfrak{L})u = F(u, \nabla u, ..., \nabla^k u, \xi)$$

where

- u (generalised) section of a vector bundle $E \rightarrow M$
- \mathfrak{L} is an elliptic operator of order > k on E,

3

Let *M* Riemannian manifold, $E \rightarrow M$ a vector bundle with a connection and metric.Consider sub-critical equations of the form

$$(\partial_t + \mathfrak{L})u = F(u, \nabla u, ..., \nabla^k u, \xi) ,$$

where

- u (generalised) section of a vector bundle $E \rightarrow M$
- \mathfrak{L} is an elliptic operator of order > k on E,
- ξ is an irregular bundle valued (stochastic) noise.

Let *M* Riemannian manifold, $E \rightarrow M$ a vector bundle with a connection and metric.Consider sub-critical equations of the form

$$(\partial_t + \mathfrak{L})u = F(u, \nabla u, ..., \nabla^k u, \xi)$$

where

- u (generalised) section of a vector bundle $E \rightarrow M$
- \mathfrak{L} is an elliptic operator of order > k on E,
- ξ is an irregular bundle valued (stochastic) noise.

Solution theories:

Let *M* Riemannian manifold, $E \rightarrow M$ a vector bundle with a connection and metric.Consider sub-critical equations of the form

$$(\partial_t + \mathfrak{L})u = F(u, \nabla u, ..., \nabla^k u, \xi)$$

where

- u (generalised) section of a vector bundle $E \rightarrow M$
- \mathfrak{L} is an elliptic operator of order > k on E,
- ξ is an irregular bundle valued (stochastic) noise.

Solution theories:

• Para-controlled Calculus [GIP15],

Let *M* Riemannian manifold, $E \rightarrow M$ a vector bundle with a connection and metric.Consider sub-critical equations of the form

$$(\partial_t + \mathfrak{L})u = F(u, \nabla u, ..., \nabla^k u, \xi) ,$$

where

- u (generalised) section of a vector bundle E
 ightarrow M
- \mathfrak{L} is an elliptic operator of order > k on E,
- ξ is an irregular bundle valued (stochastic) noise.

Solution theories:

• Para-controlled Calculus [GIP15],(geometric setting [BB16]).

Let *M* Riemannian manifold, $E \rightarrow M$ a vector bundle with a connection and metric.Consider sub-critical equations of the form

$$(\partial_t + \mathfrak{L})u = F(u, \nabla u, ..., \nabla^k u, \xi)$$

where

- u (generalised) section of a vector bundle $E \rightarrow M$
- \mathfrak{L} is an elliptic operator of order > k on E,
- ξ is an irregular bundle valued (stochastic) noise.

Solution theories:

- Para-controlled Calculus [GIP15],(geometric setting [BB16]).
- Regularity Structures [Hai14],

Let *M* Riemannian manifold, $E \rightarrow M$ a vector bundle with a connection and metric.Consider sub-critical equations of the form

$$(\partial_t + \mathfrak{L})u = F(u, \nabla u, ..., \nabla^k u, \xi) ,$$

where

- u (generalised) section of a vector bundle E
 ightarrow M
- \mathfrak{L} is an elliptic operator of order > k on E,
- ξ is an irregular bundle valued (stochastic) noise.

Solution theories:

- Para-controlled Calculus [GIP15],(geometric setting [BB16]).
- Regularity Structures [Hai14],(geometric setting [DDD18], [HS23]).

ヘロト 不得 ト イヨト イヨト

Let *M* Riemannian manifold, $E \rightarrow M$ a vector bundle with a connection and metric.Consider sub-critical equations of the form

$$(\partial_t + \mathfrak{L})u = F(u, \nabla u, ..., \nabla^k u, \xi) ,$$

where

- u (generalised) section of a vector bundle E
 ightarrow M
- \mathfrak{L} is an elliptic operator of order > k on E,
- ξ is an irregular bundle valued (stochastic) noise.

Solution theories:

- Para-controlled Calculus [GIP15],(geometric setting [BB16]).
- Regularity Structures [Hai14],(geometric setting [DDD18], [HS23]).
- Renormalisation group flow [Kup14, Duc21].

ヘロト 不得 ト イヨト イヨト

3

Let *M* Riemannian manifold, $E \rightarrow M$ a vector bundle with a connection and metric.Consider sub-critical equations of the form

$$(\partial_t + \mathfrak{L})u = F(u, \nabla u, ..., \nabla^k u, \xi) ,$$

where

- u (generalised) section of a vector bundle E
 ightarrow M
- \mathfrak{L} is an elliptic operator of order > k on E,
- ξ is an irregular bundle valued (stochastic) noise.

Solution theories:

- Para-controlled Calculus [GIP15],(geometric setting [BB16]).
- Regularity Structures [Hai14],(geometric setting [DDD18], [HS23]).
- Renormalisation group flow [Kup14, Duc21].
- Multi-indices [OSSW21].

ヘロト 不得 ト イヨト イヨト

3

Φ^4_d -equation

Φ^4_d -equation

Let $E \rightarrow M$ vector bundle with metric and connection.

Φ^4_d -equation

Let $E \rightarrow M$ vector bundle with metric and connection.

$$(\partial_t + \triangle^E)u = -|u|^2 \cdot u + \xi ,$$

Φ^4_d -equation

Let $E \rightarrow M$ vector bundle with metric and connection.

$$(\partial_t + \triangle^E)u = -|u|^2 \cdot u + \xi$$
,

for ξ an E valued space time white noise.

Φ^4_d -equation

Let $E \rightarrow M$ vector bundle with metric and connection.

$$(\partial_t + \triangle^E)u = -|u|^2 \cdot u + \xi$$
,

for ξ an E valued space time white noise.

Stochastic Yang-Mills heat flow

э

ヘロア 人間 アメヨア 一

Φ^4_d -equation

Let $E \rightarrow M$ vector bundle with metric and connection.

$$(\partial_t + \triangle^E)u = -|u|^2 \cdot u + \xi$$
,

for ξ an E valued space time white noise.

Stochastic Yang-Mills heat flow

Let $P \rightarrow M$ principle *G*-bundle,

イロト 不得下 イヨト イヨト 二日

Φ^4_d -equation

Let $E \rightarrow M$ vector bundle with metric and connection.

$$(\partial_t + \triangle^E)u = -|u|^2 \cdot u + \xi$$
,

for ξ an E valued space time white noise.

Stochastic Yang-Mills heat flow

Let $P \to M$ principle *G*-bundle, $|\cdot|_{\mathfrak{g}}$ an Ad-invariant scalar product on \mathfrak{g} .

Sac

3/27

イロト イボト イヨト イヨト 二日

Φ^4_d -equation

Let $E \rightarrow M$ vector bundle with metric and connection.

$$(\partial_t + \triangle^E)u = -|u|^2 \cdot u + \xi$$
,

for ξ an *E* valued space time white noise.

Stochastic Yang-Mills heat flow

Let $P \to M$ principle *G*-bundle, $|\cdot|_{\mathfrak{g}}$ an Ad-invariant scalar product on \mathfrak{g} . Consider principal connections $\omega = \omega^{ref} + A$

イロト イボト イヨト イヨト 二日

Φ^4_d -equation

Let $E \rightarrow M$ vector bundle with metric and connection.

$$(\partial_t + \triangle^E)u = -|u|^2 \cdot u + \xi$$
,

for ξ an E valued space time white noise.

Stochastic Yang-Mills heat flow

Let $P \to M$ principle *G*-bundle, $|\cdot|_{\mathfrak{g}}$ an Ad-invariant scalar product on \mathfrak{g} . Consider principal connections $\omega = \omega^{ref} + A$

$$\partial_t A = -(d^\omega)^* F_\omega - d^\omega (d^\omega)^* (A) + \xi \; ,$$

イロト 不得 トイヨト イヨト 二日

Φ^4_d -equation

Let $E \rightarrow M$ vector bundle with metric and connection.

$$(\partial_t + \triangle^E)u = -|u|^2 \cdot u + \xi$$
,

for ξ an E valued space time white noise.

Stochastic Yang–Mills heat flow

Let $P \to M$ principle *G*-bundle, $|\cdot|_{\mathfrak{g}}$ an Ad-invariant scalar product on \mathfrak{g} . Consider principal connections $\omega = \omega^{ref} + A$

$$\partial_t A = -(d^\omega)^* F_\omega - d^\omega (d^\omega)^* (A) + \xi \; ,$$

for $\xi \in \Omega^1(M, \operatorname{Ad}(\mathfrak{g}))$ -valued space time white noise.

イロト 不得 トイラト イラト 二字 -

Φ^4_d -equation

Let $E \rightarrow M$ vector bundle with metric and connection.

$$(\partial_t + \triangle^E)u = -|u|^2 \cdot u + \xi$$
,

for ξ an E valued space time white noise.

Stochastic Yang–Mills heat flow

Let $P \to M$ principle *G*-bundle, $|\cdot|_{\mathfrak{g}}$ an Ad-invariant scalar product on \mathfrak{g} . Consider principal connections $\omega = \omega^{ref} + A$

$$\partial_t A = -(d^\omega)^* F_\omega - d^\omega (d^\omega)^* (A) + \xi \; ,$$

for $\xi \in \Omega^1(M, \operatorname{Ad}(\mathfrak{g}))$ -valued space time white noise.

