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Transport of measures under the flow of (S)PDEs

Consider a PDE, e.g.
i∂tu−∆u+ |u|2u = 0,

or a SPDE, e.g.
∂tu−∆u+ u · ∇u = ∇p+ ξ,

and suppose that the initial data u0 satisfies

Law(u0) = µ ∼ exp
(
− E(u)

)
for some quantity such that the RHS makes sense, e.g. E(u) = ⟨Au, u⟩.

What can we say about Law(u(t))?

Can we use Law(u(t)) to deduce information about the flow?

3 / 22



ODEs and invariant measures

Formally, consider the ODE on Rd

u̇ = b(u),

and assume div(b) = 0. If Law(u(t)) = µt, then

∂tµt = −div(bµt) = −∇b · µt.

Large class of invariant measures: if E(u) is an invariant quantity,

∇b · exp(−E(u)) = ∂t exp(−E(u)) = 0,

so
µ = exp(−E(u))du is invariant.
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Bourgain’s invariant measure argument

Bourgain ’94: Consider quintic NLS, posed on T:

iut −∆u+ |u|4u = 0

This is Hamiltonian in u, ū, with Hamiltonian

H(u, ū) =
1

2

ˆ
|∇u|2 + 1

6

ˆ
|u|6.

Therefore, the following measure is conserved:

dρ = “ exp
(
−H(u, ū)−M(u)

)
dudū”.

Rigorously,

dρ = exp
(
− 1

6

ˆ
|u|6

)
dµ,

with µ Gaussian with inverse covariance 1−∆.
The typical u has regularity u ∈ H

1
2−ε \H 1

2 ; global existence does not have
a deterministic theory.
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Bourgain’s invariant measure argument

By the local well posedness theory, if

∥u∥Hσ ≤ M, |δ| ≤ M−β

then
∥u(t0 + δ)∥Hσ ≲ M.

Therefore if Law(u0) ∼ ρ,

ρ(sup
0≤T

∥u(t)∥Hσ ≫ M) ≤
T/Mβ∑
k=0

ρ(∥u(kT/Mβ)∥Hσ > M)

Invariance ⇒ =

T/Mα∑
k=0

ρ(∥u0∥Hσ > M)

LargeDeviationEstimate ⇒ ≲
T

Mα
exp(−cM2) = o(1).

Moreover, for ρ-a.e. initial data, ∥u(t)∥Hσ ≲ log(2 + t)
1
2 .
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Invariance for dispersive PDEs

Many results about invariance for dispersive PDEs.

Bourgain ’96: cubic NLS on T2,

Deng, Tzvetkov, Visciglia ’14-’15: Benjamin-Ono equation,

Nahmod, Oh, Rey-Bellet, Staffilani ’12: derivative NLS,

Oh, Killip, Visan, Chapouto, Kishimoto ’09,’19: KdV and gKdV,

Burq, Tzvetkov, Bourgain, Bulut ’06, ’14: radial NLS on the unit ball,

Gubinelli, Koch, Oh, T., Robert, Tzvetkov ’21: cubic stochastic wave
equation on T2 and M2,

Sun, Tzvetkov, Wang, Liang ’20, ’23: fractional NLS,

Oh, Robert, Sosoe ’20: sine-Gordon equation,

Deng, Nahmod, Yue ’19-’22: NLS on T2 and and Hartree NLS on T3,

Bringmann ’20: Hartree NLW on T3,

Bringmann, Deng, Nahmod, Yue ’22: cubic wave equation on T3,

Dinh, Rougerie, ’22: NLS with trapping potential,

and many more.
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Quasi-invariance and Bourgain’s argument

Natural question: what happens when the initial data does not correspond
to an invariant measure?

Remark: In Bourgain’s argument, we used invariance only in the step

ρ(∥u(t0)∥Hσ > M) = ρ(∥u(0)∥Hσ > M).

However, we just need ≲.

Definition

We say that a flow Φt(u0) = u(t) is quasi-invariant with respect to the
measure µ if

Law(u(t)) ≪ µ when Law(u0) = µ,

or equivalently,
(Φt)#µ ≪ µ.
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Density

Suppose that µ ∼ exp
(
− E(u)), and

µt := (Φt)#µ = ftµ.

What can we say about ft?

Formally, ft solves the transport equation

∂tft = −b · ∇ft −Qft, Q :=
d

dt
E(u(t))|t=0

Solving this equation, we obtain

ft = exp
(ˆ t

0

Q(Φ−t′(u0))dt
′
)
.

Can we use this to show quasi-invariance?
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Quasi-invariance

Meta-Theorem:
Cruzeiro ’83, Ambrosio-Figalli ’06, Tzvetkov ’15, Planchon-Tzvetkov-Visciglia ’20

Let

µ =
1

Z
exp

(
− E(u)

)
du

be such that
Q ∈ exp(L)(µ).

