

Algebraic Structures on (prime) m -Dyck paths

Muriel Livernet, IMJ-PRG, Université Paris Cité

Joint work with Maria Ronco

Operads, Symmetries for QFT and Singular SPDEs

Nancy

3 décembre 2025

We will talk about...

non symmetric (Hopf) operad $\xrightarrow{\text{Prim}}$ operad
Envelope

$m = 0$

$\mathcal{A}s$

$\mathcal{L}ie$

$m = 1$

$\mathcal{D}end$

$\mathcal{B}racket$

m

$\boxed{\mathcal{D}yck^m}$

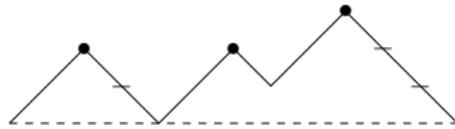
$\mathcal{B}racket_m$

Section 1– m -Dyck paths

- Definitions, notations
- Grafting m -Dyck paths
- Enumerating prime m -Dyck paths
- The m -Tamari lattice

m -Dyck paths of size n

- It is a path in $(\mathbb{R}^+)^{\times 2}$, starting at $(0, 0)$ and ending at $(2nm, 0)$, consisting of up steps (m, m) and down steps $(1, -1)$
- It is **prime** if it only meets the x -axis at these two points.



$(2, 2, 3)$, not prime

$(2, 3, 3)$, prime

- Notation:

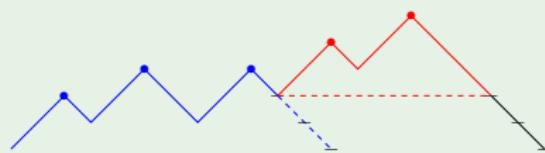
- ▶ $x = (x_1, \dots, x_n)$: the list of heights of the summits of x . Note that $x_1 = m$ and $x_{i+1} - x_i \leq m$.
- ▶ Dy_n^m : the set of m -Dyck paths of size n ; $d_{m,n}$ its cardinal.
- ▶ PDy_n^m : the set of prime m -Dyck paths of size n ; $p_{m,n}$ its cardinal.

Grafting m -Dyck paths

$$(x_1, \dots, x_p) \times_i (y_1, \dots, y_q) = (x_1, \dots, x_p, y_1 + i, \dots, y_q + i), \quad 0 \leq i \leq x_p$$

Example

$$(2, 3, 3) \times_2 (2, 3) = (2, 3, 3, 4, 5)$$



The operation \times_0 is associative. It corresponds to the **concatenation**.
Any $y \in \text{Dy}_n^m$ writes uniquely as

$$y = y^{(1)} \times_0 \dots \times_0 y^{(r)}$$

with $y^{(j)} \in \text{PDy}_{n_j}^m$ and $\sum_j n_j = n$.

Generalization: grafting m -Dyck paths along a partition

The notation $x \times_{\mu} y$

- $x = (x_1, \dots, x_p) \in \text{Dy}_p^m$
- $y = y^{(1)} \times_0 \dots \times_0 y^{(r)}$ has r prime components, in Dy_q^m
- $x_p \geq \mu_1 \geq \dots \geq \mu_r \geq 0$ an r partition **compatible with** x , denoted μ

$$x \times_{\mu} y = (\dots ((x \times_{\mu_1} y^{(1)}) \times_{\mu_2} y^{(2)}) \times \dots) \times_{\mu_r} y^{(r)}$$

Example

$$(2, 3, 3) \times_{2 \geq 1} (2, 3; 2) = (2, 3, 3, 4, 5, 3)$$

Enumerating prime m -Dyck paths

- Fuss-Catalan numbers: $A_s(p, r) = \frac{r}{sp+r} \binom{sp+r}{s}$
- $d_{m,n} = \frac{1}{mn+1} \cdot \binom{(m+1)n}{n} = A_{n-1}(m+1, m+1) = A_n(m+1, 1)$

Proposition (?; L-Ronco)

For $n, m \geq 1$

$$p_{m,n} = \frac{1}{n} \binom{(m+1)n - 2}{n-1}$$

Idea of the proof:

- Concatenation of prime m -Dyck paths gives $D_m(x) = \frac{P_m(x)}{1-P_m(x)}$
- use Riordan convolution formula