イロト 不得 トイラト イラト 二字 -

- 1 Meta Theorem of subcritical SPDEs
- 2 Regularity Structures on Manifolds and Vector Bundles
- 3 Construction of $\{\mathfrak{Dif}_{\mathcal{T}}\}_{\mathcal{T}\in\mathfrak{T}}$ on Manifolds
- 4 Some open (algebraic) avenues

Section 1

Meta Theorem of subcritical SPDEs

Harprit Singh

Renormalisation of singular SPDEs on Riemar

May 28, 2024

イロト 不得 トイヨト イヨト

3

Meta equation

Consider a subcritical equation

$$\partial_t u + \mathcal{L}u = F(u, \nabla u, ..., \nabla^n u) + \xi \tag{1}$$

where

イロト 不得 トイヨト イヨト

E

Meta equation

Consider a subcritical equation

$$\partial_t u + \mathcal{L}u = F(u, \nabla u, ..., \nabla^n u) + \xi \tag{1}$$

where

• \mathcal{L} is an elliptic operator on \mathbb{T}^d of order > n

イロト 不得 トイヨト イヨト

Э

Meta equation

Consider a subcritical equation

$$\partial_t u + \mathcal{L} u = F(u, \nabla u, ..., \nabla^n u) + \xi$$

where

- \mathcal{L} is an elliptic operator on \mathbb{T}^d of order > n
- $\partial_t + \mathcal{L}$ is space-time translation invariant

< ∃ >

э

< □ > < □ > < □ > < □ >

Meta equation

Consider a subcritical equation

$$\partial_t u + \mathcal{L}u = F(u, \nabla u, ..., \nabla^n u) + \xi \tag{1}$$

where

- \mathcal{L} is an elliptic operator on \mathbb{T}^d of order > n
- $\partial_t + \mathcal{L}$ is space-time translation invariant
- $\xi \in \mathcal{D}'(\mathbb{R} \times \mathbb{T}^d)$ space time white noise.

< /□ > < 三

э

Meta equation

Consider a subcritical equation

$$\partial_t u + \mathcal{L} u = F(u, \nabla u, ..., \nabla^n u) + \xi$$

where

- \mathcal{L} is an elliptic operator on \mathbb{T}^d of order > n
- $\partial_t + \mathcal{L}$ is space-time translation invariant
- $\xi \in \mathcal{D}'(\mathbb{R} \times \mathbb{T}^d)$ space time white noise.

Problem:

э

< □ > < □ > < □ > < □ >

Meta equation

Consider a subcritical equation

$$\partial_t u + \mathcal{L} u = F(u, \nabla u, ..., \nabla^n u) + \xi$$

where

- \mathcal{L} is an elliptic operator on \mathbb{T}^d of order > n
- $\partial_t + \mathcal{L}$ is space-time translation invariant
- $\xi \in \mathcal{D}'(\mathbb{R} \times \mathbb{T}^d)$ space time white noise.

Problem:

• Consider
$$(\partial_t + \mathcal{L})v = \xi$$

э

< □ > < □ > < □ > < □ >

Meta equation

Consider a subcritical equation

$$\partial_t u + \mathcal{L} u = F(u, \nabla u, ..., \nabla^n u) + \xi$$

where

- \mathcal{L} is an elliptic operator on \mathbb{T}^d of order > n
- $\partial_t + \mathcal{L}$ is space-time translation invariant
- $\xi \in \mathcal{D}'(\mathbb{R} \times \mathbb{T}^d)$ space time white noise.

Problem:

- Consider $(\partial_t + \mathcal{L})v = \xi$
- Schauder estimates may not provide enough regularity for the non-linearity F(v, ∇v, ..., ∇ⁿv) to be well defined!

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ
◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

3

Let ρ_{ϵ} smooth mollifiers

<ロト < 回ト < 回ト < 回ト < 回ト < 回ト < </p>

Let ρ_{ϵ} smooth mollifiers such that and $\xi_{\epsilon} := \rho_{\epsilon} \star \xi$

イロト 不得 トイヨト イヨト

Let ρ_{ϵ} smooth mollifiers such that and $\xi_{\epsilon} := \rho_{\epsilon} \star \xi \to \xi$ as $\epsilon \to 0$.

<ロト < 回ト < 回ト < 回ト < 回ト < □ト < □ < □ </p>

Let ρ_{ϵ} smooth mollifiers such that and $\xi_{\epsilon} := \rho_{\epsilon} \star \xi \to \xi$ as $\epsilon \to 0$.Consider solutions u_{ϵ}

Image: A match a ma

Let ρ_{ϵ} smooth mollifiers such that and $\xi_{\epsilon} := \rho_{\epsilon} \star \xi \to \xi$ as $\epsilon \to 0$.Consider solutions u_{ϵ} of

$$\partial_t u_{\epsilon} + \mathcal{L} u_{\epsilon} = F(u_{\epsilon}, \nabla u_{\epsilon}, ..., \nabla^n u_{\epsilon}) + \xi_{\epsilon}.$$
(2)

イロト イヨト イヨト -

Let ρ_{ϵ} smooth mollifiers such that and $\xi_{\epsilon} := \rho_{\epsilon} \star \xi \to \xi$ as $\epsilon \to 0$.Consider solutions u_{ϵ} of

$$\partial_t u_{\epsilon} + \mathcal{L} u_{\epsilon} = F(u_{\epsilon}, \nabla u_{\epsilon}, ..., \nabla^n u_{\epsilon}) + \xi_{\epsilon}.$$
(2)

Generically, u_{ϵ} does not converge as $\epsilon \to 0$, one needs *renormalisation*.

イロト イポト イヨト イヨト

Metatheorem

イロト イヨト イヨト -

Metatheorem

Let G, \mathcal{L} , ξ as well as ρ_{ϵ} and ξ_{ϵ} be as above.

Image: A mathematical states and a mathem

< □ > < □ > < □ > < □ >

Metatheorem

Let G, L, ξ as well as ρ_{ϵ} and ξ_{ϵ} be as above. Then, there exists a finite index set \mathfrak{T}_{-}

★ 3 → 3

Image: A image: A

Metatheorem

Let G, \mathcal{L} , ξ as well as ρ_{ϵ} and ξ_{ϵ} be as above. Then, there exists a finite index set \mathfrak{T}_{-} and non-linearities $\Upsilon^{G}[\tau]$

Metatheorem

Let G, \mathcal{L} , ξ as well as ρ_{ϵ} and ξ_{ϵ} be as above. Then, there exists a finite index set \mathfrak{T}_{-} and non-linearities $\Upsilon^{G}[\tau]$ depending only on G, \mathcal{L} , ξ

Metatheorem

Let G, \mathcal{L} , ξ as well as ρ_{ϵ} and ξ_{ϵ} be as above. Then, there exists a finite index set \mathfrak{T}_{-} and non-linearities $\Upsilon^{G}[\tau]$ depending only on G, \mathcal{L} , ξ and as well as constants $c_{\epsilon}^{\tau} \in \mathbb{R}$ depending additionally on ρ_{ϵ}

Metatheorem

Let G, \mathcal{L} , ξ as well as ρ_{ϵ} and ξ_{ϵ} be as above. Then, there exists a finite index set \mathfrak{T}_{-} and non-linearities $\Upsilon^{G}[\tau]$ depending only on G, \mathcal{L} , ξ and as well as constants $c_{\epsilon}^{\tau} \in \mathbb{R}$ depending additionally on ρ_{ϵ} such for u_{ϵ}

Metatheorem

Let G, \mathcal{L} , ξ as well as ρ_{ϵ} and ξ_{ϵ} be as above. Then, there exists a finite index set \mathfrak{T}_{-} and non-linearities $\Upsilon^{G}[\tau]$ depending only on G, \mathcal{L} , ξ and as well as constants $c_{\epsilon}^{\tau} \in \mathbb{R}$ depending additionally on ρ_{ϵ} such for u_{ϵ} satisfying

$$\partial_t + \mathcal{L} u_{\epsilon} = F(u_{\epsilon}, \nabla u_{\epsilon}, ..., \nabla^n u_{\epsilon}) + \sum_{\tau \in \mathfrak{T}_-} c_{\epsilon}^{\tau} \Upsilon^F[\tau](u_{\epsilon}, \nabla u_{\epsilon}, ..., \nabla^n u_{\epsilon}) + \xi_{\epsilon} ,$$

Metatheorem

Let G, \mathcal{L} , ξ as well as ρ_{ϵ} and ξ_{ϵ} be as above. Then, there exists a finite index set \mathfrak{T}_{-} and non-linearities $\Upsilon^{G}[\tau]$ depending only on G, \mathcal{L} , ξ and as well as constants $c_{\epsilon}^{\tau} \in \mathbb{R}$ depending additionally on ρ_{ϵ} such for u_{ϵ} satisfying

$$\partial_t + \mathcal{L} u_{\epsilon} = F(u_{\epsilon}, \nabla u_{\epsilon}, ..., \nabla^n u_{\epsilon}) + \sum_{\tau \in \mathfrak{T}_-} c_{\epsilon}^{\tau} \Upsilon^F[\tau](u_{\epsilon}, \nabla u_{\epsilon}, ..., \nabla^n u_{\epsilon}) + \xi_{\epsilon} ,$$

there exists $u \in \mathcal{D}'((0, T) \times \mathbb{R}^d)$

Metatheorem

Let G, \mathcal{L} , ξ as well as ρ_{ϵ} and ξ_{ϵ} be as above. Then, there exists a finite index set \mathfrak{T}_{-} and non-linearities $\Upsilon^{G}[\tau]$ depending only on G, \mathcal{L} , ξ and as well as constants $c_{\epsilon}^{\tau} \in \mathbb{R}$ depending additionally on ρ_{ϵ} such for u_{ϵ} satisfying

$$\partial_t + \mathcal{L} u_{\epsilon} = F(u_{\epsilon}, \nabla u_{\epsilon}, ..., \nabla^n u_{\epsilon}) + \sum_{\tau \in \mathfrak{T}_-} c_{\epsilon}^{\tau} \Upsilon^F[\tau](u_{\epsilon}, \nabla u_{\epsilon}, ..., \nabla^n u_{\epsilon}) + \xi_{\epsilon} ,$$

there exists $u \in \mathcal{D}'((0, T) \times \mathbb{R}^d)$ independent of the choice of $\{\rho_{\epsilon}\}_{\epsilon \in (0,1)}$

