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Constructive Euclidean quantum field theory

Given space ) of field configurations ¢ : R? — R and action S: Q — R, eg.
56) = [ [60Q0)@) + X Tar,  Q=1-2,

the goal of the constructive Euclidean QFT is to make sense of the
probability measure on €2 formally given by

v(de) = fexp ¢) [ ] dé(=

zeRd
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Constructive Euclidean quantum field theory

Given space ) of field configurations ¢ : R? — R and action S: Q — R, eg.
56) = [ [60Q0)@) + X Tar,  Q=1-2,

the goal of the constructive Euclidean QFT is to make sense of the

probability measure on €2 formally given by

v(de) = fexp ¢) [ ] dé(=

zeRd

Osterwalder—Schrader axioms:
1. Invariance under Euclidean transformations of R%.

| F@aF©) a0 = 0
for all functionals F'(¢) that depend only on ¢, ~0}-
3. Regularity: exponential integrability.

2. Reflection positivity: Let (0¢)(z1,...,2q) = ¢(—x1,22,...,2q

). Then

2/17



Constructions of interacting models

) =t N [6(2)(Qe)(@) + Ab(a)! —rer $(@)?], Qe =1- A,
zeTd |
Ver(d6) = 2 exp(—5:-(6)) [] dote
a:e’]l‘d’

Existence of continuum and infinite volume limit and OS axioms for @ﬁ model:

» d = 2:[60": Nelson, Glimm, Jaffe, Segal, Guerra, Rosen, Simon, .. ],
» d = 3:[70": Glimm, Jaffe, Feldman, Park, Osterwalder, Magnen, Senéor, ...].
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Triviality of ¢* model — the continuum limit does not exist or is Gaussian:
» d = 4: [Aizenman, Duminil-Copin (2021)],
» d > 4: [Aizenman (1982)], [Frohlich (1982)].
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Constructions of interacting models

) =t N [6(2)(Qe)(@) + Ab(a)! —rer $(@)?], Qe =1- A,
zeTd |
Ver(d6) = 2 exp(—5:-(6)) [] dote
a:e’]l‘d’

Existence of continuum and infinite volume limit and OS axioms for @ﬁ model:

» d = 2:[60": Nelson, Glimm, Jaffe, Segal, Guerra, Rosen, Simon, .. ],
» d = 3:[70": Glimm, Jaffe, Feldman, Park, Osterwalder, Magnen, Senéor, ...].

Triviality of ¢* model — the continuum limit does not exist or is Gaussian:
» d = 4: [Aizenman, Duminil-Copin (2021)],
» d > 4: [Aizenman (1982)], [Frohlich (1982)].

Several other models were constructed in d < 3

Only very special models are expected to exist in d = 4.
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Fractional ®3; model with cutoffs

Action of fractional ®3 model with cutoffs:

Ser(@) =€ D [6(2)(Qe0)(w) + 3o(@)* — s B(2)?]
z€eT3 |

TE,T — lattice with spacings € € (0, 1] and period 7 € N,
Q& = (_AE)J/Q +1,

(—AE)("/2 — fractional Laplacian of order o > 0,

v

v

v

> e — Mass counterterm.
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Fractional ®3; model with cutoffs

Action of fractional ®3 model with cutoffs:

¢) = > [6(2)(Qeo)(x) + 3(2)* = re 7 B(2)?]

z€eT3 |

TE,T — lattice with spacings € € (0, 1] and period 7 € N,
Q& = (_AE)J/Q +1,

(—AE)("/2 — fractional Laplacian of order o > 0,

v

v

v

> e — Mass counterterm.

Measure of fractional ®4 model with cutoffs ¢ € (0,1], 7€ N:

Ver(dd) = = exp(—S--(8) [] do(a

z
zeT? |

We are interested in the limit € \, 0,7 — o of v ..
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Fractional ®3 model — different regimes of parameters

Concentrate on continuum limit v; = lim.\ o v+ for fixed size of torus 7.
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» V(g) = %Sm ¢(x)* dz is the interaction potential.
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Fractional ®3 model — different regimes of parameters

Concentrate on continuum limit v; = lim.\ o v+ for fixed size of torus 7.

