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Transport of measures under the flow of (S)PDEs

Consider a PDE, e.g.
i0pu — Au + |u?u = 0,

or a SPDE, e.g.
Ou — Au+u-Vu=Vp+E&,

and suppose that the initial data ug satisfies

Law(ug) = p ~ exp ( - E(u))
for some quantity such that the RHS makes sense, e.g. F(u) = (Au,u).
What can we say about Law(u(t))?

Can we use Law(u(t)) to deduce information about the flow?
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ODEs and invariant measures

Formally, consider the ODE on R?
= b(u),
and assume div(b) = 0. If Law(u(t)) = p, then
Oppee = — div(but) = =Vb - .
Large class of invariant measures: if F(u) is an invariant quantity,
Vb - exp(~ B(u)) = 9 exp(—E(u)) = 0,

SO

i = exp(—E(u))du is invariant.
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Bourgain’s invariant measure argument

Bourgain ’94: Consider quintic NLS, posed on T:
iug — Au A+ |u|tu =0

This is Hamiltonian in u, u, with Hamiltonian

1 1
H(u,a) = 5/\Vu|2+ 6/|u|6.
Therefore, the following measure is conserved:

dp = “exp ( — H(u, ) - M(u))dudi’.

dp = exp ( - %/IUI‘S)du,

with p Gaussian with inverse covariance 1 — A.

. . 1 1 .
The typical u has regularity u € H27°\ Hz ~» global existence does not have
a deterministic theory.

Rigorously,
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Bourgain’s invariant measure argument

By the local well posedness theory, if
|ullgre <M, 5] <MFP
then
||U(t() + 6)||H" S M.
Therefore if Law(ug) ~ p,

T/M"
p(sup u()llm= > M) < Y p(|lu(kT/M?)|| 5= > M)
0=T k=0
T/M>
Invariance = = Z p(lluol| g > M)
k=0

T
LargeDeviationEstimate = 5 m exp(—cMQ) = 0(1).

Moreover, for p-a.e. initial data, ||u(t)||z- < log(2 4 1)2.
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Invariance for dispersive PDEs

Many results about invariance for dispersive PDEs.

Bourgain ’96: cubic NLS on T?,

Deng, Tzvetkov, Visciglia ’14-’15: Benjamin-Ono equation,

Nahmod, Oh, Rey-Bellet, Staffilani ’12: derivative NLS,

Oh, Killip, Visan, Chapouto, Kishimoto ’09,’19: KdV and gKdV,
Burq, Tzvetkov, Bourgain, Bulut 06, '14: radial NLS on the unit ball,

Gubinelli, Koch, Oh, T., Robert, Tzvetkov ’21: cubic stochastic wave
equation on T? and M?2,

Sun, Tzvetkov, Wang, Liang 20, ’23: fractional NLS,

Oh, Robert, Sosoe '20: sine-Gordon equation,

Deng, Nahmod, Yue ’19-'22: NLS on T? and and Hartree NLS on T3,
Bringmann ’20: Hartree NLW on T3,

Bringmann, Deng, Nahmod, Yue '22: cubic wave equation on T3,

Dinh, Rougerie, '22: NLS with trapping potential,

and many more.
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Quasi-invariance and Bourgain’s argument

Natural question: what happens when the initial data does not correspond
to an invariant measure?

Remark: In Bourgain’s argument, we used invariance only in the step
plllutto)l e > M) = p(u(0)]l = > M).

However, we just need <.

Definition

We say that a flow ®;(ug) = u(t) is quasi-invariant with respect to the
measure y if

Law(u(t)) < p when Law(ug) = p,

or equivalently,
(D) pp < e
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Suppose that u ~ exp ( — E(u)), and

e = (o) gt = feps

What can we say about f;?
Formally, f; solves the transport equation

Oufe=—b-Vf = Qfe Qi= L Bu(t))li=o

Solving this equation, we obtain

o= ([ Q@-stuar).

Can we use this to show quasi-invariance?
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Quasi-invariance

eorem:

, Ambrosio-Figalli 06, Tzvetkov ’15, Pla

w= %exp ( — E(u))du

be such that
Q € exp(L)(w)-

Then the measure p is quasi invariant. Moreover, if the equation is globally
well-posed, it is enough to have

Q € exp(L)ioc(p).