Metatheorem

Let G, \mathcal{L} , ξ as well as ρ_{ϵ} and ξ_{ϵ} be as above. Then, there exists a finite index set \mathfrak{T}_{-} and non-linearities $\Upsilon^{G}[\tau]$ depending only on G, \mathcal{L} , ξ and as well as constants $c_{\epsilon}^{\tau} \in \mathbb{R}$ depending additionally on ρ_{ϵ} such for u_{ϵ} satisfying

$$\partial_t + \mathcal{L} u_{\epsilon} = F(u_{\epsilon}, \nabla u_{\epsilon}, ..., \nabla^n u_{\epsilon}) + \sum_{\tau \in \mathfrak{T}_{-}} c_{\epsilon}^{\tau} \Upsilon^F[\tau](u_{\epsilon}, \nabla u_{\epsilon}, ..., \nabla^n u_{\epsilon}) + \xi_{\epsilon} ,$$

there exists $u \in \mathcal{D}'((0, T) \times \mathbb{R}^d)$ independent of the choice of $\{\rho_{\epsilon}\}_{\epsilon \in (0,1)}$ such that $u_{\epsilon} \to u$ in probability as $\epsilon \to 0$.

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Metatheorem

Let G, \mathcal{L} , ξ as well as ρ_{ϵ} and ξ_{ϵ} be as above. Then, there exists a finite index set \mathfrak{T}_{-} and non-linearities $\Upsilon^{G}[\tau]$ depending only on G, \mathcal{L}, ξ and as well as constants $c_{\epsilon}^{\tau} \in \mathbb{R}$ depending additionally on ρ_{ϵ} such for u_{ϵ} satisfying

$$\partial_t + \mathcal{L} u_{\epsilon} = F(u_{\epsilon}, \nabla u_{\epsilon}, ..., \nabla^n u_{\epsilon}) + \sum_{\tau \in \mathfrak{T}_-} c_{\epsilon}^{\tau} \Upsilon^F[\tau](u_{\epsilon}, \nabla u_{\epsilon}, ..., \nabla^n u_{\epsilon}) + \xi_{\epsilon} ,$$

there exists $u \in \mathcal{D}'((0, T) \times \mathbb{R}^d)$ independent of the choice of $\{\rho_{\epsilon}\}_{\epsilon \in (0,1)}$ such that $u_{\epsilon} \rightarrow u$ in probability as $\epsilon \rightarrow 0$.

Note that this metatheorem purposefully kept several aspects vague, see [BCCH20, Theorem 2.22].

Meta Theorem of subcritical SPDEs

Roadmap of the proof

<ロト <回ト < 回ト < 回ト < 回ト -

王

Meta Theorem of subcritical SPDEs

Roadmap of the proof

Some vocabulary

◆ロト ◆聞ト ◆ヨト ◆ヨト

Some vocabulary

• A structure space is a vector space/bundle T.

イロト イボト イヨト イヨト

Some vocabulary

• A *structure space* is a vector space/bundle *T*. Elements similar to abstract Taylor polynomials.

э

< ロ ト < 同 ト < 三 ト < 三 ト

Some vocabulary

- A *structure space* is a vector space/bundle *T*. Elements similar to abstract Taylor polynomials.
- A model Z gives analytic "meaning" to elements of T,

< □ > < □ > < □ > < □ >

Some vocabulary

- A *structure space* is a vector space/bundle *T*. Elements similar to abstract Taylor polynomials.
- A model Z gives analytic "meaning" to elements of T, similarly to the map P(X) → p(x) abstract polynomial to polynomial function.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Some vocabulary

- A *structure space* is a vector space/bundle *T*. Elements similar to abstract Taylor polynomials.
- A model Z gives analytic "meaning" to elements of T, similarly to the map P(X) → p(x) abstract polynomial to polynomial function.
- Let \mathcal{M} the space of models.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Some vocabulary

- A *structure space* is a vector space/bundle *T*. Elements similar to abstract Taylor polynomials.
- A model Z gives analytic "meaning" to elements of T, similarly to the map P(X) → p(x) abstract polynomial to polynomial function.
- Let \mathcal{M} the space of models.
- Given a model Z ∈ M and γ > 0 we denote by D^γ the space of modelled distributions (maps (t, x) → f(x) ∈ T).

3

イロト イヨト イヨト -

Some vocabulary

- A *structure space* is a vector space/bundle *T*. Elements similar to abstract Taylor polynomials.
- A model Z gives analytic "meaning" to elements of T, similarly to the map P(X) → p(x) abstract polynomial to polynomial function.
- Let \mathcal{M} the space of models.
- Given a model Z ∈ M and γ > 0 we denote by D^γ the space of modelled distributions (maps (t, x) → f(x) ∈ T).
- There exists a reconstruction operator

$$\mathcal{R}:\mathcal{D}^{\gamma}
ightarrow\mathcal{D}^{\prime}$$

イロト イ理ト イヨト イヨト

3

This factors the classical solution map $\mathcal{S}_{\mathcal{C}}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

This factors the classical solution map S_C . The maps S_A and \mathcal{R} are continuous,

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

This factors the classical solution map S_C . The maps S_A and \mathcal{R} are continuous,but Ψ is not.

May 28, 2024

This factors the classical solution map S_C . The maps S_A and \mathcal{R} are continuous, but Ψ is not. In general, as $\xi_{\epsilon} \to \xi$ the models $\Psi(\xi_{\epsilon}) = Z(\xi_{\epsilon})$ do *not* converge.

イロト イ理ト イヨト イヨト

3

There is a renormalisation group \mathfrak{G}_-

イロト イヨト イヨト イヨト

There is a renormalisation group \mathfrak{G}_- acting on \mathscr{M}

イロト イポト イヨト イヨト
There is a renormalisation group \mathfrak{G}_- acting on \mathscr{M} and "space of right hand sides" Eq

イロト イポト イヨト イヨト

< □ > < /□ > < □</p>

< ∃ >

э

Choosing $M_{\epsilon} \in \mathfrak{G}_{-}$

< □ > < /□ > < /□ >

э

Choosing $M_{\epsilon} \in \mathfrak{G}_{-}$ such that $\xi_{\epsilon} \mapsto M_{\epsilon} \Psi(\xi_{\epsilon})$ is continuous,

(ロト (雪下 (ヨト (ヨト))

Choosing $M_{\epsilon} \in \mathfrak{G}_{-}$ such that $\xi_{\epsilon} \mapsto M_{\epsilon}\Psi(\xi_{\epsilon})$ is continuous, concludes the sketch.

ヘロト 人間ト ヘヨト ヘヨト

11 / 27

Renormalisation of singular SPDEs on Rieman May 28, 2024 12 / 27

<ロト < 回ト < 回ト < 回ト < 回ト < □ト < □ < □ </p>

王

The robust and general theory can be subdivided as follows:

General analytic solution theory.
 "the analytic step", original breakthrough [Hai14].

< □ > < □ > < □ > < □ >

э

The robust and general theory can be subdivided as follows:

- General analytic solution theory.
 "the analytic step", original breakthrough [Hai14].
- Construction of the regularity structure, a positive and a negative renormalisation Group.
 "constructive step", [BHZ19].

The robust and general theory can be subdivided as follows:

- General analytic solution theory.
 "the analytic step", original breakthrough [Hai14].
- Construction of the regularity structure, a positive and a negative renormalisation Group.
 "constructive step", [BHZ19].
- Action of the renormalisation group on the equation. "algebraic step", [BCCH20], [BB21].

The robust and general theory can be subdivided as follows:

- General analytic solution theory.
 "the analytic step", original breakthrough [Hai14].
- Construction of the regularity structure, a positive and a negative renormalisation Group.
 "constructive step", [BHZ19].
- Action of the renormalisation group on the equation.
 "algebraic step", [BCCH20], [BB21].
- Convergence of renormalised models.
 "the stochastic step", [CH16], [HS23].

The robust and general theory can be subdivided as follows:

- General analytic solution theory.
 "the analytic step", original breakthrough [Hai14].
- Construction of the regularity structure, a positive and a negative renormalisation Group.
 "constructive step", [BHZ19].
- Action of the renormalisation group on the equation. "algebraic step", [BCCH20], [BB21].
- Convergence of renormalised models.
 "the stochastic step", [CH16], [HS23].

Aim of this talk: Present a generalisation to Manifolds and Vector bundles.

ヘロト 不得下 イヨト イヨト

The robust and general theory can be subdivided as follows:

- General analytic solution theory.
 "the analytic step", original breakthrough [Hai14].
- Construction of the regularity structure, a positive and a negative renormalisation Group.
 "constructive step", [BHZ19].
- Action of the renormalisation group on the equation.
 "algebraic step", [BCCH20], [BB21].
- Convergence of renormalised models.
 "the stochastic step", [CH16], [HS23].

Aim of this talk: Present a generalisation to Manifolds and Vector bundles. First three steps in full generality.

• □ ▶ • 4 □ ▶ • □ ▶ • □ ▶

Section 2

Regularity Structures on Manifolds and Vector Bundles

Renormalisation of singular SPDEs on Riemar

< ∃ >

3

Setting the talk

Let M a Riemannian manifold, $E \rightarrow M$ and $F^i \rightarrow M$ are vector bundles as above.

