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We will talk about...

non symmetric (Hopf) operad
Prim //

Envelope
oo operad

m = 0 As Lie

m = 1 Dend Brace

m Dyckm Bracem
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Section 1– m-Dyck paths

Definitions, notations

Grafting m-Dyck paths

Enumerating prime m-Dyck paths

The m-Tamari lattice
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m-Dyck paths of size n

- It is a path in (R+)×2, starting at (0, 0) and ending at (2nm, 0),
consisting of up steps (m,m) and down steps (1,−1)

- It is prime if it only meets the x-axis at these two points.

− −
−

•
• •

(2, 3, 3), prime

−
−

−
• •

•

(2, 2, 3), not prime

- Notation:
▶ x = (x1, . . . , xn): the list of heights of the summits of x . Note that

x1 = m and xi+1 − xi ≤ m.
▶ Dymn : the set of m-Dyck paths of size n; dm,n its cardinal.
▶ PDymn : the set of prime m-Dyck paths of size n; pm,n its cardinal.
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Grafting m-Dyck paths

(x1, . . . , xp)×i (y1, . . . , yq) = (x1, . . . , xp, y1 + i , . . . , yq + i), 0 ≤ i ≤ xp

Example

(2, 3, 3)×2 (2, 3) = (2, 3, 3, 4, 5)

−

−
−

−

−
−

•
• •

•
•

The operation ×0 is associative. It corresponds to the concatenation.
Any y ∈ Dymn writes uniquely as

y = y (1) ×0 . . .×0 y
(r)

with y (j) ∈ PDymnj and
∑

j nj = n.

M. Livernet Algebraic Structures on m-Dyck paths 5 / 33



Generalization: grafting m-Dyck paths along a partition

The notation x ×µ y

x = (x1, . . . , xp) ∈ Dymp

y = y (1) ×0 . . .×0 y
(r) has r prime components, in Dymq

xp ≥ µ1 ≥ . . . ≥ µr ≥ 0 an r partition compatible with x , denoted µ

x ×µ y = (. . . ((x ×µ1 y
(1))×µ2 y

(2))× . . . )×µr y
(r)

Example

(2, 3, 3)×2≥1 (2, 3; 2) = (2, 3, 3, 4, 5, 3)

−

−
−

−

−
−

•
• •

•
•

•
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Enumerating prime m-Dyck paths

Fuss-Catalan numbers: As(p, r) =
r

sp+r

(sp+r
s

)
dm,n = 1

mn+1 ·
((m+1)n

n

)
= An−1(m + 1,m + 1) = An(m + 1, 1)

Proposition (?; L-Ronco)

For n,m ≥ 1

pm,n =
1

n

(
(m + 1)n − 2

n − 1

)
Idea of the proof:

Concatenation of prime m-Dyck paths gives Dm(x) =
Pm(x)

1−Pm(x)

use Riordan convolution formula
As(p, r + t) =

∑s
k=0 Ak(p, r)As−k(p, t)

to get
pm,n = An−1(m + 1,m)
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The m-Tamari lattice [Bergeron, Préville-Ratelle;
Bousquet-Mélou, Fusy, Préville-Ratelle]

covering relations:

•
• •

H = (2, 3, 3)

•

•
•

H = (2, 4, 3)

•
•

•

H = (2, 3, 4)

Note (2, 3, 4) → (2, 4, 5) is a covering relation

M. Livernet Algebraic Structures on m-Dyck paths 8 / 33



Section 2– Results by Lopez, Préville-Ratelle, Ronco,
arxiv 1508.01252+ JPAA 2020

Split of associativity, Dyckm-algebras

The structure of Dyckm-algebra on the vector space spanned by
m-Dyck paths

▶ Labeling the down steps
▶ The valuation map
▶ The formula
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Split of associativity

Definition: Dyckm-algebra

It is a vector space D endowed with bilinear products ∗i , 0 ≤ i ≤ m
satisfying the relations

x ∗i (y ∗j z) = (x ∗i y) ∗j z , for 0 ≤ i < j ≤ m,

i∑
j=0

x ∗i (y ∗j z) =
m∑
k=i

(x ∗k y) ∗i z , for 0 ≤ i ≤ m

for any elements x , y and z in D.