Finite regime o € (3, )

vr(dg) = Z7 exp(=V(9)) pr(d),

> 1 is Gaussian measure with covariance ((—A)7/2 + 1)1,
» V(g) = %S’Eﬁ ¢(x)* dz is the interaction potential.

Wick renormalization o € (9/4, 3]
v (dg) = Z exp(— V(9):) i (d9).

Subcritical regime beyond Wick renormalization o € (3/2,9/4]

Short distance behavior of interacting measure v, similar to Gaussian
measure yr but v, and p, are singular [Hairer, Kusuoka, Nagoji (2024+)].

Critical and supercritical regime o € (0, 3/2]

Continuum limit lim.\ o ¢ does not exist or is Gaussian [Panis (2023+)].
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Main result

Recall that the measure v, - of the fractional <I>§ model depends on:

> lattice spacing € € (0, 1] and size of the torus 7 € N,
» order of fractional Laplacian o, mass counterterm 7. ..

Theorem [D., Gubinelli, Rinaldi (2024+)]
Assumptions: o € (3/2,2).
There exists a choice of mass counterterm (7 -).e(0,1],ren, such that:

(1) the continuum/infinite volume limits v := lim.\ o lim, o v  exist
(along a subsequence),

(2) v is reflection positive, translation-invariant and has sub-Gaussian tails.
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Main result

Recall that the measure v, - of the fractional <I>§ model depends on:

> lattice spacing € € (0, 1] and size of the torus 7 € N,
» order of fractional Laplacian o, mass counterterm 7. ..

Theorem [D., Gubinelli, Rinaldi (2024+)]
Assumptions: o € (3/2,2).
There exists a choice of mass counterterm (7 -).e(0,1],ren, such that:

(1) the continuum/infinite volume limits v := lim.\ o lim, o v  exist
(along a subsequence),

(2) v is reflection positive, translation-invariant and has sub-Gaussian tails.

» Similar result [Esquivel, Weber (2024-+)].
> In general uniqueness of measure not expected.

» Non-triviality — every accumulation point non-Gaussian.
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Parabolic stochastic quantization

Idea: establish the bound below and use Prokhorov's theorem

S f 615 vo.r (d6) < 0.

T€+
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Parabolic stochastic quantization

Idea: establish the bound below and use Prokhorov's theorem

o f 615 vo.r (d6) < 0.

T€+

Langevin dynamic in finite dimension
Measure v(d¢) = exp(—25(¢))d¢ over R™ is invariant under dynamic

dgy = dW, — VS(¢y) dt.

Dynamical fractional &3 model on R x T2 _
(at + (—Ag)a/2 + 1)@577 = 5&,7’ - )\QSS,T + Te,r 45877
» Finite-dimensional SDE in a gradient form.

> Let &, . be the global stationary solution.
» Then v, ; = Law(®. +(t,+)) for all t € R.
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Main idea of the proof of tightness

> The following bound implies tightness

sup  Ef e (1, )]s < 0.
55(0,1]7T6N+

» &, ; satisfies a parabolic SPDE
(0 + (A +1)0er = & r — N2+ 10, De

We can use some PDE tools to prove the above bound.

> Difficulty: SPDE becomes singular in the continuum limit £ N\ 0.
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Main idea of the proof of tightness

> The following bound implies tightness

sup  Ef e (1, )]s < 0.
55(0,1]7T6N+

» &, ; satisfies a parabolic SPDE
(0 + (A +1)0er = & r — N2+ 10, De

We can use some PDE tools to prove the above bound.

> Difficulty: SPDE becomes singular in the continuum limit £ N\ 0.

Strategy

> Use flow equation approach to singular SPDEs to make sense of the
equation in the continuum limit.

> Apply maximum principle to derive coercive estimate implying tightness.
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Stochastic quantization equation and coarse-grained process

Dynamical fractional ®; model
(0 + (—A)? + 1)@ = F[9].
Notation:
> Flg] := & — M® + 1 — force,

» £ — spacetime white noise,

> r — mass counterterm.
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Stochastic quantization equation and coarse-grained process

Dynamical fractional ®; model
(0 + (—A)? + 1)@ = F[9].
Notation:
» Flo] := & — Ag? + r ¢ — force,
» £ — spacetime white noise,

> r — mass counterterm.