э

Setting the talk

Let *M* a Riemannian manifold, $E \rightarrow M$ and $F^i \rightarrow M$ are vector bundles as above. We study subcritical SPDEs of the form

$$\partial_t u + \mathcal{L} u = \sum_{i=0}^m G_i(u, \nabla u, ..., \nabla^n u) \xi_i$$

Setting the talk

Let *M* a Riemannian manifold, $E \rightarrow M$ and $F^i \rightarrow M$ are vector bundles as above. We study subcritical SPDEs of the form

$$\partial_t u + \mathcal{L} u = \sum_{i=0}^m G_i(u, \nabla u, ..., \nabla^n u) \xi_i$$
,

• u is a (generalized) section of the vector bundle $E \rightarrow M$,

< 4 ₽ × 4

Setting the talk

Let *M* a Riemannian manifold, $E \rightarrow M$ and $F^i \rightarrow M$ are vector bundles as above. We study subcritical SPDEs of the form

$$\partial_t u + \mathcal{L} u = \sum_{i=0}^m G_i(u, \nabla u, ..., \nabla^n u) \xi_i ,$$

- u is a (generalized) section of the vector bundle $E \rightarrow M$,
- \mathcal{L} is an elliptic operator on E of degree > n,

14 / 27

< 4 ₽ × 4

Setting the talk

Let *M* a Riemannian manifold, $E \to M$ and $F^i \to M$ are vector bundles as above. We study subcritical SPDEs of the form

$$\partial_t u + \mathcal{L} u = \sum_{i=0}^m G_i(u, \nabla u, ..., \nabla^n u) \xi_i ,$$

- u is a (generalized) section of the vector bundle $E \rightarrow M$,
- \mathcal{L} is an elliptic operator on E of degree > n,
- ξ_i are F^i valued random distributions (e.g. F^i -valued white noise),

Image: A image: A

Setting the talk

Let M a Riemannian manifold, $E \rightarrow M$ and $F^i \rightarrow M$ are vector bundles as above. We study subcritical SPDEs of the form

$$\partial_t u + \mathcal{L} u = \sum_{i=0}^m G_i(u, \nabla u, ..., \nabla^n u) \xi_i ,$$

- u is a (generalized) section of the vector bundle $E \to M$,
- \mathcal{L} is an elliptic operator on E of degree > n,
- ξ_i are F^i valued random distributions (e.g. F^i -valued white noise),
- $G_i: E \times (TM^* \otimes E) \times ... \times ((TM^*)^{\otimes n} \otimes E) \rightarrow L(F^i, E)$ are local functions.

イロト 不得 トイヨト イヨト

Setting the talk

Let M a Riemannian manifold, $E \rightarrow M$ and $F^i \rightarrow M$ are vector bundles as above. We study subcritical SPDEs of the form

$$\partial_t u + \mathcal{L} u = \sum_{i=0}^m G_i(u, \nabla u, ..., \nabla^n u) \xi_i ,$$

- u is a (generalized) section of the vector bundle $E \to M$,
- \mathcal{L} is an elliptic operator on E of degree > n,
- ξ_i are F^i valued random distributions (e.g. F^i -valued white noise),
- $G_i: E \times (TM^* \otimes E) \times ... \times ((TM^*)^{\otimes n} \otimes E) \rightarrow L(F^i, E)$ are local functions.

イロト 不得 トイヨト イヨト

Main results of [HS23]

イロト イボト イヨト イヨト

э

Main results of [HS23]

Generalises the theory of RS:

イロト イヨト イヨト -

э

Main results of [HS23]

Generalises the theory of RS:Automates full solution theory with only the following steps on equation by equation basis:

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Main results of [HS23]

Generalises the theory of RS:Automates full solution theory with only the following steps on equation by equation basis:

• Identification of canonical (finite dimensional!) renormalisation sub-group.

ヘロト 人間ト イヨト イヨト

Main results of [HS23]

Generalises the theory of RS:Automates full solution theory with only the following steps on equation by equation basis:

- Identification of canonical (finite dimensional!) renormalisation sub-group.
- Convergence of models.

ヘロト 人間 ト イヨト イヨト

Main results of [HS23]

Generalises the theory of RS:Automates full solution theory with only the following steps on equation by equation basis:

- Identification of canonical (finite dimensional!) renormalisation sub-group.
- Convergence of models.

As an application construct solutions to

ヘロト ヘ回ト ヘヨト ヘヨト

Main results of [HS23]

Generalises the theory of RS:Automates full solution theory with only the following steps on equation by equation basis:

- Identification of canonical (finite dimensional!) renormalisation sub-group.
- Convergence of models.

As an application construct solutions to

• $\phi_3^4(E)$:

• □ ▶ • 4 □ ▶ • □ ▶ • □ ▶

Main results of [HS23]

Generalises the theory of RS:Automates full solution theory with only the following steps on equation by equation basis:

- Identification of canonical (finite dimensional!) renormalisation sub-group.
- Convergence of models.

As an application construct solutions to

$$(\partial_t + \triangle^{\mathcal{E}})u = -|u|^2 \cdot u + \infty \cdot u + \xi$$

ヘロト ヘ回ト ヘヨト ヘヨト

Main results of [HS23]

Generalises the theory of RS:Automates full solution theory with only the following steps on equation by equation basis:

- Identification of canonical (finite dimensional!) renormalisation sub-group.
- Convergence of models.

As an application construct solutions to

•
$$\phi_3^4(E)$$
:
 $(\partial_t + \triangle^E)u = -|u|^2 \cdot u + \infty \cdot u + \xi$

• g-PAM:

ヘロト ヘ回ト ヘヨト ヘヨト

Main results of [HS23]

Generalises the theory of RS:Automates full solution theory with only the following steps on equation by equation basis:

- Identification of canonical (finite dimensional!) renormalisation sub-group.
- Convergence of models.

As an application construct solutions to

•
$$\phi_3^4(E)$$
:
 $(\partial_t + \triangle^E)u = -|u|^2 \cdot u + \infty \cdot u +$

• g-PAM:

$$(\partial_t + \triangle)u = f(u)(\nabla u, \nabla u) - \infty \cdot \operatorname{tr} f(u)g^2(u) + g(u)(\xi - \infty \cdot g'(u)\xi)$$

・ 同 ト ・ ヨ ト ・ ヨ ト

ξ

<ロト < 回ト < 回ト < 回ト < 回ト < □ト < □ < □ </p>

王

$$(\partial_t + \triangle)u = u^2 - \infty - \infty \cdot s(x) + \xi$$
,

<ロト < 回ト < 回ト < 回ト < 回ト < □ト < □ < □ </p>

王

$$(\partial_t + \triangle)u = u^2 - \infty - \infty \cdot s(x) + \xi$$
,

where $s: M \to \mathbb{R}$ scalar curvature.

<ロト < 回ト < 回ト < 回ト < 回ト < □ト < □ < □ </p>

E

$$(\partial_t + \triangle)u = u^2 - \infty - \infty \cdot s(x) + \xi$$
,

where $s: M \to \mathbb{R}$ scalar curvature.

Observation for generalised Laplacians and white noise

< ∃ >

э

$$(\partial_t + \triangle)u = u^2 - \infty - \infty \cdot s(x) + \xi$$
,

where $s: M \to \mathbb{R}$ scalar curvature.

Observation for generalised Laplacians and white noise

If the fastest divergence is slower than $\frac{1}{\epsilon^2}$, then renomalisation constants are sufficient.

$$(\partial_t + \triangle)u = u^2 - \infty - \infty \cdot s(x) + \xi$$
,

where $s: M \to \mathbb{R}$ scalar curvature.

Observation for generalised Laplacians and white noise

If the fastest divergence is slower than $\frac{1}{\epsilon^2}$, then renomalisation constants are sufficient.

Previous works:
$$(\partial_t + \triangle)u = u^2 - \infty - \infty \cdot s(x) + \xi$$
,

where $s: M \to \mathbb{R}$ scalar curvature.

Observation for generalised Laplacians and white noise

If the fastest divergence is slower than $\frac{1}{\epsilon^2}$, then renomalisation constants are sufficient.

Previous works:

• Previous work using RS:

$$(\partial_t + \triangle)u = u^2 - \infty - \infty \cdot s(x) + \xi$$
,

where $s: M \to \mathbb{R}$ scalar curvature.

Observation for generalised Laplacians and white noise

If the fastest divergence is slower than $\frac{1}{\epsilon^2}$, then renomalisation constants are sufficient.

Previous works:

 Previous work using RS: 2d-PAM [DDD18], Paycha et al. (unpublished).

$$(\partial_t + \triangle)u = u^2 - \infty - \infty \cdot s(x) + \xi$$
,

where $s: M \to \mathbb{R}$ scalar curvature.

Observation for generalised Laplacians and white noise

If the fastest divergence is slower than $\frac{1}{\epsilon^2}$, then renomalisation constants are sufficient.

Previous works:

- Previous work using RS: 2d-PAM [DDD18], Paycha et al. (unpublished).
- Using Paracontrolled Calculus:

$$(\partial_t + \triangle)u = u^2 - \infty - \infty \cdot s(x) + \xi$$
,

where $s: M \to \mathbb{R}$ scalar curvature.

Observation for generalised Laplacians and white noise

If the fastest divergence is slower than $\frac{1}{\epsilon^2}$, then renomalisation constants are sufficient.