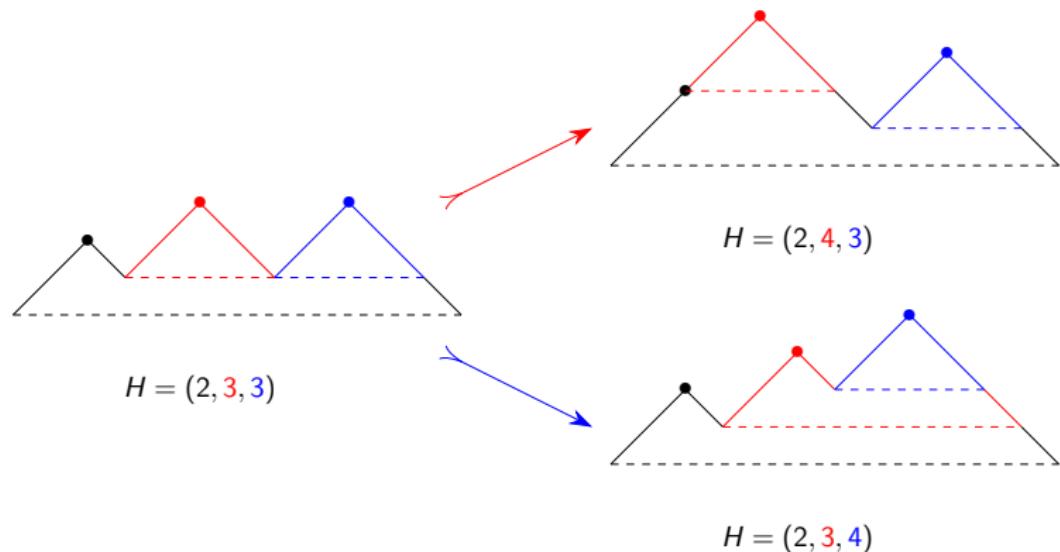
$$A_s(p, r+t) = \sum_{k=0}^s A_k(p, r) A_{s-k}(p, t)$$

to get

$$p_{m,n} = A_{n-1}(m+1, m)$$

The m -Tamari lattice [Bergeron, Préville-Ratelle; Bousquet-Mélou, Fusy, Préville-Ratelle]

covering relations:



Note $(2, 3, 4) \rightarrow (2, 4, 5)$ is a covering relation

Section 2– Results by Lopez, Préville-Ratelle, Ronco, arxiv 1508.01252+ JPAA 2020

- Split of associativity, $\mathcal{D}\text{yck}^m$ -algebras
- The structure of $\mathcal{D}\text{yck}^m$ -algebra on the vector space spanned by m -Dyck paths
 - ▶ Labeling the down steps
 - ▶ The valuation map
 - ▶ The formula

Split of associativity

Definition: $\mathcal{D}\text{yck}^m$ -algebra

It is a vector space D endowed with bilinear products $*_i$, $0 \leq i \leq m$ satisfying the relations

- $x *_i (y *_j z) = (x *_i y) *_j z$, for $0 \leq i < j \leq m$,
- $\sum_{j=0}^i x *_i (y *_j z) = \sum_{k=i}^m (x *_k y) *_i z$, for $0 \leq i \leq m$

for any elements x, y and z in D .

Facts

- $* = \sum_{i=0}^m *_i$ is associative
- $m = 0$, $*_0$ is associative
- $m = 1$, $*_0$ and $*_1$ satisfy the **dendriform relations**

Free $\mathcal{D}yck^m$ -algebras

Theorem (Lopez;Préville-Ratelle;Ronco)

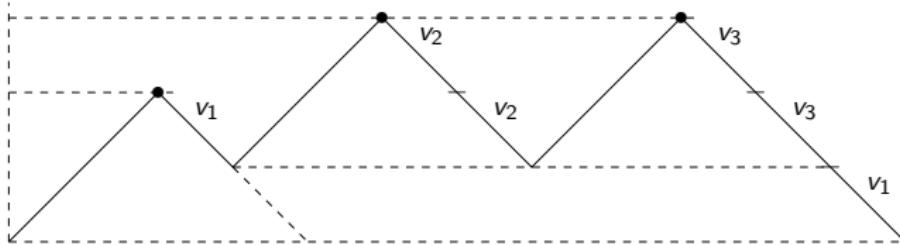
The free $\mathcal{D}yck^m$ -algebra \mathcal{D}^m generated by one element has for underlying vector space the span of the set of m -Dyck paths.