Proof: Gronwall argument in exp(L).
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Space-time estimates for the density

Let ps ~ exp ( - %||u||§15>, and consider the equations on T:
(3-NLS) i0pu — i105u + |ul*u =0

(FNLS) i0u + (—02)*u + (Jul* — 2/ lu?)u = 0.
T
When s < s.(a), |Q(u)] = +oo for g — a.e. u.

We have that .
log fiu) = | Q(@—u(w)de
0
is well-defined for so ps-a.e. u. Moreover, the flow is quasi-invariant with
respect to ps
e Debussche - Tsutsumi: 3-NLS, for s > %,

o Forlano - T.: FNLS for s > s,(a), with s,(a) < 3. This is better than
deterministic well-posedeness for 1 < o < 55(17 4 3v/21) ~ 1.537.
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Lagrangian approach

Recall the formula for the density

ft =exp (/Ot Q(P-v (Uo))dt/)

When w is distributed according to s, Q(u) is ill-defined.
However, if S(t)ug is the solution of the linear equation,

E‘/Q ) (o) dt‘<oo

so it is well defined.

Conjecture

The measure pu, is quasi-invariant if and only if

E /Ot QS (=) (up))dt!|” < 0.
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Lagrangian approach

Recall the formula for the density

o= ([ Q@-stuar).

When w is distributed according to us, Q(u) is ill-defined.
However, if S(t)ug is the solution of the linear equation,

JE‘/Q )(uo) dt‘<oo

so it is well defined.

The measure ps is quasi-invariant if and only if

& 2
E‘ / Q(S(—t')(ug))dt'| < co. «~ Normal form boundary term
0
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“Discrete Gronwall” argument for the density

Let ¢,s > 0. For any functional F, we have that
/F(uo)ftJrs(uo)du(uo) = /F(@Hs(uo))du(uo)
— [ F(@.(u0)) i wo)d(uo)
— [ Flw) @ (wo) . ()

Therefore, for fixed 7 > 0,

Je+1)r (o) = frr 0 @7 (uo) X fr(uo).

By Holder and a recursive argument, for 7' >> 7,

r
Ifrlles < 15217, 2
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“Discrete Gronwall” argument for the density

Let ¢,s > 0. For any functional F, we have that
[ Fwo) featw)dintun) = [ F(@eruo))ditu)
— [ F(@.(u0)) i wo)d(uo)
— [ Flw) @ (wo) . ()

Therefore, for fixed 7 > 0,
Je+1)r (o) = frr 0 @7 (uo) X fr(uo).
By Holder and a recursive argument, for 7' >> 7,
s
IFeler <7l

We obtain the estimates by
@ Choosing 7T to be a stopping time,
e Local-well-posedness theory in [0, 7].
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pf

We obtain the estimates by
@ Choosing 7T to be a stopping time,
e Local-well-posedness theory in [0, 7] ~ nonlinear flow ~ linear flow.

13 /22



SPDEs

Prototypical SPDE: for an appropriate noise &, consider on T¢
(SQE) Owu = Au+u® + €.

Suppose 3! invariant measure p:. What can we say about pg?

Let ¢ be the invariant measure for
8{& = Au + £

Natural guess: pe < .

Strong Feller property =

pe K e & e is quasi-invariant.
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SPDEs

Consider the SDE
du = b(u)dt + odW;.

Then the evolution p; of an initial measure pg satisfies the Fokker-Plank
equation
1
Opr = —div(bpy) + étl"(D2(O'0'Tpt)).

Parabolic equation, but no semi-explicit solution.
Stochastic technique: by Girsanov, it is enough to show quasi-invariance for

du = b(u)dt + oh(t)dt + ocdWr,

where h is “any” adapted process in L2(R?) ~» control theory problem.
Mattingly - Suidan ’04: If u = linear solution+ v(t) = quasi-invariance.
~—_—— N
€Ca—¢e atd
cHt
Hairer - Kusuoka - Nagoji 24: In the case of (SQE), this is sharp.
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Wave equation

Let o > 0. Consider on T?
w4+ up — Au+u’ = (—A)~¢,

where £ is a space-time white noise. Let u, be the invariant measure for the
linear equation.
e Oh - Tzvetkov '20: p, is quasi-invariant for the PDE (without damping).
o T. - Forlano ’24: 3! invariant measure p,.