Previous works:

- Previous work using RS: 2d-PAM [DDD18], Paycha et al. (unpublished).
- Using Paracontrolled Calculus: PAM: [BB16], [Mou21].

$$(\partial_t + \triangle)u = u^2 - \infty - \infty \cdot s(x) + \xi$$
,

where $s: M \to \mathbb{R}$ scalar curvature.

Observation for generalised Laplacians and white noise

If the fastest divergence is slower than $\frac{1}{\epsilon^2}$, then renomalisation constants are sufficient.

Previous works:

- Previous work using RS: 2d-PAM [DDD18], Paycha et al. (unpublished).
- Using Paracontrolled Calculus: PAM: [BB16], [Mou21]. ϕ_3^4 : [BDFT23] based on [JP22].

・ロト ・回ト ・ヨト ・ ヨト

王

Some important steps are:

イロト イポト イヨト イヨト

Some important steps are:

• Bigrading $T = \bigoplus_{\alpha,\delta} T_{\alpha,\delta}$, approximate identity $\prod_p \tau_p \sim \prod_q \Gamma_{q,p} \tau_p$.

- Bigrading $T = \bigoplus_{\alpha,\delta} T_{\alpha,\delta}$, approximate identity $\prod_p \tau_p \sim \prod_q \Gamma_{q,p} \tau_p$.
- Polynomials get replaced by Jets.

- Bigrading $T = \bigoplus_{\alpha,\delta} T_{\alpha,\delta}$, approximate identity $\prod_p \tau_p \sim \prod_q \Gamma_{q,p} \tau_p$.
- Polynomials get replaced by Jets.
- Schauder estimates are more involved:

- Bigrading $T = \bigoplus_{\alpha,\delta} T_{\alpha,\delta}$, approximate identity $\prod_p \tau_p \sim \prod_q \Gamma_{q,p} \tau_p$.
- Polynomials get replaced by Jets.
- Schauder estimates are more involved: The lift of K has still the form

$$\mathcal{K}_{\gamma}f(p)=If(p)+Jf(p)+(\mathcal{N}_{\gamma}f)(p)\;.$$

Some important steps are:

- Bigrading $T = \bigoplus_{\alpha,\delta} T_{\alpha,\delta}$, approximate identity $\prod_p \tau_p \sim \prod_q \Gamma_{q,p} \tau_p$.
- Polynomials get replaced by Jets.
- Schauder estimates are more involved: The lift of K has still the form

$$\mathcal{K}_\gamma f(p) = If(p) + Jf(p) + (\mathcal{N}_\gamma f)(p) \;.$$

But new term needs $E_a \tau_p$ needs to be added,

Some important steps are:

- Bigrading $T = \bigoplus_{\alpha,\delta} T_{\alpha,\delta}$, approximate identity $\prod_p \tau_p \sim \prod_q \Gamma_{q,p} \tau_p$.
- Polynomials get replaced by Jets.
- Schauder estimates are more involved: The lift of K has still the form

$$\mathcal{K}_\gamma f(p) = If(p) + Jf(p) + (\mathcal{N}_\gamma f)(p) \;.$$

But new term needs $E_{a}\tau_{p}$ needs to be added, to get the crucial estimate

$$|\Gamma_{q,p}(I_p+J_p) au_p-(I_q+J_q)\Gamma_{q,p} au_p-E_q au_p|_k\lesssim | au|d(p,q)^{\delta-k}$$
 .

Some important steps are:

- Bigrading $T = \bigoplus_{\alpha,\delta} T_{\alpha,\delta}$, approximate identity $\prod_p \tau_p \sim \prod_q \Gamma_{q,p} \tau_p$.
- Polynomials get replaced by Jets.
- Schauder estimates are more involved: The lift of K has still the form

$$\mathcal{K}_\gamma f(p) = If(p) + Jf(p) + (\mathcal{N}_\gamma f)(p) \;.$$

But new term needs $E_{a}\tau_{p}$ needs to be added, to get the crucial estimate

$$|\Gamma_{q,p}(I_p+J_p) au_p-(I_q+J_q)\Gamma_{q,p} au_p-E_q au_p|_k\lesssim | au|d(p,q)^{\delta-k}$$

• Local non-linearity $G: E \to F$ corresponds to section of $\pi_F^* F$.

・ロト ・回ト ・ヨト ・ ヨト

Some important steps are:

イロト イポト イヨト イヨト

Some important steps are:

• Construction of the regularity structure from rule.

イロト イ理ト イヨト イヨト

Some important steps are:

- Construction of the regularity structure from rule.
 - Efficient indexing of vector bundles.

イロト イ理ト イヨト イヨト

3

Some important steps are:

- Construction of the regularity structure from rule.
 - Efficient indexing of vector bundles.
 - Use symmetric sets to "attach" jets to trees.

イロト イ理ト イヨト イヨト

Some important steps are:

- Construction of the regularity structure from rule.
 - Efficient indexing of vector bundles.
 - Use symmetric sets to "attach" jets to trees.
- Coloring operations replace coproducts.

• □ ▶ • 4 □ ▶ • □ ▶ • □ ▶

Some important steps are:

- Construction of the regularity structure from rule.
 - Efficient indexing of vector bundles.
 - Use symmetric sets to "attach" jets to trees.
- Coloring operations replace coproducts.
- Large renormalisation group 𝔅_ built from {𝔅𝔅_T}_{T∈𝔅_}, spaces of differential operators associated to negative trees in 𝔅_.

• □ ▶ • 4 □ ▶ • □ ▶ • □ ▶

- Construction of the regularity structure from rule.
 - Efficient indexing of vector bundles.
 - Use symmetric sets to "attach" jets to trees.
- Coloring operations replace coproducts.
- Large renormalisation group 𝔅_ built from {𝔅𝔅_T}_{𝔅𝔅_}, spaces of differential operators associated to negative trees in 𝔅_.
- Effect of $g \in \mathfrak{G}_-$ on equation $\partial u + \mathcal{L}u = F(u, \xi)$:

Some important steps are:

- Construction of the regularity structure from rule.
 - Efficient indexing of vector bundles.
 - Use symmetric sets to "attach" jets to trees.
- Coloring operations replace coproducts.
- Large renormalisation group 𝔅_ built from {𝔅𝔅_T}_{𝔅𝔅_}, spaces of differential operators associated to negative trees in 𝔅_.
- Effect of $g \in \mathfrak{G}_-$ on equation $\partial u + \mathcal{L}u = F(u, \xi)$:

$$\partial_t u^g + \mathcal{L} u^g = F(u^g, \xi) + \sum_{T \in \mathfrak{T}_-} \langle (D_T F)(u^g), g(T) \rangle \;.$$

イロト イポト イヨト イヨト 二日

Some important steps are:

- Construction of the regularity structure from rule.
 - Efficient indexing of vector bundles.
 - Use symmetric sets to "attach" jets to trees.
- Coloring operations replace coproducts.
- Large renormalisation group 𝔅_ built from {𝔅𝔅_T}_{𝔅𝔅_}, spaces of differential operators associated to negative trees in 𝔅_.
- Effect of $g \in \mathfrak{G}_-$ on equation $\partial u + \mathcal{L}u = F(u, \xi)$:

$$\partial_t u^g + \mathcal{L} u^g = F(u^g, \xi) + \sum_{T \in \mathfrak{T}_-} \langle (D_T F)(u^g), g(T) \rangle \;.$$

All these steps are done in *full generality*.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Section 3

Construction of $\{\mathfrak{Dif}_T\}_{T\in\mathfrak{T}_-}$ on Manifolds

Renormalisation of singular SPDEs on Riemar

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで May 28, 2024

Construction of $\{\mathfrak{Dif}_{\mathcal{T}}\}_{\mathcal{T}\in\mathfrak{T}_{-}}$ on Manifolds

Symmetric sets and Vector bundle assignments

Harprit Singh

Renormalisation of singular SPDEs on Rieman

May 28, 2024

<□▶ < □▶ < □▶ < □▶ < □▶ = □ - つへぐ

Construction of $\{\mathfrak{Dif}_{\mathcal{T}}\}_{\mathcal{T}\in\mathfrak{T}_{-}}$ on Manifolds

Symmetric sets and Vector bundle assignments

Let \mathfrak{S} a set of types.

Let \mathfrak{S} a set of types. Let $\operatorname{Iso}(\mathcal{T}^1, \mathcal{T}^2)$ the set of all type preserving bijections $T^1 \rightarrow T^2$.

Let \mathfrak{S} a set of types. Let $\operatorname{Iso}(T^1, T^2)$ the set of all type preserving bijections $T^1 \to T^2$.

Definition: Symmetric sets [CCHS22]

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ○ ○ ○

Let \mathfrak{S} a set of types. Let $\operatorname{Iso}(\mathcal{T}^1, \mathcal{T}^2)$ the set of all type preserving bijections $T^1 \rightarrow T^2$.

Definition: Symmetric sets [CCHS22]

A symmetric set 3 consists of an index set A_{λ}

Let \mathfrak{S} a set of types. Let $\operatorname{Iso}(\mathcal{T}^1, \mathcal{T}^2)$ the set of all type preserving bijections $T^1 \rightarrow T^2$.

Definition: Symmetric sets [CCHS22]

A symmetric set 3 consists of an index set A_{λ} and a triple

$$\mathfrak{z} = \left(\{ T^{\mathfrak{a}}_{\mathfrak{z}} \}_{\mathfrak{a} \in \mathcal{A}_{\mathfrak{z}}}, \ \{ \mathfrak{t}^{\mathfrak{a}}_{\mathfrak{z}} \}_{\mathfrak{a} \in \mathcal{A}_{\mathfrak{z}}}, \ \{ \Gamma^{\mathfrak{a}, \mathfrak{b}}_{\mathfrak{z}} \}_{\mathfrak{a}, \mathfrak{b} \in \mathcal{A}_{\mathfrak{z}}} \right) \,,$$

Let \mathfrak{S} a set of types. Let $\operatorname{Iso}(T^1, T^2)$ the set of all type preserving bijections $T^1 \rightarrow T^2$.