Then the measure µ is quasi invariant. Moreover, if the equation is globally
well-posed, it is enough to have

Q ∈ exp(L)loc(µ).

Proof: Gronwall argument in exp(L).
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Space-time estimates for the density

Let µs ∼ exp
(
− 1

2∥u∥
2
Hs

)
, and consider the equations on T:

i∂tu− i∂3
xu+ |u|2u = 0(3-NLS)

i∂tu+ (−∂2
x)

αu+ (|u|2 − 2

ˆ
T
|u|2)u = 0.(FNLS)

When s < sc(α), |Q(u)| = +∞ for µs − a.e. u.

Theorems:
We have that

log ft(u) =

ˆ t

0

Q(Φ−t′(u))dt

is well-defined for so µs-a.e. u. Moreover, the flow is quasi-invariant with
respect to µs

Debussche - Tsutsumi: 3-NLS, for s > 1
2 ,

Forlano - T.: FNLS for s > s∗(α), with s∗(α) <
1
2 . This is better than

deterministic well-posedeness for 1 < α < 1
20 (17 + 3

√
21) ≈ 1.537.
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Lagrangian approach

Recall the formula for the density

ft = exp
(ˆ t

0

Q(Φ−t′(u0))dt
′
)
.

When u is distributed according to µs, Q(u) is ill-defined.
However, if S(t)u0 is the solution of the linear equation,

E
∣∣∣ ˆ t

0

Q(S(−t′)(u0))dt
′
∣∣∣2 < ∞,

so it is well defined.

Conjecture

The measure µs is quasi-invariant if and only if

E
∣∣∣ˆ t

0

Q(S(−t′)(u0))dt
′
∣∣∣2 < ∞.

12 / 22



Lagrangian approach

Recall the formula for the density

ft = exp
(ˆ t

0

Q(Φ−t′(u0))dt
′
)
.

When u is distributed according to µs, Q(u) is ill-defined.
However, if S(t)u0 is the solution of the linear equation,

E
∣∣∣ ˆ t

0

Q(S(−t′)(u0))dt
′
∣∣∣2 < ∞,

so it is well defined.

Conjecture

The measure µs is quasi-invariant if and only if

E
∣∣∣ ˆ t

0

Q(S(−t′)(u0))dt
′
∣∣∣2 < ∞. ;Normal form boundary term

12 / 22



“Discrete Gronwall” argument for the density

Let t, s > 0. For any functional F , we have thatˆ
F (u0)ft+s(u0)dµ(u0) =

ˆ
F (Φt+s(u0))dµ(u0)

=

ˆ
F (Φs(u0))ft(u0)dµ(u0)

=

ˆ
F (u0)ft(Φ−s(u0))fs(u0)dµ(u0).

Therefore, for fixed τ > 0,

f(k+1)τ (u0) = fkτ ◦ Φ−τ (u0)× fτ (u0).

By Hölder and a recursive argument, for T ≫ τ ,

∥fT ∥Lp ≤ ∥fτ∥
T
τ

Lp T
τ
.

We obtain the estimates by

Choosing τ to be a stopping time,

Local-well-posedness theory in [0, τ ].
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SPDEs

Prototypical SPDE: for an appropriate noise ξ, consider on Td

(SQE) ∂tu = ∆u+ u3 + ξ.

Suppose ∃! invariant measure ρξ. What can we say about ρξ?

Let µξ be the invariant measure for

∂tu = ∆u+ ξ.

Natural guess: ρξ ≪ µξ.

Strong Feller property ⇒

ρξ ≪ µξ ⇔ µξ is quasi-invariant.
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SPDEs

Consider the SDE
du = b(u)dt+ σdWt.

Then the evolution ρt of an initial measure ρ0 satisfies the Fokker-Plank
equation

∂tρt = −div(bρt) +
1

2
tr(D2(σσT ρt)).

Parabolic equation, but no semi-explicit solution.
Stochastic technique: by Girsanov, it is enough to show quasi-invariance for

du = b(u)dt+ σh(t)dt+ σdWt,

where h is “any” adapted process in L2(Rd) ; control theory problem.

Mattingly - Suidan ’04: If u = linear solution︸ ︷︷ ︸
∈Cα−ϵ

+ v(t)︸︷︷︸
∈Hα+ d

2

⇒ quasi-invariance.

Hairer - Kusuoka - Nagoji ’24: In the case of (SQE), this is sharp.
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Wave equation

Let α > 0. Consider on T2

utt + ut −∆u+ u3 = (−∆)−αξ,

where ξ is a space-time white noise. Let µα be the invariant measure for the
linear equation.

Oh - Tzvetkov ’20: µα is quasi-invariant for the PDE (without damping).

T. - Forlano ’24: ∃! invariant measure ρα.

Problem:
u ∈ Cα−ϵ, u− linear solution ̸∈ Cα+1.

Theorem: Forlano - T. ’24

The measure µα is quasi-invariant.