Problem:
u € C°"¢, 4 — linear solution ¢ C*T*.

The measure p, is quasi-invariant. \
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Wave equation

Let a > 0. Consider on T?
Ugr +up — Au+u® = (—A) 7Y,
where £ is a space-time white noise. Let u, be the invariant measure for the
linear equation.
e Oh - Tzvetkov '20: p, is quasi-invariant for the PDE (without damping).

o T. - Forlano ’24: 3! invariant measure p,.

Problem:
u € C°"¢, 4 — linear solution ¢ C*T*.

The measure p, is quasi-invariant. \

Careful! In the wave case % p, < fiq-
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“Gronwall” argument for the density for SPDEs

Let t,s > 0. For any functional F', we have that
[ P fer (o)) = [ BIF @1 0, €)ldia(uo)
/ F(®4 (0, €))]f (o) dp(uo)

< ( [ = (@0, 1 dtae)) 1l
< ([ P ftuo)dutun)) ¥ 1:ls

By a recursive argument, for T > 7,

d
it log(ft) )dﬂ

t=0

T
Ifllr <1507,y = 12l < [ e (T

We obtain the result by estimating the exponential on the RHS.
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Stochastic Navier Stokes

Consider the stochastic Navier-Stokes equation on T?

a—1

Ow + Aw=—-A"'Vw - Vw+ (-A) 7 ¢

Flandoli-Maslowski "95: for a > 0, 3! invariant measure pq,.
Is the invariant measure absolutely continuous with respect to the Gaussian?

Let g, be the invariant measure for the linear equation. Then

Pa K Ua-

Idea:
w(t) = z(t) +v(t),
v(t) € C°,
(0 + A)z(t) = ~A™'WWrwo Ve + (—A) T ¢

Use Girsanov to remove v(t), Gronwall for Law(z(t)).
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Is quasi-invariance “universal”?

The measure p, is quasi-invariant if and only if

ot
E‘ QS (—#) (o)) dt!|” < 0.
J 0

Consider Szegd equation on T, for IIso the projection on positive frequencies
iy = s (|ul?u),

Green < s >1or s = %

Theorem

Consider the Gaussian measure djs(u) ~ exp ( - %Huﬂﬁls)du Then the flow

@fzegé of the Szegd equation satisfies:
o If s > 1, the measure j, is quasi-invariant with respect to the flow @7,

o If L <5< 1 (and s # 3), the evolved measure (®57°%5) 1, is singular
with respect to us for a.e. t,

o If s = 1, the measure y, is invariant (Burq-Thomann-Tzvetkov '18).
2 19 /22
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Heuristic for singularity

Recall that formally, (®¢)xpus = fiits, with

fuluo) = exp (|[uolly- — 1@—o(uo)l- ).

When (®;)pps L ps, we expect

fe=0 ps —ae & log(fy) = =00 ps —ae. & |uollfr << [[@—(uo)ll7-
Similarly, we also expect
log(f) = 00 (®))sits — e & fro®y = 00 g —a.e. & [luglZe << [By(uo)|[%-.
Therefore, we conjecture

(D) ppts L ps = || @¢(uo)|| %+ has a minimum in 0 for s — a.e.uq.
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An abstract singularity result

Let g(-,-) be a measurable function with g(z,y) > 0 = g(y,z) < 0. Suppose
that for ps-a.e. ug, and for every [t| <y, 1,

g((I’t(u()), UO) > 0.

Then there exists a countable set .4~ C R such that for every t € R\ A, we
have

(‘pt)#us L s

From the previous slide, we guess for s < 1:
. ?
9(®¢(uo), uo) = lim ||Py®(uo)ll7: — || Prnuol|fs = oo
N—o0

for ps-a.e. ug.
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Singularity

Want to show
lim ||PN<I>t(uo)||qu — ||PNu0||%qs =00
N—oo

Issue: for s < 1,

d> )
@HPN@(UO)H?HS ~ N?72(4s - 3) I,

t=0 —00

with I, > 0. For % <s< %, we actually have
lim ||Pn®;(uo)||%. — ||Pnuoll3s = —oc.
N—o00

= Singularity, but incorrect intuition!
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