Moreover, for $x \in \text{Dy}_p^m, y \in \text{Dy}_q^m$, there exists an interval $J_i(x, y)$ in the m -Tamari lattice Dy_{p+q}^m such that:

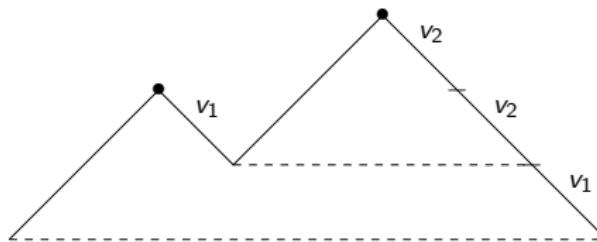
$$x *_i y = \sum_{z \in J_i(x, y)} z$$

Labeling the down steps of an m -Dyck path

$$(2, 3, 3) \mapsto (v_1, v_3, v_3)$$



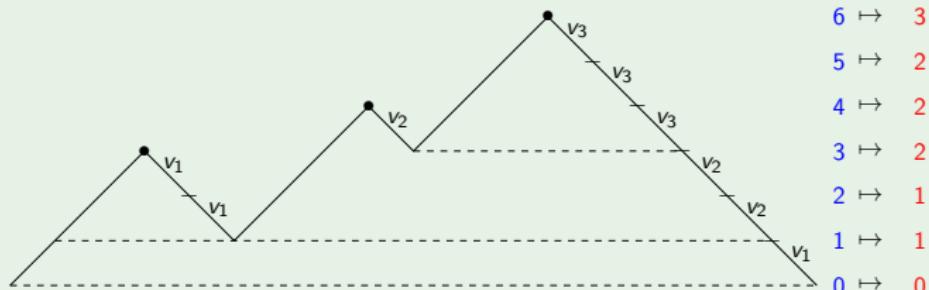
$$(2, 3) \mapsto (v_1, v_2, v_2)$$



The valuation map of an m -Dyck path $x = (x_1, \dots, x_n)$
it gives the cardinal of maximum occurrences at stage i

$$val(x; -) : [x_n] \rightarrow [m] = \{0, \dots, m\}$$

Example ($x = (3, 4, 6) \in \text{Dy}_3^3 \mapsto (v_1, v_2, v_2, v_3, v_3, v_3)$)



Idea

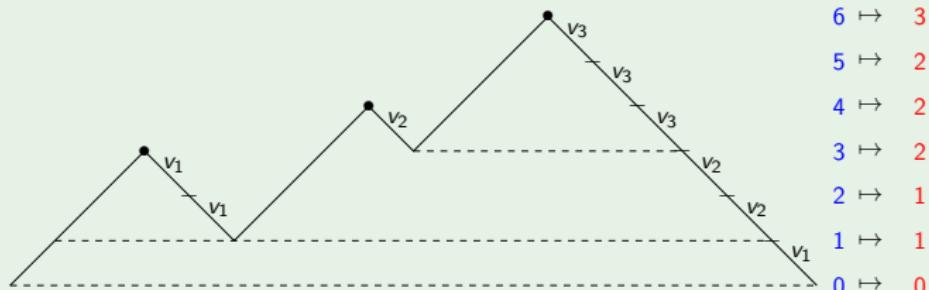
$x *_i y$ will involve $x \times_j y$ with $val(x; j) = i$.

More complicated if y is not prime.

The valuation map of an m -Dyck path $x = (x_1, \dots, x_n)$
it gives the cardinal of maximum occurrences at stage i

$$val(x; -) : [x_n] \rightarrow [m] = \{0, \dots, m\}$$

Example ($x = (3, 4, 6) \in \text{Dy}_3^3 \mapsto (v_1, v_2, v_2, v_3, v_3, v_3)$)



Idea

$x *_i y$ will involve $x \times_j y$ with $val(x; j) = i$.

More complicated if y is not prime.