Definition: Symmetric sets [CCHS22]

A symmetric set 3 consists of an index set A_{λ} and a triple

$$\mathfrak{z} = \left(\{ T^{\mathbf{a}}_{\mathfrak{z}} \}_{\mathbf{a} \in \mathcal{A}_{\mathfrak{z}}}, \ \{ \mathfrak{t}^{\mathbf{a}}_{\mathfrak{z}} \}_{\mathbf{a} \in \mathcal{A}_{\mathfrak{z}}}, \ \{ \Gamma^{\mathbf{a}, \mathbf{b}}_{\mathfrak{z}} \}_{\mathbf{a}, \mathbf{b} \in \mathcal{A}_{\mathfrak{z}}} \right) ,$$

where $(T_{\lambda}^{a}, t_{\lambda}^{a})$ are finite typed sets

Let \mathfrak{S} a set of types. Let $\operatorname{Iso}(T^1, T^2)$ the set of all type preserving bijections $T^1 \rightarrow T^2$.

Definition: Symmetric sets [CCHS22]

A symmetric set 3 consists of an index set A_{λ} and a triple

$$\mathfrak{z} = \left(\{ T^{\mathbf{a}}_{\mathfrak{z}} \}_{\mathbf{a} \in \mathcal{A}_{\mathfrak{z}}}, \ \{ \mathfrak{t}^{\mathbf{a}}_{\mathfrak{z}} \}_{\mathbf{a} \in \mathcal{A}_{\mathfrak{z}}}, \ \{ \Gamma^{\mathbf{a}, \mathbf{b}}_{\mathfrak{z}} \}_{\mathbf{a}, \mathbf{b} \in \mathcal{A}_{\mathfrak{z}}} \right) \,,$$

where $(T_{\lambda}^{a}, t_{\lambda}^{a})$ are finite typed sets and $\Gamma_{\lambda}^{a,b} \subset \text{Iso}(T_{\lambda}^{b}, T_{\lambda}^{a})$ a non-empty set

Let \mathfrak{S} a set of types. Let $\operatorname{Iso}(T^1, T^2)$ the set of all type preserving bijections $T^1 \rightarrow T^2$.

Definition: Symmetric sets [CCHS22]

A symmetric set 3 consists of an index set A_{λ} and a triple

$$\mathfrak{z} = \left(\{ T^{\mathfrak{a}}_{\mathfrak{z}} \}_{\mathfrak{a} \in \mathcal{A}_{\mathfrak{z}}}, \ \{ \mathfrak{t}^{\mathfrak{a}}_{\mathfrak{z}} \}_{\mathfrak{a} \in \mathcal{A}_{\mathfrak{z}}}, \ \{ \Gamma^{\mathfrak{a}, \mathfrak{b}}_{\mathfrak{z}} \}_{\mathfrak{a}, \mathfrak{b} \in \mathcal{A}_{\mathfrak{z}}} \right) ,$$

where $(T_{\lambda}^{a}, t_{\lambda}^{a})$ are finite typed sets and $\Gamma_{\lambda}^{a,b} \subset \text{Iso}(T_{\lambda}^{b}, T_{\lambda}^{a})$ a non-empty set satisfying for $a, b, c \in A_{\lambda}$

$$\begin{split} \gamma \in \mathsf{\Gamma}^{\boldsymbol{a},\boldsymbol{b}}_{\boldsymbol{\flat}} & \Rightarrow \quad \gamma^{-1} \in \mathsf{\Gamma}^{\boldsymbol{b},\boldsymbol{a}}_{\boldsymbol{\flat}} , \\ \gamma \in \mathsf{\Gamma}^{\boldsymbol{a},\boldsymbol{b}}_{\boldsymbol{\flat}} , \quad \bar{\gamma} \in \mathsf{\Gamma}^{\boldsymbol{b},\boldsymbol{c}}_{\boldsymbol{\flat}} & \Rightarrow \quad \gamma \circ \bar{\gamma} \in \mathsf{\Gamma}^{\boldsymbol{a},\boldsymbol{c}}_{\boldsymbol{\flat}} . \end{split}$$

Let \mathfrak{S} a set of types. Let $\operatorname{Iso}(T^1, T^2)$ the set of all type preserving bijections $T^1 \to T^2$.

Definition: Symmetric sets [CCHS22]

A symmetric set β consists of an index set A_{β} and a triple

$$\mathfrak{z} = \left(\{ T^{\mathfrak{a}}_{\mathfrak{z}} \}_{\mathfrak{a} \in \mathcal{A}_{\mathfrak{z}}}, \ \{ \mathfrak{t}^{\mathfrak{a}}_{\mathfrak{z}} \}_{\mathfrak{a} \in \mathcal{A}_{\mathfrak{z}}}, \ \{ \Gamma^{\mathfrak{a}, \mathfrak{b}}_{\mathfrak{z}} \}_{\mathfrak{a}, \mathfrak{b} \in \mathcal{A}_{\mathfrak{z}}} \right) ,$$

where $(T_{\delta}^{a}, t_{\delta}^{a})$ are finite typed sets and $\Gamma_{\delta}^{a,b} \subset \text{Iso}(T_{\delta}^{b}, T_{\delta}^{a})$ a non-empty set satisfying for $a, b, c \in A_{\delta}$

$$\begin{split} \gamma \in \mathsf{\Gamma}^{a,b}_{\flat} & \Rightarrow \quad \gamma^{-1} \in \mathsf{\Gamma}^{b,a}_{\flat} \,, \\ \gamma \in \mathsf{\Gamma}^{a,b}_{\flat} \,, \quad \bar{\gamma} \in \mathsf{\Gamma}^{b,c}_{\flat} & \Rightarrow \quad \gamma \circ \bar{\gamma} \in \mathsf{\Gamma}^{a,c}_{\flat} \,. \end{split}$$

(Connected groupoid in the category of typed sets.)

Harprit Singh

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

20 / 27

Construction of $\{\mathfrak{Dif}_T\}_{T\in\mathfrak{T}}$ on Manifolds

Let $W = (W^{\mathfrak{t}})_{\mathfrak{t} \in \mathfrak{S}}$ be vector bundle assignment.
Let $W = (W^{\mathfrak{t}})_{\mathfrak{t}\in\mathfrak{S}}$ be vector bundle assignment.

• For T a typed set, let

$$W^{\otimes T} := \bigotimes_{x \in T} W^{\mathfrak{t}(x)} .$$

Let $W = (W^{\mathfrak{t}})_{\mathfrak{t} \in \mathfrak{S}}$ be vector bundle assignment.

• For T a typed set, let

$$W^{\otimes T} := \bigotimes_{x \in T} W^{\mathfrak{t}(x)} .$$

2 Any
$$\psi \in \operatorname{Iso}(T, \overline{T})$$

Construction of $\{\mathfrak{Dif}_T\}_{T\in\mathfrak{T}_{-}}$ on Manifolds

Let $W = (W^{\mathfrak{t}})_{\mathfrak{t}\in\mathfrak{S}}$ be vector bundle assignment.

• For T a typed set, let

$$W^{\otimes T} := \bigotimes_{x \in T} W^{\mathfrak{t}(x)} .$$

2 Any $\psi \in \operatorname{Iso}(\mathcal{T}, \overline{\mathcal{T}})$ gives a map $W^{\otimes \mathcal{T}} \to W^{\otimes \overline{\mathcal{T}}}$

Construction of $\{\mathfrak{Dif}_T\}_{T\in\mathfrak{T}_{-}}$ on Manifolds

Let $W = (W^{\mathfrak{t}})_{\mathfrak{t}\in\mathfrak{S}}$ be vector bundle assignment.

• For T a typed set, let

$$W^{\otimes T} := \bigotimes_{x \in T} W^{\mathfrak{t}(x)} .$$

2 Any $\psi \in \text{Iso}(T, \overline{T})$ gives a map $W^{\otimes T} \to W^{\otimes \overline{T}}$ characterised by

$$W_{p}^{\otimes T} \ni w_{p} = \otimes_{x \in T} w_{p}^{x} \mapsto \psi \cdot w_{p} = \otimes_{y \in \overline{T}} w_{p}^{\psi^{-1}(y)} .$$

Let $W = (W^{\mathfrak{t}})_{\mathfrak{t} \in \mathfrak{S}}$ be vector bundle assignment.

• For T a typed set, let

$$W^{\otimes T} := \bigotimes_{x \in T} W^{\mathfrak{t}(x)}$$

•

2 Any $\psi \in \text{Iso}(T, \overline{T})$ gives a map $W^{\otimes T} \to W^{\otimes \overline{T}}$ characterised by

$$W_{\rho}^{\otimes T} \ni w_{\rho} = \otimes_{x \in T} w_{\rho}^{x} \mapsto \psi \cdot w_{\rho} = \otimes_{y \in \overline{T}} w_{\rho}^{\psi^{-1}(y)} .$$

$$W^{\otimes \mathfrak{z}} = \left\{ w \in \prod_{a \in A_{\mathfrak{z}}} W^{\otimes T_{\mathfrak{z}}^{a}} : w^{(a)} = \gamma_{a,b} \cdot w^{(b)} \\ \forall a, b \in A_{\mathfrak{z}} , \forall \gamma_{a,b} \in \Gamma_{\mathfrak{z}}^{a,b} \right\}.$$

Let $W = (W^{\mathfrak{t}})_{\mathfrak{t} \in \mathfrak{S}}$ be vector bundle assignment.

