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Section 1- m-Dyck paths

Definitions, notations
Grafting m-Dyck paths

Enumerating prime m-Dyck paths

The m-Tamari lattice
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m-Dyck paths of size n

- It is a path in (R*)*2, starting at (0,0) and ending at (2nm, 0),
consisting of up steps (m, m) and down steps (1, —1)

- It is prime if it only meets the x-axis at these two points.

(2,2,3), not prime (2,3,3), prime

- Notation:
» x = (x1,...,X,): the list of heights of the summits of x. Note that
x3 =mand xjy1 — X < m.
» Dy,": the set of m-Dyck paths of size n; dp, , its cardinal.
» PDy,": the set of prime m-Dyck paths of size n; py, , its cardinal.
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Grafting m-Dyck paths

(X1, Xp) Xi (V1,5 Yq) = (X1, s Xp Y1+ 0y yg +10), 057 < xp

Example

(2,3,3) x2(2,3) =(2,3,3,4,5)

The operation X is associative. It corresponds to the concatenation.
Any y € Dy} writes uniquely as

y=y® xo... xoy"

with yU) e PDy,,mj and Zj nj = n.

- = o)
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Generalization: grafting m-Dyck paths along a partition

The notation x x,, y
° x = (x1,...,%) € Dyy
o y= y(l) X0 ... X0 y(’) has r prime components, in Dyg7
@ X, > pu1 > ... 2>, > 0 an r partition compatible with x, denoted 1

x %y = (o (0 K YD) X YD) 5 ) x4, 90 |

Example
(2,3,3) x251 (2,3;2) = (2,3,3,4,5,3)
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Enumerating prime m-Dyck paths

e Fuss-Catalan numbers: Aq(p,r) = ?jrr(s"’:’)

o dm7n = #—i—l . ((m-l;'l)n) — An—l(m—"_ 1’m_|_ 1) = An(m—|— ]_, ]_)

Proposition (?; L-Ronco)

- 1 ((m +1)n— 2)

Forn,m>1

n—1

Idea of the proof:

e Concatenation of prime m-Dyck paths gives Dy,(x) = lf’l’;,(n)?x)
@ use Riordan convolution formula

As(p,r+ 1) = 350 Ak(P, N)As (P, 1)
to get

Pm,n = Anfl(m + 17 m)
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The m-Tamari lattice [Bergeron, Préville-Ratelle;
Bousquet-Mélou, Fusy, Préville-Ratelle]

covering relations:

Note (2,3,4) — (2,4,5) is a covering relation
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Section 2— Results by Lopez, Préville-Ratelle, Ronco,
arxiv 1508.01252+ JPAA 2020

Split of associativity, Dyck™-algebras
@ The structure of Dyck™-algebra on the vector space spanned by
m-Dyck paths

» Labeling the down steps

» The valuation map
» The formula
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Split of associativity

Definition: Dyck™-algebra
It is a vector space D endowed with bilinear products *;, 0 < i < m
satisfying the relations

o xxj(y*jz)=(x*y)*jz for0<i<j<m,

m

i
° Zx*,-(y*jz):Z(x*ky)*,-z, for0<i<m
=0 k=i

for any elements x,y and z in D.

Facts
@ x =) ' % is associative

@ m =0, %q is associative

@ m =1, %9 and *; satisfy the dendriform relations
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Free Dyck™-algebras

Theorem (Lopez;Préville-Ratelle;Ronco)

The free Dyck™-algebra D™ generated by one element has for underlying
vector space the span of the set of m-Dyck paths.

Moreover, for x € Dy}, y € Dy, there exists an interval Ji(x,y) in the
m-Tamari lattice Dy, , such that:

X*jy = Z z

ZEJ,'(X,y)
y
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Labeling the down steps of an m-Dyck path

(2,3) = (v1, v2, v2)

=] & = E DA
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The valuation map of an m-Dyck path x = (xi, ..., x,)

it gives the cardinal of maximum occurences at stage i

val(x; =) : [xa] = [m] ={0,...,m}

Example (x = (3,4,6) € Dy3 + (v1, v2, va, v3, v3, v3))

o H = N NN W
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The valuation map of an m-Dyck path x = (xi, ..., x,)

it gives the cardinal of maximum occurences at stage i

val(x; =) : [xa] = [m] ={0,...,m}

Example (x = (3,4,6) € Dy3 + (v1, v2, va, v3, v3, v3))

o H = N NN W

Idea
x x; y will involve x x; y with val(x; j) = i.
More complicated if y is not prime.
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The Formula
Theorem

x = (x1,...,%p) € Dy}, y € Dyg' with r prime components.

x*;y:Zxxﬂy
o

where xp > i1 ... > p, and val(x; ) =i,
is the sum of every elements in an m-Tamari interval.