The Formula

Theorem

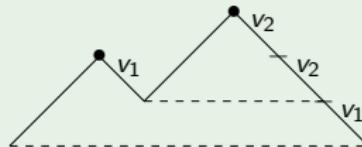
$x = (x_1, \dots, x_p) \in \text{Dy}_p^m$, $y \in \text{Dy}_q^m$ with r prime components.

$$x *_i y = \sum_{\mu} x \times_{\mu} y$$

where $x_p \geq \mu_1 \dots \geq \mu_r$ and $\text{val}(x; \mu_r) = i$,
is the sum of every elements in an m -Tamari interval.

Example

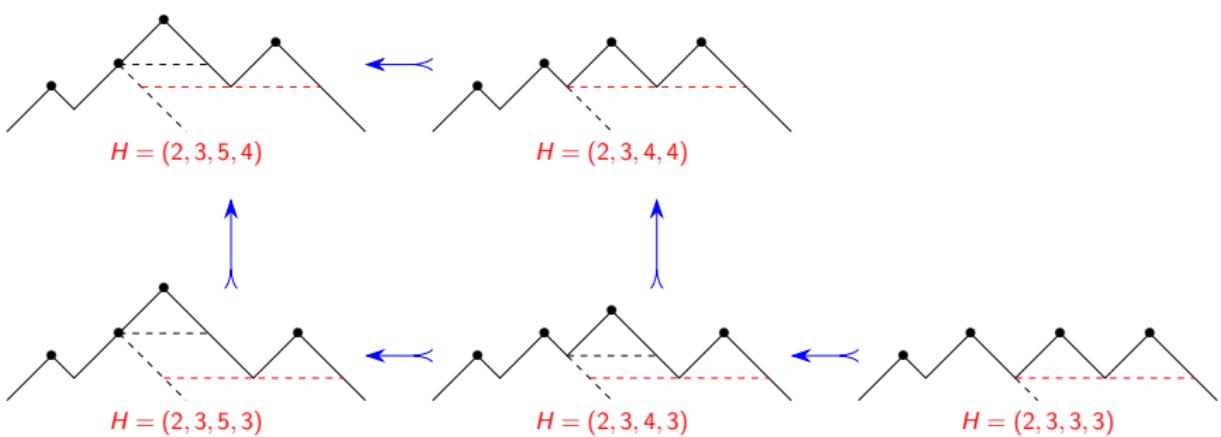
$$x = (2, 3); \text{val} : (0, 1, 2, 3) \mapsto (0, 1, 1, 2)$$



To compute $(2, 3) *_1 (2, 2)$, we need the partitions of the form $3 \geq \mu_1 \geq \mu_2$ avec $\mu_2 \in \{1, 2\}$.

Example: to compute $(2, 3) *_1 (2, 2)$, we need the partitions of the form $3 \geq \mu_1 \geq \mu_2$ avec $\mu_2 \in \{1, 2\}$.

$$\begin{aligned}
 (2, 3) *_1 (2, 2) &= (2, 3) \times_{3 \geq 2} (2, 2) + (2, 3) \times_{2 \geq 2} (2, 2) \\
 &\quad + (2, 3) \times_{3 \geq 1} (2, 2) + (2, 3) \times_{2 \geq 1} (2, 2) + (2, 3) \times_{1 \geq 1} (2, 2) \\
 &= (2, 3, 5, 4) + (2, 3, 4, 4) + (2, 3, 5, 3) + (2, 3, 4, 3) + (2, 3, 3, 3)
 \end{aligned}$$

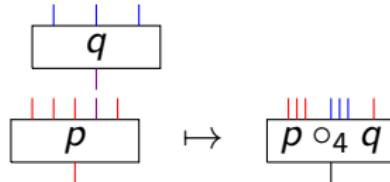


Section 3– Operad, cooperad structures on m -Dyck paths

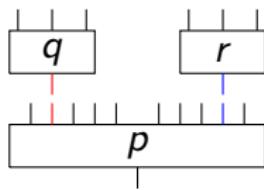
- Quick introduction to operads and co-operads
- The structure of co-operad on Dy^m .
- Reinterpreting the results by Lopez, Préville-Ratelle and Ronco

(non symmetric) operad \mathcal{P}

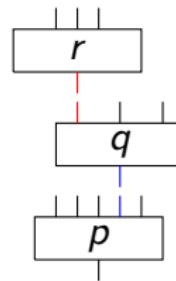
- A collection of sets (or vector spaces) $\mathcal{P}(n)$, $n \geq 1$
- Operations $\circ_i : \mathcal{P}(n) \times \mathcal{P}(n') \rightarrow \mathcal{P}(n + n' - 1)$, $1 \leq i \leq n$