Facts

∗ =
∑m

i=0 ∗i is associative
m = 0, ∗0 is associative

m = 1, ∗0 and ∗1 satisfy the dendriform relations
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Free Dyckm-algebras

Theorem (Lopez;Préville-Ratelle;Ronco)

The free Dyckm-algebra Dm generated by one element has for underlying
vector space the span of the set of m-Dyck paths.
Moreover, for x ∈ Dymp , y ∈ Dymq , there exists an interval Ji (x , y) in the
m-Tamari lattice Dymp+q such that:

x ∗i y =
∑

z∈Ji (x ,y)

z
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Labeling the down steps of an m-Dyck path

− −

−

•

• •

v1

v1

v2

v2

v3

v3

(2, 3, 3) 7→ (v1, v3, v3)

−

−

•

•

v1

v2

v2

v1

(2, 3) 7→ (v1, v2, v2)
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The valuation map of an m-Dyck path x = (x1, . . . , xn)

it gives the cardinal of maximum occurences at stage i

val(x ;−) : [xn] → [m] = {0, . . . ,m}

Example (x = (3, 4, 6) ∈ Dy33 7→ (v1, v2, v2, v3, v3, v3))

−

−

−

−

−

−

•

•

•

v1

v1

v2

v3

v3

v3

v2

v2

v1

0

1

1

2

2

2

3

0

1

2

3

4

5

6

7→

7→

7→

7→

7→

7→

7→

Idea

x ∗i y will involve x ×j y with val(x ; j) = i .
More complicated if y is not prime.
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−

−

−

−

−

−

•

•
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v1

v1
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v2
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0

1

1

2

2

2

3

0

1

2

3
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The Formula

Theorem

x = (x1, . . . , xp) ∈ Dymp , y ∈ Dymq with r prime components.

x ∗i y =
∑
µ

x ×µ y

where xp ≥ µ1 . . . ≥ µr and val(x ;µr ) = i ,
is the sum of every elements in an m-Tamari interval.

Example

−
−

•
•

v1

v2

v2

v1

x = (2, 3); val : (0, 1, 2, 3) 7→ (0, 1, 1, 2)

To compute (2, 3) ∗1 (2, 2), we need the partitions of the form
3 ≥ µ1 ≥ µ2 avec µ2 ∈ {1, 2}.
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Example: to compute (2, 3) ∗1 (2, 2), we need the partitions of the form
3 ≥ µ1 ≥ µ2 avec µ2 ∈ {1, 2}.

(2, 3) ∗1 (2, 2) =(2, 3)×3≥2 (2, 2) + (2, 3)×2≥2 (2, 2)

+(2, 3)×3≥1 (2, 2) + (2, 3)×2≥1 (2, 2) + (2, 3)×1≥1 (2, 2)

= (2, 3, 5, 4) + (2, 3, 4, 4) + (2, 3, 5, 3) + (2, 3, 4, 3) + (2, 3, 3, 3)

•
•

•
•

H = (2, 3, 5, 4)

•
•

• •

H = (2, 3, 4, 4)

•
•

•

•

H = (2, 3, 5, 3)

•
•

•
•

H = (2, 3, 4, 3)

•
• • •

H = (2, 3, 3, 3)
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Section 3– Operad, cooperad structures on m-Dyck paths

Quick introduction to operads and co-operads

The structure of co-operad on Dym.

Reinterpreting the results by Lopez, Préville-Ratelle and Ronco
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(non symmetric) operad P

A collection of sets (or vector spaces) P(n), n ≥ 1

Operations ◦i : P(n)× P(n′) → P(n + n′ − 1), 1 ≤ i ≤ n

7→p

q

p ◦4 q

A unit in P(1)

Relations:

p

rq

p

q

r

parallel sequential
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Keep in mind, a non-symmetric operad consists of

graded objects, that we can either

graft, as leaves;

or insert, as boxes;

The endomorphism operad P(n) = Map(X×n,X )

The terminal operad P(n) = ⋆n, ⋆n ◦i ⋆n′ = ⋆n+n′−1

The operad on the symmetric group, P(n) = Σn

σ = (2, 3 , 1) ◦3 τ = (2, 3, 1) = (2, 4, 5, 3, 1)

0 0 1
1 0 0

0 1 0

 ◦3

0 0 1
1 0 0
0 1 0

 =


0 0 0 0 1
1 0 0 0 0
0 0 0 1 0
0 1 0 0 0
0 0 1 0 0


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co-operad C
A collection of sets (or vector spaces) C(n),
Co-operations δn,n

′

i : C(n + n′ − 1) → C(n)× C(n′), 1 ≤ i ≤ n

7→ ;π1(δ
n,n′

i (x)) π2(δ
n,n′

i (x))x

A co-unit in C(1) and co-relations

Remark

Co-operad structure ”excision of a sub-object”

If C is a co-operad in Vect, then P(n) = C(n)∗ forms an operad.