Example

x =(2,3); val : (0,1,2,3) — (0,1,1,2)

To compute (2,3) %3 (2,2), we need the partitions of the form
3> 1 > pp avec up € {1,2}.
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Example: to compute (2,3) %1 (2,2), we need the partitions of the form
3> p1 > pp avec up € {1,2}.

(2,3) %1 (2,2) =(2,3) x3>2(2,2) +(2,3) x2>2(2,2)
+(2,3) X3>1(2,2) +(2,3) x2>1(2,2) +(2,3) x1>1(2,2)

=(2,3,5,4) + (2,3,4,4) + (2,3,5,3) + (2,3,4,3) + (2,3,3,3)
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Section 3— Operad, cooperad structures on m-Dyck paths

@ Quick introduction to operads and co-operads
@ The structure of co-operad on Dy™.

@ Reinterpreting the results by Lopez, Préville-Ratelle and Ronco
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(non symmetric) operad P

A collection of sets (or vector spaces) P(n), n>1
Operations o; : P(n) x P(n') = P(n+n" —1),1<i<n

4
opy

A unit in P(1)
Relations:

A i
o

gy

parallel sequential
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Keep in mind, a non-symmetric operad consists of
graded objects, that we can either
@ graft, as leaves;

@ or insert, as boxes;

@ The endomorphism operad P(n) = Map(X*", X)
@ The terminal operad P(n) = *p, *p 0j *p = *pip—1

@ The operad on the symmetric group, P(n) = X,

o=(2[3l1) o3 7=(2,31) = (2,453,1)

00001
0 0 1 00 1 10000
1 00| o3 |[T0O =]0o00T10
0o [1] o 010 01000
00100
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co-operad C
@ A collection of sets (or vector spaces) C(n),

o Co-operations 5;""/ :C(n+n"—1) = C(n)xC(n'),1<i<n

e 1]
= [ mE" () || w0 () |

@ A co-unit in C(1) and co-relations

Remark
o Co-operad structure " excision of a sub-object”
o If C is a co-operad in Vect, then P(n) = C(n)* forms an operad.

e If P is an operad in Vect, and P(n) is finite dimensional Vn, then
C(n) = P(n)* forms a co-operad.
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Example: 057 : Dy? — Dy2 x Dy?

x =(2,4,3,4,5,4,6) = ((2,4) x1(2,3)) x211>1+1 (2;2,4)

1(557(0)) = ((2.4) X1 (2)) ¥1412141 (2:2,4) = (2,4,3,4,4,6) m(35°()) = (2.3)
o = = E DA
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Operadic interpretation of the results by L., P.-R. and R.

Theorem

@ Forl < i< p, the collection of maps
5;””/ : Dy _1 — Dy x Dy

endows {C(n) := Dy} ,>1 with a co-operadic structure, in Sets

@ For (x,y) € Dy x Dy we have (57’"/)_1(X,y) is an interval in
Dy, 1 for the m-Tamari order.

@ The operad C* in vector spaces is the operad Dyck™.

Idea of proof

There is a morphism of operads Dyck™ — C* sending *; to (m, m + i)*.
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Section 4— Dyck™-bialgebras
Lopez, Préville-Ratelle, Ronco arxiv 1508.01252

@ What is a Dyck™-bialgebra?
@ The case of m-Dyck paths
» Cutting m-Dyck paths
> The result
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Dyck™-bialgebra

For A, B two Dyck™-algebras, one can build a Dyck™-algebra on

AXB=A Ko K®BOA®B.

Definition: A Dyck™-bialgebra A is

a Dyck™-algebra,with A : A — AKX A satisfying
@ A is a morphism of Dyck™-algebras
o A(a)=a®1+1®a+ A(a) with A(a) € AR A.
o A is coassociative.

Remark
If Ais a Dyck™-bialgebra then AT = K& A is a bialgebra
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Cutting m-Dyck paths

y = (¥1,¥2,¥3, Y4, Y5, ¥6) = (2,4,4,6,3,5)

Ca = (va) = (6)

y = (}/1,}’27)’3#4,)/5,}/6) = (274747673’5) admits the cuts:

@ at vertex yo: ¢22 = (4) and ¢4 = (4,4,6)
o at vertex ys: ca4 = (6)
o at vertex ys: cg6 = (5)
An admissible cut is a collection of disjoint cuts
Example: S1 = {4}, So={c4.C6}-
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Cutting m-Dyck paths

y = (y1,¥2,¥3, ¥4, ¥5, ¥6) = (2,4,4,6,3,5)

coa = () = (

Example: S; = {cs4}, S2 = {c24. G656}

Notation: y/S € Dy™ and y° € D™

@ y/S: keep the part of y not in S:
y/S1 = (y1,¥2, ¥3, ¥4, ¥5, ¥6) = (2,4,4,3,5)
y/S2 = (1,2, ¥3, ¥4, ¥5, ¥6) = (1, ¥5) = (2,3).
@ y>: take the remaining parts and multiply them:
v =(2)
52 = (V2,73 7a) x (¥6) = (2,2,4) = (2)
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The results

Theorem

The free Dyck™-algebra D™ is a Dyck™-bialgebra, with

Aly)= Y vy’ ®y/s.
SeAd(y)

Consequences

— Dyck™ is a Hopf operad

— Prim(Dyck™) is an operad,;

equivalently for B a Dyck™-bialgebra, Prim(B) is a Prim(Dyck™)-algebra.

Can we say more?
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Section 6— Poincaré-Birkhoff-Witt Theorem and
Cartier-Milnor-Moore-Quillen Theorem

Here K is a field of caracteristic 0.
o Case of Lie-algebras

Case of Brace-algebras

Brace™-algebras

Prime m-Dyck paths and binary planar rooted trees

A formula
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The case of Lie algebras

U
. - >
£1ealg L Asalg

)

PBW theorem: as a vector space U(L) = S(L).
U(L(V)) = T(V) = (Como Lie)(V)

Sanity check

frie = — |n(1 - X); fas = ﬁa fecom =€ —1
Hence generating function of Com o Lie is
e—l—x) _q - X
—x
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The case of Lie algebras

U
Lo v
Lieae L ASalg

)

Cartier-Milnor-Moore-Quillen Theorem
The adjunction restricts to an adjunction

U
. _—
ﬁlealg AL -Asbig
Prim

which is an equivalence of categories

M. Livernet Algebraic Structures on m-Dyck paths 27/33



Definition
A brace algebra is a vector space B equipped with operations
My, : B®"1 — B for n > 0, satisfying Myo = Id and
Myn(M1r (X1, -5 Yr)i 215+ Zn) =
> Muu(x; 21y, Maay (15 22)): 23y - - - »
Z2r—1ys M1,a,, (V&> Z(21))5 Z(2r+1))5

where the sum is taking over all the words (possibly empty) such that the
concatenation z(y)....Z(2r41) = 21 - - - Zn.

Example

Mi1(M11(x; y1); z1) = Mua(x, M1a(y1; z1)) + Mia(x; y1, z1) + Mia(x; z1, y1).
It is in particular right symmetric (pre-Lie), thus a Lie algebra.

v
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PBW et CMMQ for brace algebras, results of Ronco and
Chapoton

U
_—
Brajg L Dend,q
M

PBW

U(B) = T(B), for B a brace algebra.
Sanity check: T(Br(V)) = Dend(V).

CMMQ

_—
Bra/g PJ._ Dendbig
rim

is an equivalence of categories.
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Theorem (L., Ronco)
@ There is an operad Brace™ such that any Dyck™-algebra has an

underlying Brace™-algebra structure yielding an adjunction:

UDyck
T Dyck™
M

m

Bracealg

alg

e For B a Dyck™-bialgebra, Prim(B) is a sub-Brace™-algebra of B.
o UDyck(A) is a Dyck™-bialgebra and UDyck(A) ~ T(A).
@ The adjiunction restricts to an equivalence of categories

UDyck
m m
Brace] e L D yck]Oig
Prim

Sanity check: As o Brace™ ~ Dyck™
Brace™(n) has a basis indexed by PDy" x ¥,,.
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Definition
A Brace™-algebra is a brace algebra B equipped with operations
o, :B® s Bforl1<i<m-1, satisfying some relations

@ Quadratic relations involving e; and e; for 1 < i <j<m
(xoiy)ejz—(xeoiy)ejz=xe;(ye;z)—xe;(ye;z)

@ Relations of the form Myip(x i y;z1,...,2z,) = ...

Proposition
We have an explicit description of a Brace™-algebra on

®,K[PDy" @ v&"
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Thanks for your attention!

=] & = E DA
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A bijection

between prime m-Dyck paths and some labelled rooted planar binary trees

There is a bijection PDy]" — Y/, where Y, is a subset of planar binary
trees with n leaves and vertices labelled by elements in {1,..., m}.
seYN<«<=VtCs,t= t! v; t", the root of t' has label > i.

Example, for m =3
vy ) V3 1z V5

= (2) x1[((2) >3 ((2) x1(2))) x2 (2)] = (2) x1 (2565) = (23676)
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