Coarse-grained process
D, :=J,xPeC”, we (0,1],
» @ — solution of the dynamical fractional ®§ model,

» J,, — smooth approximation of Dirac delta of characteristic length scale .
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Effective force

> In the limit € \, 0 the dynamical ®4 model becomes a singular SPDE
(0 + (=AY +1)0 = F[B],  Flp]:=&— > +7o.

> Ildea: Rewrite the equation as a certain equation that involves only the
coarse-grained process (9,,) e(0,1]-
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Effective force

> the boundary condition F),_o[¢] = F'[¢] holds,
> the remainder (, := F[®] — F,[®,] is “small".

A family of functionals F),[¢] depending differentiably ;. € [0, 1] such that:
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> In the limit € \, 0 the dynamical ®4 model becomes a singular SPDE
(0 + (=AY +1)0 = F[B],  Flp]:=&— > +7o.

> Ildea: Rewrite the equation as a certain equation that involves only the
coarse-grained process (9,,) e(0,1]-

(0 + (=22 + 1)@, = J, « F[P]

Effective force

> the boundary condition F),_o[¢] = F'[¢] holds,
> the remainder (, := F[®] — F,[®,] is “small".

A family of functionals F),[¢] depending differentiably ;. € [0, 1] such that:

(0 + (=2 + 1)@, = J, + (F[D,.] + ()
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Effective equation

(at 4 (_A)U/2 + 1)¢M =J, * (F, t[ M] + CM)
Cu=— g(HU[dS’/] +DF[®,]-(0,G) % () dn
Notation:
> G = (0 + (_A)U/Q +1)~! = fractional heat kernel,

» 0,G, = 0,J, * G — scale decomposition of the fractional heat kernel,

» H,[¢] :=0,F,[¢] + DF,[¢] - (0,G, * F,[¢]) — source in equation for (,.
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Effective equation

(at 4 (_A)U/2 + 1)¢M =J, * (F, t[ M] + CM)
Cu=— g(HU[dS’/] +DF[®,]-(0,G) % () dn
Notation:
> G = (0 + (_A)U/Q +1)~! = fractional heat kernel,

» 0,G, := 0,J, = G — scale decomposition of the fractional heat kernel,
151 197

» H)[p] :=0,F,[¢] + DF,[¢] - (0,G, * F,[¢]) — source in equation for (.

Claim: System of equations for 11— (®,,(,) remains meaningful in the
continuum limit € \, 0 provided effective force F),[¢] is chosen appropriately.
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Flow equation

> A natural choice for the effective force F,[¢] is to define it so that
H,[¢] =0, i.e. the following flow equation is satisfied

OuFulel + DEL[e] - (0,G x Fulp]) = 0.

Then the unique solution of the equation for the remainder is ¢, = 0.
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Flow equation

> A natural choice for the effective force F,[¢] is to define it so that
H,[¢] =0, i.e. the following flow equation is satisfied

OuFulel + DEL[e] - (0,G x Fulp]) = 0.

Then the unique solution of the equation for the remainder is ¢, = 0.

» Constructing an exact solution F),[¢] of the flow equation is quite
complicated and is typically only possible if a small parameter is available.

» We choose instead F,L[cp] that satisfies the flow equation up to some small
error term H,[¢].
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Construction of effective force

> The force Flp] = F,_o[p] =& — A¢® + Zzuzl PN
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Construction of effective force

> The force Flp] = F,_o[p] =& — A¢® + Zzuzl X ()

» Goal: Construct an effective force F),[¢] such that

a [0] + DFM[‘P] : (aﬂGy * FH[SO]) = O()\iﬁl).