If P is an operad in Vect, and P(n) is finite dimensional ∀n, then
C(n) = P(n)∗ forms a co-operad.
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Example: δ6,23 : Dy27 → Dy26 ×Dy22

•

•
•

•
•

•

•

v4

v4

v3
0

1

1

2

−
−

−

x = (2, 4, 3, 4, 5, 4, 6) = ((2, 4)×1 (2, 3))×2+1≥1+1 (2; 2, 4)

•
•

π2(δ
6,2
3 (x)) = (2, 3)

•

•
•

•• •

•

1

π1(δ
6,2
3 (x)) = ((2, 4)×1 (2))×1+1≥1+1 (2; 2, 4) = (2, 4, 3, 4, 4, 6)
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Operadic interpretation of the results by L., P.-R. and R.

Theorem

For 1 ≤ i ≤ p, the collection of maps

δn,n
′

i : Dymn+n′−1 → Dymn ×Dymn′

endows {C(n) := Dymn }n≥1 with a co-operadic structure, in Sets

For (x , y) ∈ Dymn ×Dymn′ we have (δn,n
′

i )−1(x , y) is an interval in
Dyn+n′−1 for the m-Tamari order.

The operad C∗ in vector spaces is the operad Dyckm.

Idea of proof

There is a morphism of operads Dyckm → C∗ sending ∗i to (m,m + i)∗.
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Section 4– Dyckm-bialgebras
Lopez, Préville-Ratelle, Ronco arxiv 1508.01252

What is a Dyckm-bialgebra?

The case of m-Dyck paths
▶ Cutting m-Dyck paths
▶ The result
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Dyckm-bialgebra

For A, B two Dyckm-algebras, one can build a Dyckm-algebra on

A⊠ B = A⊗K⊕K⊗ B ⊕ A⊗ B.

Definition: A Dyckm-bialgebra A is

a Dyckm-algebra,with ∆ : A → A⊠ A satisfying

∆ is a morphism of Dyckm-algebras

∆(a) = a⊗ 1 + 1⊗ a+ ∆̄(a) with ∆̄(a) ∈ A⊗ A.

∆̄ is coassociative.

Remark

If A is a Dyckm-bialgebra then A+ = K⊕ A is a bialgebra
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Cutting m-Dyck paths

•

• •

•

•

•

c2,4 = (y2, y3, y4) = (4, 4, 6)

c6,6 = (y6) = (5)

c4,4 = (y4) = (6)

y = (y1, y2, y3, y4, y5, y6) = (2, 4, 4, 6, 3, 5)

y = (y1, y2, y3, y4, y5, y6) = (2, 4, 4, 6, 3, 5) admits the cuts:

at vertex y2: c2,2 = (4) and c2,4 = (4, 4, 6)

at vertex y4: c4,4 = (6)

at vertex y6: c6,6 = (5)

An admissible cut is a collection of disjoint cuts
Example: S1 = {c4,4}, S2 = {c2,4, c6,6}.
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Cutting m-Dyck paths

•

• •

•

•

•

c2,4 = (y2, y3, y4) = (4, 4, 6)

c6,6 = (y6) = (5)

c4,4 = (y4) = (6)

y = (y1, y2, y3, y4, y5, y6) = (2, 4, 4, 6, 3, 5)

Example: S1 = {c4,4}, S2 = {c2,4, c6,6}

Notation: y/S ∈ Dym and yS ∈ Dm

y/S : keep the part of y not in S :
y/S1 = (y1, y2, y3, ŷ4, y5, y6) = (2, 4, 4, 3, 5)
y/S2 = (y1, ̂y2, y3, y4, y5, ŷ6) = (y1, y5) = (2, 3).

yS : take the remaining parts and multiply them:
yS1 = (2)
yS2 = (ỹ2, ỹ3, ỹ4) ∗ (ỹ6) = (2, 2, 4) ∗ (2)
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The results

Theorem

The free Dyckm-algebra Dm is a Dyckm-bialgebra, with

∆(y) =
∑

S∈Ad(y)

yS ⊗ y/S .