Careful! In the wave case ̸⇒ ρα ≪ µα.
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“Gronwall” argument for the density for SPDEs

Let t, s > 0. For any functional F , we have that

ˆ
F (u0)ft+τ (u0)dµ(u0) =

ˆ
E[F (Φt+τ (u0, ξ))]dµ(u0)

=

ˆ
E[F (Φt(u0, ξ))]fτ (u0)dµ(u0)

≤
(ˆ

E[F (Φt(u0, ξ))]
q′dµ(u0)

) 1
q′ ∥fτ∥Lq

≤
( ˆ

F (u0)
q′ft(u0)dµ(u0)

) 1
q′ ∥fτ∥Lq

By a recursive argument, for T ≫ τ ,

∥fT ∥Lp ≤ ∥fτ∥
T
τ

Lp T
τ
⇒ ∥fT ∥pLp ≤

ˆ
exp

(
pT

d

dt
log(ft)

∣∣∣∣
t=0

)
dµ

We obtain the result by estimating the exponential on the RHS.

17 / 22



Stochastic Navier Stokes

Consider the stochastic Navier-Stokes equation on T2

∂tω +∆ω = −∆−1∇⊥ω · ∇ω + (−∆)−
α−1
2 ξ.

Flandoli–Maslowski ’95: for α > 0, ∃! invariant measure ρα.
Is the invariant measure absolutely continuous with respect to the Gaussian?

Theorem: Coe - Hairer - T. ’25+

Let µα be the invariant measure for the linear equation. Then

ρα ≪ µα.

Idea:

ω(t) = z(t) + v(t),

v(t) ∈ Cα,

(∂t +∆)z(t) = −∆−1∇⊥ω < ∇z + (−∆)−
α−1
2 ξ.

Use Girsanov to remove v(t), Gronwall for Law(z(t)).
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Is quasi-invariance “universal”?

Conjecture

The measure µs is quasi-invariant if and only if

E
∣∣∣ˆ t

0

Q(S(−t′)(u0))dt
′
∣∣∣2 < ∞.

Consider Szegő equation on T, for Π>0 the projection on positive frequencies

iut = Π>0(|u|2u),
Green ⇔ s > 1 or s = 1

2 .

Theorem Coe-T., ’24

Consider the Gaussian measure dµs(u) ∼ exp
(
− 1

2∥u∥
2
Hs

)
du. Then the flow

ΦSzegő
t of the Szegő equation satisfies:

If s > 1, the measure µs is quasi-invariant with respect to the flow ΦSzegő
t ,

If 1
2 < s < 1 (and s ̸= 3

4 ), the evolved measure (ΦSzegő
t )#µs is singular

with respect to µs for a.e. t,

If s = 1
2 , the measure µs is invariant (Burq-Thomann-Tzvetkov ’18).
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Heuristic for singularity

Recall that formally, (Φt)#µs = ftµs, with

ft(u0) = exp
(
∥u0∥2Hs − ∥Φ−t(u0)∥2Hs

)
.

When (Φt)#µs ⊥ µs, we expect

ft = 0 µs − a.e. ⇔ log(ft) = −∞ µs − a.e. ⇔ ∥u0∥2Hs ≪ ∥Φ−t(u0)∥2Hs

Similarly, we also expect

log(ft) = ∞ (Φt)#µs−a.e. ⇔ ft ◦Φt = ∞ µs−a.e. ⇔ ∥u0∥2Hs ≪ ∥Φt(u0)∥2Hs .

Therefore, we conjecture

(Φt)#µs ⊥ µs ⇒ ∥Φt(u0)∥2Hs has a minimum in 0 for µs − a.e.u0.

20 / 22



An abstract singularity result

Theorem Coe-T., ’24

Let g(·, ·) be a measurable function with g(x, y) > 0 ⇒ g(y, x) < 0. Suppose
that for µs-a.e. u0, and for every |t| ≪u0 1,

g(Φt(u0), u0) > 0.

Then there exists a countable set N ⊆ R such that for every t ∈ R \ N , we
have

(Φt)#µs ⊥ µs.

From the previous slide, we guess for s < 1:

g(Φt(u0), u0) = lim
N→∞

∥PNΦt(u0)∥2Hs − ∥PNu0∥2Hs
?
= ∞

for µs-a.e. u0.
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Singularity

Want to show
lim

N→∞
∥PNΦt(u0)∥2Hs − ∥PNu0∥2Hs = ∞

Issue: for s < 1,

d2

dt2
∥PNΦt(u0)∥2Hs

∣∣∣∣
t=0

∼ N2−2s︸ ︷︷ ︸
→∞

(4s− 3)Is,

with Is > 0. For 1
2 < s < 3

4 , we actually have

lim
N→∞

∥PNΦt(u0)∥2Hs − ∥PNu0∥2Hs = −∞.

⇒ Singularity, but incorrect intuition!
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