• For T a typed set, let

$$W^{\otimes T} := \bigotimes_{x \in T} W^{\mathfrak{t}(x)} .$$

2 Any $\psi \in \operatorname{Iso}(\mathcal{T}, \overline{\mathcal{T}})$ gives a map $W^{\otimes \mathcal{T}} \to W^{\otimes \overline{\mathcal{T}}}$ characterised by

$$\mathcal{W}_{\rho}^{\otimes T} \ni w_{\rho} = \otimes_{x \in T} w_{\rho}^{x} \mapsto \psi \cdot w_{\rho} = \otimes_{y \in \overline{T}} w_{\rho}^{\psi^{-1}(y)}$$

Oefine

$$\mathcal{W}^{\otimes \mathfrak{d}} = \left\{ w \in \prod_{a \in A_{\mathfrak{d}}} \mathcal{W}^{\otimes T_{\mathfrak{d}}^{a}} : w^{(a)} = \gamma_{a,b} \cdot w^{(b)} \ orall a, b \in A_{\mathfrak{d}} , \ orall \gamma_{a,b} \in \Gamma_{\mathfrak{d}}^{a,b}
ight\}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Trees for regularity structures

Trees for regularity structures

Consider *T* with edge types $\mathcal{E} = \mathcal{E}_+ \cup \mathcal{E}_0 \cup \mathcal{E}_-$.

• \mathcal{E}_+ will encode kernels

Construction of $\{\mathfrak{Dif}_T\}_{T\in\mathfrak{T}_{-}}$ on Manifolds

Trees for regularity structures

- \mathcal{E}_+ will encode kernels
- \mathcal{E}_0 place holder for jets

- \mathcal{E}_+ will encode kernels
- \mathcal{E}_0 place holder for jets
- \mathcal{E}_{-} will encode noises.

- \mathcal{E}_+ will encode kernels
- \mathcal{E}_0 place holder for jets
- \mathcal{E}_{-} will encode noises.
- A subcritical rule R defines \mathfrak{T} .

Consider T with edge types $\mathcal{E} = \mathcal{E}_+ \cup \mathcal{E}_0 \cup \mathcal{E}_-$.

- \mathcal{E}_+ will encode kernels
- \mathcal{E}_0 place holder for jets
- \mathcal{E} will encode noises.

A subcritical rule R defines \mathfrak{T} . For a fixed tree T we define

- \mathcal{E}_+ will encode kernels
- \mathcal{E}_0 place holder for jets
- \mathcal{E} will encode noises.
- A subcritical rule R defines \mathfrak{T} . For a fixed tree T we define

•
$$E_T^- := \{ e \in E_T \mid \mathfrak{e}(e) \in \mathcal{E}_- \},$$

- \mathcal{E}_+ will encode kernels
- \mathcal{E}_0 place holder for jets
- \mathcal{E} will encode noises.
- A subcritical rule R defines \mathfrak{T} . For a fixed tree T we define

•
$$E_T^- := \{ e \in E_T \mid e(e) \in \mathcal{E}_- \},$$

• $\mathfrak{T}_T^- := \{ T_E \subset T \mid E \subset E_T^- \},$

Consider ${\mathcal T}$ with edge types ${\mathcal E}={\mathcal E}_+\cup {\mathcal E}_0\cup {\mathcal E}_-$.

- \mathcal{E}_+ will encode kernels
- \mathcal{E}_0 place holder for jets
- \mathcal{E}_{-} will encode noises.

A subcritical rule R defines \mathfrak{T} . For a fixed tree T we define

•
$$E_T^- := \{ e \in E_T \mid e(e) \in \mathcal{E}_- \},$$

• $\mathfrak{T}_T^- := \{ T_E \subset T \mid E \subset E_T^- \},$

Let

$$\mathfrak{T}_{-} := \bigcup_{\mathcal{T} \in \mathfrak{T}} \mathfrak{T}_{\mathcal{T}}^{-} / \sim .$$

▲日▼▲□▼▲目▼▲目▼ ヨー ショマ

Consider T with edge types $\mathcal{E} = \mathcal{E}_+ \cup \mathcal{E}_0 \cup \mathcal{E}_-$.

- \mathcal{E}_+ will encode kernels
- \mathcal{E}_0 place holder for jets
- \mathcal{E} will encode noises.
- A subcritical rule R defines \mathfrak{T} . For a fixed tree T we define

•
$$E_T^- := \{ e \in E_T \mid e(e) \in \mathcal{E}_- \},$$

• $\mathfrak{T}_T^- := \{ T_E \subset T \mid E \subset E_T^- \},$

l et

$$\mathfrak{T}_{-} := \bigcup_{\mathcal{T} \in \mathfrak{T}} \mathfrak{T}_{\mathcal{T}}^{-} / \sim .$$

One renormalises equations by associating to each $T \in \mathfrak{T}_{-}$ a multi-linear differential operator $\mathfrak{d}_T \in \mathfrak{Dif}_T$.

Multi-linear differential operators associated to negative trees

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Multi-linear differential operators associated to negative trees

Let S be a finite set.

Construction of $\{\mathfrak{Dif}_T\}_{T\in\mathfrak{T}_{-}}$ on Manifolds

Multi-linear differential operators associated to negative trees

Let S be a finite set. Let $\{W^s\}_{s\in S}$ and W be vector bundles over M.

Let S be a finite set. Let $\{W^s\}_{s\in S}$ and W be vector bundles over M. A map

$$\mathcal{A}:\prod_{s\in S}\mathcal{C}^{\infty}(W^s)\to\mathcal{C}^{\infty}(W)$$

Let S be a finite set. Let $\{W^s\}_{s \in S}$ and W be vector bundles over M. A map

$$\mathcal{A}:\prod_{s\in S}\mathcal{C}^{\infty}(W^s)\to\mathcal{C}^{\infty}(W)$$

is called *multi-linear differential operator* of order k,

Let S be a finite set. Let $\{W^s\}_{s \in S}$ and W be vector bundles over M. A map

$$\mathcal{A}:\prod_{s\in S}\mathcal{C}^{\infty}(W^s)\to \mathcal{C}^{\infty}(W)$$

is called *multi-linear differential operator* of order k, if it factors through the k-jet bundle via a multi-linear bundle morphism,

Let S be a finite set. Let $\{W^s\}_{s \in S}$ and W be vector bundles over M. A map

$$\mathcal{A}:\prod_{s\in S}\mathcal{C}^{\infty}(W^s)\to \mathcal{C}^{\infty}(W)$$

is called *multi-linear differential operator* of order k, if it factors through the k-jet bundle via a multi-linear bundle morphism, i.e. there exists $T_{A} \in L(\bigotimes_{s \in S} J^{k} W^{s}, W),$

Let S be a finite set. Let $\{W^s\}_{s \in S}$ and W be vector bundles over M. A map

$$\mathcal{A}:\prod_{s\in S}\mathcal{C}^{\infty}(W^s)
ightarrow\mathcal{C}^{\infty}(W)$$

is called *multi-linear differential operator* of order k, if it factors through the k-jet bundle via a multi-linear bundle morphism, i.e. there exists $T_{A} \in L(\bigotimes_{s \in S} J^{k} W^{s}, W)$, such that the following diagram commutes

Let S be a finite set. Let $\{W^s\}_{s\in S}$ and W be vector bundles over M. A map

$$\mathcal{A}:\prod_{s\in S}\mathcal{C}^{\infty}(W^s)\to \mathcal{C}^{\infty}(W)$$

is called *multi-linear differential operator* of order k, if it factors through the k-jet bundle via a multi-linear bundle morphism, i.e. there exists $T_{\mathcal{A}} \in L(\bigotimes_{s \in S} J^k W^s, W)$, such that the following diagram commutes

$$\prod_{s \in S} \mathcal{C}^{\infty}(W^{s}) \xrightarrow{\mathcal{A}} \mathcal{C}^{\infty}(W)$$

$$j^{k} \times \dots \times j^{k} \downarrow \xrightarrow{T_{\mathcal{A}}} \mathcal{C}^{\infty}(W)$$

$$\mathcal{C}^{\infty}(\prod_{s \in S} J^{k} W^{s}) \qquad .$$

May 28, 2024

▲日▼▲□▼▲□▼▲□▼ □ ● ●

Let γ be a permutation of the set S such that $W^s = W^{\gamma(s)}$ for each $s \in S$.

Let γ be a permutation of the set S such that $W^s = W^{\gamma(s)}$ for each $s \in S$. The operator A is called γ -invariant

$$\mathcal{A}(\prod_{s\in S} f_s) = \mathcal{A}(\prod_{s\in S} f_{\gamma(s)})$$

May 28, 2024

$$\mathcal{A}(\prod_{s\in S} f_s) = \mathcal{A}(\prod_{s\in S} f_{\gamma(s)})$$

(i.e. T_A is γ -symmetric.)

$$\mathcal{A}(\prod_{s\in S} f_s) = \mathcal{A}(\prod_{s\in S} f_{\gamma(s)})$$

(i.e. $T_{\mathcal{A}}$ is γ -symmetric.) For $\sigma \in \mathfrak{L}$, $\alpha \in \mathbb{R}$ and a symmetric set $\mathfrak{z} = (S, i, \Gamma)$

$$\mathcal{A}(\prod_{s\in S} f_s) = \mathcal{A}(\prod_{s\in S} f_{\gamma(s)})$$

(i.e. $T_{\mathcal{A}}$ is γ -symmetric.) For $\sigma \in \mathfrak{L}$, $\alpha \in \mathbb{R}$ and a symmetric set $\mathfrak{z} = (S, i, \Gamma)$ where the type set is given by \mathfrak{L}

$$\mathcal{A}(\prod_{s\in S} f_s) = \mathcal{A}(\prod_{s\in S} f_{\gamma(s)})$$

(i.e. T_A is γ -symmetric.) For $\sigma \in \mathfrak{L}$, $\alpha \in \mathbb{R}$ and a symmetric set $\mathfrak{z} = (S, i, \Gamma)$ where the type set is

given by \mathfrak{L} and the index set $A_{\mathfrak{d}}$ consists only of one element.