» Multilinear ansatz for effective force
i
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> Kernels Flﬁm satisfy flow equation that has a lower-triangular structure.
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Construction of effective force

> The force Flp] = F,_o[p] =& — A¢® + Zzuzl A (1)

» Goal: Construct an effective force F),[¢] such that

a [0] + DFM[‘P] : (aﬂGy * FH[SO]) = O()\iﬁl).

v

Multilinear ansatz for effective force

i
= EAZ Z jFZm z;dyr, ... dym) (1) - .. o(Ym).
i=0

v

Kernels Flﬁm satisfy flow equation that has a lower-triangular structure.

» We construct ij recursively using the above-mentioned flow equation.
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Construction of effective force

> The force Flp] = F,_o[p] =& — A¢® + Zzuzl A (1)

» Goal: Construct an effective force F),[¢] such that

a [0] + DFM[‘P] : (aﬂGy * FH[SO]) = O()\iﬁl).

v

Multilinear ansatz for effective force

i
= EAZ Z jFZm z;dyr, ... dym) (1) - .. o(Ym).
i=0

v

Kernels Flﬁm satisfy flow equation that has a lower-triangular structure.

» We construct Fﬁm recursively using the above-mentioned flow equation.

v

Finite collection of kernels FI ™ plays the role of the enhanced noise.
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Analysis of effective equation

» Recall that we want to prove a bound for the solution of stochastic
quantization equation uniform in the lattice spacing € and lattice size 7.
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Analysis of effective equation

» Recall that we want to prove a bound for the solution of stochastic
quantization equation uniform in the lattice spacing € and lattice size 7.
> We study system of equations for 1 — (9, ()
(0 + (=A)72 + 1)@, = Jy * (Fu[®,] + )
Cu=— (/)L(Hn[@n] +DF,[2,]-(0,G, *¢;))dn.

> Functionals F),, H, are expressed in terms of kernels F/ﬁm (enhanced noise).
To control F,, H,, we prove bounds uniform in &, 7 for moments of F};"™.

» At small scales 1 the effective force does not differ much from the force,
which involves a cubic nonlinearity. Consequently, .J,, # F,,[®,] ~ —A®? and
coarse-grained process @, satisfies cubic fractional heat equation

(0 + (—A)72 +1)®, + A3 = f,.
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Application of maximum principle

Lemma
IfW e C3(R x RY) and f = (0 + (—A)72)0 + W3, then |¥|3 < | flre=.
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Application of maximum principle

Lemma
IfW e C3(R x RY) and f = (0 + (—A)72)0 + W3, then |¥|3 < | flre=.

Proof.
» Let 2, € R x R? be the maximum point of ¥.

» (:W)(z,) = 0 and by positivity of kernel of e** and Jensen's inequality
(=A)7P0)(22) = Co §7 (#(2) = (e52W)(24))s™ ! 77/2ds = 0,

» Consequently, Sup,cgyrd ¥(2)® < ¥ (2)3 < f(z0) < || f] L.

To complete the proof we apply the above reasoning to —V.

15/17



Coercive estimate and tightness

We study a system of equations for (0, ji] 3yt — (@, ()
(0 + (—A)72+1)®, + ADD = f,
Cu=— g(Hu[@l/] + DF,,[ ] (af/G'l * C:/)) dn,

where
fu=(Ju* Fu[Pu] + )@i) + Cu-
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We study a system of equations for (0, ji] 3yt — (@, ()
(00 + (A2 + 1), + M =
QL = g(HII[QU] + DF’I[ ] (6 G'/ * C’/)) d’/’

where
fu=(Ju* Fu[Pu] + )@i) + Cu-

Strategy of the proof of tightness

» Apply the coercive estimate to the equation for the coarse-grained process
&, to bound |||p — (15M|H§ in terms of 1 — full; ;-

v

| = Ty Fu[@,] + AD? H’ﬁ <8 | PuI7 with finite big m.

» Estimate equation for the remainder (,, using the Gronwall lemma.

v

Choose the terminal scale ;i random and small enough.

v

1

Control moments of |& in terms of |1 — &, ||, and i~
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Conclusions and outlook

» Construction of measure of fractional ®; model in full subcritical regime.
» Flow equation approach to singular SPDEs.

» Coercive estimate based on the maximum principle.

-~J

Rotational invariance.

-~J

Sine-Gordon model, Yang—Mills theory, ...
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