- A unit in $\mathcal{P}(1)$
- Relations:



parallel



sequential

Keep in mind, a non-symmetric operad consists of graded objects, that we can either

- graft, as leaves;
- or insert, as boxes;

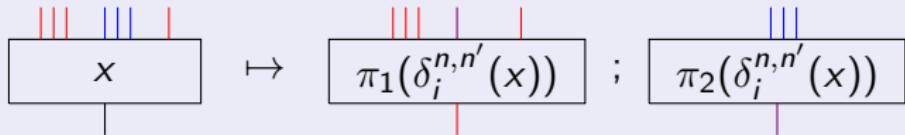
- The endomorphism operad $\mathcal{P}(n) = \text{Map}(X^{\times n}, X)$
- The terminal operad $\mathcal{P}(n) = \star_n, \star_n \circ_i \star_{n'} = \star_{n+n'-1}$
- The operad on the symmetric group, $\mathcal{P}(n) = \Sigma_n$

$$\sigma = (2, \boxed{3}, 1) \quad \circ_3 \quad \tau = (2, 3, 1) \quad = \quad (2, 4, 5, 3, 1)$$

$$\begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & \boxed{1} & 0 \end{bmatrix} \circ_3 \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

co-operad \mathcal{C}

- A collection of sets (or vector spaces) $\mathcal{C}(n)$,
- Co-operations $\delta_i^{n,n'} : \mathcal{C}(n+n'-1) \rightarrow \mathcal{C}(n) \times \mathcal{C}(n')$, $1 \leq i \leq n$



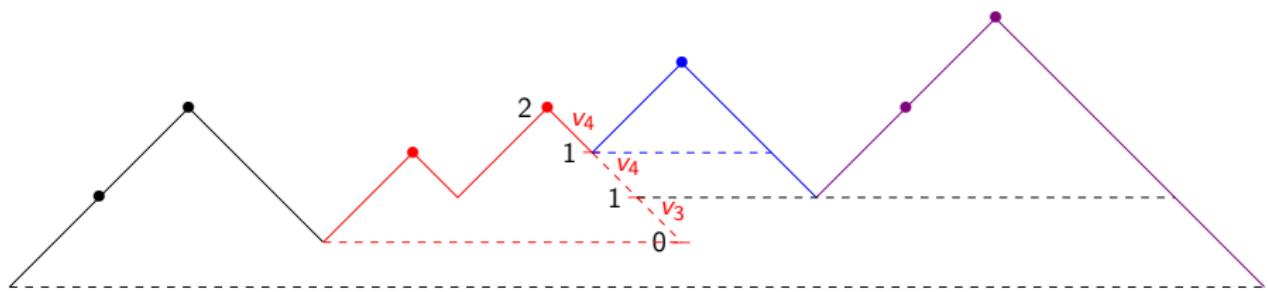
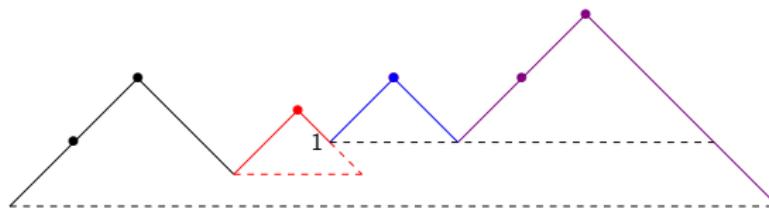
- A co-unit in $\mathcal{C}(1)$ and co-relations

Remark

- Co-operad structure "excision of a sub-object"
- If \mathcal{C} is a co-operad in Vect, then $\mathcal{P}(n) = \mathcal{C}(n)^*$ forms an operad.
- If \mathcal{P} is an operad in Vect, and $\mathcal{P}(n)$ is finite dimensional $\forall n$, then $\mathcal{C}(n) = \mathcal{P}(n)^*$ forms a co-operad.