Consequences

→ Dyckm is a Hopf operad
→ Prim(Dyckm) is an operad;
equivalently for B a Dyckm-bialgebra, Prim(B) is a Prim(Dyckm)-algebra.

Can we say more?
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Section 6– Poincaré-Birkhoff-Witt Theorem and
Cartier-Milnor-Moore-Quillen Theorem

Here K is a field of caracteristic 0.

Case of Lie-algebras
Case of Brace-algebras
Bracem-algebras
Prime m-Dyck paths and binary planar rooted trees

A formula
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The case of Lie algebras

Liealg
U //

Asalg
[−,−]

⊥oo

PBW theorem: as a vector space U(L) ∼= S(L).

U(L(V )) = T (V ) = (Com ◦ Lie)(V )

Sanity check

fLie = − ln(1− x), fAs =
x

1−x , fCom = ex − 1
Hence generating function of Com ◦ Lie is

e− ln(1−x) − 1 =
x

1− x
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The case of Lie algebras

Liealg
U //

Asalg
[−,−]

⊥oo

Cartier-Milnor-Moore-Quillen Theorem

The adjunction restricts to an adjunction

Liealg
U //

Asbig
Prim

⊥oo

which is an equivalence of categories
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Definition

A brace algebra is a vector space B equipped with operations
M1n : B⊗n+1 −→ B for n ≥ 0, satisfying M10 = Id and

M1n(M1r (x ; y1, . . . , yr ); z1, . . . , zn) =∑
M1u(x ; z(1),M1,a2(y1; z(2)), z(3), . . . ,

z(2r−1),M1,a2r (yk , z(2r)), z(2r+1)),

where the sum is taking over all the words (possibly empty) such that the
concatenation z(1)....z(2r+1) = z1 . . . zn.

Example

M11(M11(x ; y1); z1) = M11(x ,M11(y1; z1))+M12(x ; y1, z1)+M12(x ; z1, y1).
It is in particular right symmetric (pre-Lie), thus a Lie algebra.

M. Livernet Algebraic Structures on m-Dyck paths 28 / 33



PBW et CMMQ for brace algebras, results of Ronco and
Chapoton

Bralg
U //

Dendalg
M

⊥oo

PBW

U(B) ∼= T (B), for B a brace algebra.
Sanity check: T (Br(V )) ∼= Dend(V ).

CMMQ

Bralg
U //

Dendbig
Prim

⊥oo

is an equivalence of categories.
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Theorem (L., Ronco)

There is an operad Bracem such that any Dyckm-algebra has an
underlying Bracem-algebra structure yielding an adjunction:

Bracemalg
UDyck //

Dyckmalg
M

⊥oo

For B a Dyckm-bialgebra, Prim(B) is a sub-Bracem-algebra of B.

UDyck(A) is a Dyckm-bialgebra and UDyck(A) ≃ T (A).

The adjiunction restricts to an equivalence of categories

Bracemalg
UDyck //

Dyckmbig
Prim

⊥oo

Sanity check: As ◦ Bracem ≃ Dyckm

Bracem(n) has a basis indexed by PDymn × Σn.
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Definition

A Bracem-algebra is a brace algebra B equipped with operations
•i : B⊗2 → B for 1 ≤ i ≤ m − 1, satisfying some relations

Quadratic relations involving •i and •j for 1 ≤ i < j < m

(x •i y) •j z − (x •i y) •i z = x •i (y •j z)− x •i (y •i z)

Relations of the form M1n(x •i y ; z1, . . . , zn) = . . .

Proposition

We have an explicit description of a Bracem-algebra on

⊕nK[PDymn ]⊗ V⊗n
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Thanks for your attention!
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A bijection

between prime m-Dyck paths and some labelled rooted planar binary trees

There is a bijection PDymn → Ym
n , where Ym

n is a subset of planar binary
trees with n leaves and vertices labelled by elements in {1, . . . ,m}.
s ∈ Ym

n ⇐⇒ ∀t ⊂ s, t = t l ∨i t
r , the root of t l has label ≥ i .

Example, for m = 3

v1 v2 v3 v4 v5

1

2

1

3
7→ (2)×1 [((2)×3 ((2)×1 (2)))×2 (2)] = (2)×1 (2565) = (23676)
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