24 / 27

・ロ ト ・ 一 マ ・ ー ヨ ト ・ ヨ ・ う へ つ ・

$$\mathcal{A}(\prod_{s\in S} f_s) = \mathcal{A}(\prod_{s\in S} f_{\gamma(s)})$$

(i.e. $T_{\mathcal{A}}$ is γ -symmetric.)

For $\sigma \in \mathfrak{L}$, $\alpha \in \mathbb{R}$ and a symmetric set $\mathfrak{z} = (S, i, \Gamma)$ where the type set is given by \mathfrak{L} and the index set $A_{\mathfrak{h}}$ consists only of one element. We define

$$\mathcal{A}(\prod_{s\in S} f_s) = \mathcal{A}(\prod_{s\in S} f_{\gamma(s)})$$

(i.e. T_A is γ -symmetric.)

For $\sigma \in \mathfrak{L}$, $\alpha \in \mathbb{R}$ and a symmetric set $\mathfrak{z} = (S, i, \Gamma)$ where the type set is given by \mathfrak{L} and the index set $A_{\mathfrak{h}}$ consists only of one element. We define

 $\mathfrak{Dif}_{\alpha}(\mathfrak{z},\sigma)$

$$\mathcal{A}(\prod_{s\in S} f_s) = \mathcal{A}(\prod_{s\in S} f_{\gamma(s)})$$

(i.e. T_A is γ -symmetric.) For $\sigma \in \mathfrak{L}$, $\alpha \in \mathbb{R}$ and a symmetric set $\mathfrak{z} = (S, i, \Gamma)$ where the type set is given by \mathfrak{L} and the index set $A_{\mathfrak{h}}$ consists only of one element. We define

$$\mathfrak{Dif}_{\alpha}(\mathfrak{z},\sigma)$$
 (3)

as the set of all multilinear differential operators which are

$$\mathcal{A}(\prod_{s\in S} f_s) = \mathcal{A}(\prod_{s\in S} f_{\gamma(s)})$$

(i.e. T_A is γ -symmetric.) For $\sigma \in \mathfrak{L}$, $\alpha \in \mathbb{R}$ and a symmetric set $\mathfrak{z} = (S, i, \Gamma)$ where the type set is given by \mathfrak{L} and the index set $A_{\mathfrak{h}}$ consists only of one element. We define

$$\mathfrak{Dif}_{\alpha}(\mathfrak{z},\sigma)$$
 (3)

as the set of all multilinear differential operators which are

• of order max{ $n \in \mathbb{N} \cup \{-\infty\}$: $n < -\alpha$ }
Let γ be a permutation of the set S such that $W^s = W^{\gamma(s)}$ for each $s \in S$. The operator \mathcal{A} is called γ -invariant if for all $f_s \in \mathcal{C}(W^s)$ one has

$$\mathcal{A}(\prod_{s\in S} f_s) = \mathcal{A}(\prod_{s\in S} f_{\gamma(s)})$$

(i.e. $T_{\mathcal{A}}$ is γ -symmetric.) For $\sigma \in \mathfrak{L}$, $\alpha \in \mathbb{R}$ and a symmetric set $\mathfrak{s} = (S, i, \Gamma)$ where the type set is given by \mathfrak{L} and the index set $A_{\mathfrak{s}}$ consists only of one element. We define

$$\mathfrak{Dif}_{\alpha}(\mathfrak{z},\sigma)$$
 (3)

as the set of all multilinear differential operators which are

- of order $\max\{n \in \mathbb{N} \cup \{-\infty\} : n \leq -\alpha\}$
- $\prod_{s\in S} \mathcal{C}^{\infty}(V^{i(s)})$ to $\mathcal{C}^{\infty}(V^{\sigma})$

・ロ ト ・ 一 マ ・ ー ヨ ト ・ ヨ ・ う へ つ ・

Let γ be a permutation of the set S such that $W^s = W^{\gamma(s)}$ for each $s \in S$. The operator \mathcal{A} is called γ -invariant if for all $f_s \in \mathcal{C}(W^s)$ one has

$$\mathcal{A}(\prod_{s\in S} f_s) = \mathcal{A}(\prod_{s\in S} f_{\gamma(s)})$$

(i.e. $T_{\mathcal{A}}$ is γ -symmetric.) For $\sigma \in \mathfrak{L}$, $\alpha \in \mathbb{R}$ and a symmetric set $\mathfrak{s} = (S, i, \Gamma)$ where the type set is given by \mathfrak{L} and the index set $A_{\mathfrak{s}}$ consists only of one element. We define

$$\mathfrak{Dif}_{\alpha}(\mathfrak{z},\sigma)$$
 (3)

as the set of all multilinear differential operators which are

- of order $\max\{n \in \mathbb{N} \cup \{-\infty\} : n \leq -\alpha\}$
- $\prod_{s\in S} \mathcal{C}^{\infty}(V^{i(s)})$ to $\mathcal{C}^{\infty}(V^{\sigma})$
- γ invariant for all $\gamma \in \Gamma$.

・ロ ト ・ 一 マ ・ ー ヨ ト ・ ヨ ・ う へ つ ・

<ロト <回ト < 回ト < 回ト < 回ト -

王

For a tree $T \in \mathfrak{T}_{-}$,

<ロト <回ト < 回ト < 回ト < 回ト -

王

For a tree $T \in \mathfrak{T}_-$, we set

$$\mathfrak{Dif}_{\mathcal{T}} := \mathfrak{Dif}_{|\mathcal{T}|}(\mathfrak{z}_{\mathcal{T}}, \mathsf{ind}(\rho_{\mathcal{T}}))$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

For a tree $T \in \mathfrak{T}_-$, we set

$$\mathfrak{Dif}_{\mathcal{T}} := \mathfrak{Dif}_{|\mathcal{T}|}(\mathfrak{z}_{\mathcal{T}}, \mathsf{ind}(\rho_{\mathcal{T}}))$$

where $\mathfrak{z}_T = (S_T, i_T, \Gamma_T)$ is given by

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

For a tree $T \in \mathfrak{T}_-$, we set

$$\mathfrak{Dif}_{\mathcal{T}} := \mathfrak{Dif}_{|\mathcal{T}|}(\mathfrak{z}_{\mathcal{T}}, \mathsf{ind}(
ho_{\mathcal{T}}))$$

where $\mathfrak{z}_T = (S_T, i_T, \Gamma_T)$ is given by • $S_T = N_T \setminus (\{\rho_T\} \cup L_T)$,

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

For a tree $T \in \mathfrak{T}_-$, we set

$$\mathfrak{Dif}_{\mathcal{T}} := \mathfrak{Dif}_{|\mathcal{T}|}(\mathfrak{z}_{\mathcal{T}}, \mathsf{ind}(\rho_{\mathcal{T}}))$$

where $\mathfrak{z}_T = (S_T, i_T, \Gamma_T)$ is given by • $S_T = N_T \setminus (\{\rho_T\} \cup L_T)$, • $i_T = \text{dif}_T$,

For a tree $T \in \mathfrak{T}_-$, we set

$$\mathfrak{Dif}_{\mathcal{T}} := \mathfrak{Dif}_{|\mathcal{T}|} \big(\mathfrak{d}_{\mathcal{T}}, \mathsf{ind}(\rho_{\mathcal{T}}) \big)$$

where $\mathfrak{z}_T = (S_T, i_T, \Gamma_T)$ is given by

- $S_T = N_T \setminus (\{\rho_T\} \cup L_T)$,
- $i_T = \text{dif}_T$,
- Γ_T consists of all tree symmetries restricted to S_T .

Some open (algebraic) avenues

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

It would be nice to better understand the algebraic structure behind the following settings:

イロト イ理ト イヨト イヨト

э

It would be nice to better understand the algebraic structure behind the following settings:

• Regularity structures on Manifolds and Vector bundles [HS23].

イロト イ理ト イヨト イヨト

3

It would be nice to better understand the algebraic structure behind the following settings:

- Regularity structures on Manifolds and Vector bundles [HS23].
- Identify (local) divergences for non-translation invariant SPDEs [HS23, Sin23].

• □ ▶ • 4 □ ▶ • □ ▶ • □ ▶

It would be nice to better understand the algebraic structure behind the following settings:

- Regularity structures on Manifolds and Vector bundles [HS23].
- Identify (local) divergences for non-translation invariant SPDEs [HS23, Sin23].
- Regularity structures for ultra-parabolic SPDEs (via homogeneous Lie groups) [MS23].

• □ ▶ • 4 □ ▶ • □ ▶ • □ ▶

It would be nice to better understand the algebraic structure behind the following settings:

- Regularity structures on Manifolds and Vector bundles [HS23].
- Identify (local) divergences for non-translation invariant SPDEs [HS23, Sin23].
- Regularity structures for ultra-parabolic SPDEs (via homogeneous Lie groups) [MS23].

It would also be interesting to make sense of wedge products and Hodge star in Rough Geometric Integration [CCHS19],[CS24].

ヘロト 不得 ト イヨト イヨト

3

Thank you for your attention!

王