Example: $\delta_3^{6,2} : \text{Dy}_7^2 \rightarrow \text{Dy}_6^2 \times \text{Dy}_2^2$

$$x = (2, 4, \textcolor{red}{3}, \textcolor{red}{4}, 5, 4, 6) = ((2, 4) \times_1 (\textcolor{red}{2}, \textcolor{red}{3})) \times_{\textcolor{blue}{2}+1>\textcolor{violet}{1}+1} (\textcolor{blue}{2}; \textcolor{violet}{2}, \textcolor{violet}{4})$$



$$\pi_1(\delta_3^{6,2}(x)) = ((2,4) \times_1 (2)) \times_{1+1 \geq 1+1} (2;2,4) = (2,4,3,4,4,6)$$

$$\pi_2(\delta_3^{6,2}(x)) = (2,3)$$

Operadic interpretation of the results by L., P.-R. and R.

Theorem

- For $1 \leq i \leq p$, the collection of maps

$$\delta_i^{n,n'} : \text{Dy}_{n+n'-1}^m \rightarrow \text{Dy}_n^m \times \text{Dy}_{n'}^m$$

endows $\{\mathcal{C}(n) := \text{Dy}_n^m\}_{n \geq 1}$ with a co-operadic structure, in Sets

- For $(x, y) \in \text{Dy}_n^m \times \text{Dy}_{n'}^m$ we have $(\delta_i^{n,n'})^{-1}(x, y)$ is an interval in $\text{Dy}_{n+n'-1}$ for the m -Tamari order.
- The operad \mathcal{C}^* in vector spaces is the operad Dyck^m .

Idea of proof

There is a morphism of operads $\text{Dyck}^m \rightarrow \mathcal{C}^*$ sending $*_i$ to $(m, m+i)^*$.

Section 4– $\mathcal{D}yck^m$ -bialgebras

Lopez, Préville-Ratelle, Ronco arxiv 1508.01252

- What is a $\mathcal{D}yck^m$ -bialgebra?
- The case of m -Dyck paths
 - ▶ Cutting m -Dyck paths
 - ▶ The result

\mathcal{Dyck}^m -bialgebra

For A, B two \mathcal{Dyck}^m -algebras, one can build a \mathcal{Dyck}^m -algebra on

$$A \boxtimes B = A \otimes \mathbb{K} \oplus \mathbb{K} \otimes B \oplus A \otimes B.$$

Definition: A \mathcal{Dyck}^m -bialgebra A is

a \mathcal{Dyck}^m -algebra, with $\Delta : A \rightarrow A \boxtimes A$ satisfying

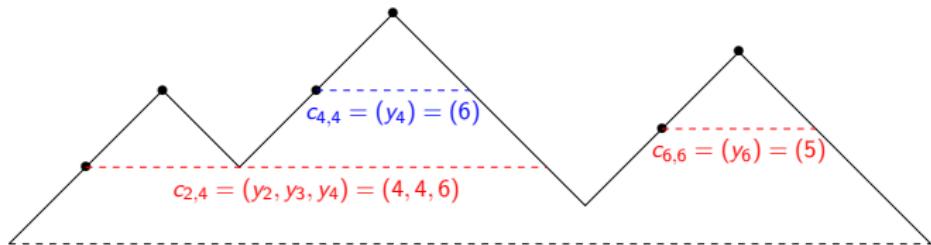
- Δ is a morphism of \mathcal{Dyck}^m -algebras
- $\Delta(a) = a \otimes 1 + 1 \otimes a + \bar{\Delta}(a)$ with $\bar{\Delta}(a) \in A \otimes A$.
- $\bar{\Delta}$ is coassociative.

Remark

If A is a \mathcal{Dyck}^m -bialgebra then $A^+ = \mathbb{K} \oplus A$ is a bialgebra

Cutting m -Dyck paths

$$y = (y_1, y_2, y_3, y_4, y_5, y_6) = (2, 4, 4, 6, 3, 5)$$



$y = (y_1, y_2, y_3, y_4, y_5, y_6) = (2, 4, 4, 6, 3, 5)$ admits the cuts:

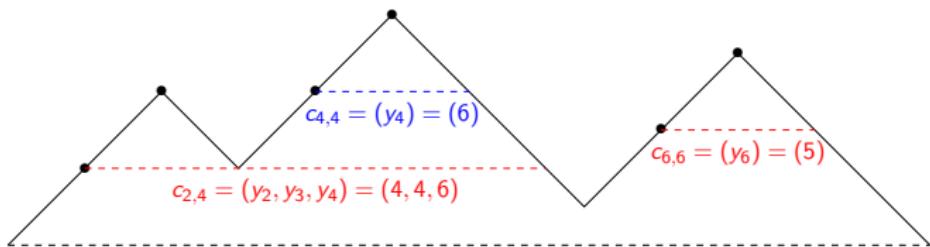
- at vertex y_2 : $c_{2,2} = (4)$ and $c_{2,4} = (4, 4, 6)$
- at vertex y_4 : $c_{4,4} = (6)$
- at vertex y_6 : $c_{6,6} = (5)$

An admissible cut is a collection of disjoint cuts

Example: $S_1 = \{c_{4,4}\}$, $S_2 = \{c_{2,4}, c_{6,6}\}$.

Cutting m -Dyck paths

$$y = (y_1, y_2, y_3, y_4, y_5, y_6) = (2, 4, 4, 6, 3, 5)$$



Example: $S_1 = \{c_{4,4}\}$, $S_2 = \{c_{2,4}, c_{6,6}\}$

Notation: $y/S \in \text{Dy}^m$ and $y^S \in \mathcal{D}^m$

- y/S : keep the part of y not in S :

$$y/S_1 = (y_1, y_2, y_3, \widehat{y_4}, y_5, y_6) = (2, 4, 4, 3, 5)$$

$$y/S_2 = (y_1, \widehat{y_2, y_3, y_4}, y_5, \widehat{y_6}) = (y_1, y_5) = (2, 3).$$

- y^S : take the remaining parts and multiply them:

$$y^{S_1} = (2)$$

$$y^{S_2} = (\tilde{y}_2, \tilde{y}_3, \tilde{y}_4) * (\tilde{y}_6) = (2, 2, 4) * (2)$$

The results

Theorem

The free Dyck^m -algebra \mathcal{D}^m is a Dyck^m -bialgebra, with

$$\overline{\Delta}(y) = \sum_{S \in \text{Ad}(y)} y^S \otimes y/S.$$

Consequences

- Dyck^m is a Hopf operad
- $\text{Prim}(\text{Dyck}^m)$ is an operad;
equivalently for B a Dyck^m -bialgebra, $\text{Prim}(B)$ is a $\text{Prim}(\text{Dyck}^m)$ -algebra.

Can we say more?

Section 6– Poincaré-Birkhoff-Witt Theorem and Cartier-Milnor-Moore-Quillen Theorem

Here \mathbb{K} is a field of characteristic 0.

- Case of \mathcal{L} ie-algebras
- Case of \mathcal{B} race-algebras
- \mathcal{B} race ^{m} -algebras
- Prime m -Dyck paths and binary planar rooted trees
- A formula

The case of Lie algebras

$$\mathcal{L}\text{ie}_{\text{alg}} \begin{array}{c} \xrightarrow{\quad U \quad} \\ \xleftarrow{\perp} \\ \xleftarrow{[-,-]} \end{array} \mathcal{A}_{\text{alg}}$$

PBW theorem: as a vector space $U(L) \cong S(L)$.

$$U(\mathbb{L}(V)) = T(V) = (\text{Com} \circ \mathcal{L}\text{ie})(V)$$

Sanity check

$$f_{\mathcal{L}\text{ie}} = -\ln(1-x), \quad f_{\mathcal{A}\text{ss}} = \frac{x}{1-x}, \quad f_{\text{Com}} = e^x - 1$$

Hence generating function of $\text{Com} \circ \mathcal{L}\text{ie}$ is

$$e^{-\ln(1-x)} - 1 = \frac{x}{1-x}$$

The case of Lie algebras

$$\mathcal{L}\text{ie}_{\text{alg}} \begin{array}{c} \xrightarrow{U} \\ \perp \\ \xleftarrow{[-,-]} \end{array} \mathcal{A}\text{s}_{\text{alg}}$$

Cartier-Milnor-Moore-Quillen Theorem

The adjunction restricts to an adjunction

$$\mathcal{L}\text{ie}_{\text{alg}} \begin{array}{c} \xrightarrow{U} \\ \perp \\ \xleftarrow{\text{Prim}} \end{array} \mathcal{A}\text{s}_{\text{big}}$$

which is an equivalence of categories

Definition

A **brace** algebra is a vector space B equipped with operations $M_{1n} : B^{\otimes n+1} \rightarrow B$ for $n \geq 0$, satisfying $M_{10} = \text{Id}$ and

$$M_{1n}(M_{1r}(x; y_1, \dots, y_r); z_1, \dots, z_n) = \sum M_{1u}(x; z_{(1)}, M_{1,a_2}(y_1; z_{(2)}), z_{(3)}, \dots, z_{(2r-1)}, M_{1,a_{2r}}(y_k, z_{(2r)}), z_{(2r+1)}),$$

where the sum is taking over all the words (possibly empty) such that the concatenation $z_{(1)} \dots z_{(2r+1)} = z_1 \dots z_n$.

Example

$M_{11}(M_{11}(x; y_1); z_1) = M_{11}(x, M_{11}(y_1; z_1)) + M_{12}(x; y_1, z_1) + M_{12}(x; z_1, y_1)$.
It is in particular right symmetric (pre-Lie), thus a Lie algebra.

PBW et CMMQ for brace algebras, results of Ronco and Chapoton

$$\text{Br}_{\text{alg}} \begin{array}{c} \xrightarrow{U} \\ \perp \\ \xleftarrow{M} \end{array} \mathcal{D}\text{end}_{\text{alg}}$$

PBW

$U(B) \cong T(B)$, for B a brace algebra.

Sanity check: $T(\text{Br}(V)) \cong \mathcal{D}\text{end}(V)$.

CMMQ

$$\text{Br}_{\text{alg}} \begin{array}{c} \xrightarrow{U} \\ \perp \\ \xleftarrow{\text{Prim}} \end{array} \mathcal{D}\text{end}_{\text{big}}$$

is an equivalence of categories.

Theorem (L., Ronco)

- There is an operad $\mathcal{B}\text{r}ace^m$ such that any $\mathcal{D}\text{yck}^m$ -algebra has an underlying $\mathcal{B}\text{r}ace^m$ -algebra structure yielding an adjunction:

$$\mathcal{B}\text{r}ace_{\text{alg}}^m \begin{array}{c} \xrightarrow{UDyck} \\ \perp \\ \xleftarrow{M} \end{array} \mathcal{D}\text{yck}_{\text{alg}}^m$$

- For B a $\mathcal{D}\text{yck}^m$ -bialgebra, $\text{Prim}(B)$ is a sub- $\mathcal{B}\text{r}ace^m$ -algebra of B .
- $UDyck(A)$ is a $\mathcal{D}\text{yck}^m$ -bialgebra and $UDyck(A) \simeq T(A)$.
- The adjunction restricts to an equivalence of categories

$$\mathcal{B}\text{r}ace_{\text{alg}}^m \begin{array}{c} \xrightarrow{UDyck} \\ \perp \\ \xleftarrow{\text{Prim}} \end{array} \mathcal{D}\text{yck}_{\text{big}}^m$$

Sanity check: $\mathcal{A}s \circ \mathcal{B}\text{r}ace^m \simeq \mathcal{D}\text{yck}^m$

$\mathcal{B}\text{r}ace^m(n)$ has a basis indexed by $\text{PDy}_n^m \times \Sigma_n$.

Definition

A $\mathcal{B}\text{r}a\text{c}e^m$ -algebra is a brace algebra B equipped with operations

$\bullet_i : B^{\otimes 2} \rightarrow B$ for $1 \leq i \leq m-1$, satisfying some relations

- Quadratic relations involving \bullet_i and \bullet_j for $1 \leq i < j < m$

$$(x \bullet_i y) \bullet_j z - (x \bullet_i y) \bullet_i z = x \bullet_i (y \bullet_j z) - x \bullet_i (y \bullet_i z)$$

- Relations of the form $M_{1n}(x \bullet_i y; z_1, \dots, z_n) = \dots$

Proposition

We have an explicit description of a $\mathcal{B}\text{r}a\text{c}e^m$ -algebra on

$$\oplus_n \mathbb{K}[\text{PDy}_n^m] \otimes V^{\otimes n}$$

Thanks for your attention!

A bijection

between prime m -Dyck paths and some labelled rooted planar binary trees

There is a bijection $\text{PDy}_n^m \rightarrow Y_n^m$, where Y_n^m is a subset of planar binary trees with n leaves and vertices labelled by elements in $\{1, \dots, m\}$.
 $s \in Y_n^m \iff \forall t \subset s, t = t^l \vee_i t^r$, the root of t^l has label $\geq i$.

Example, for $m = 3$

