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Constructive Euclidean quantum field theory
Given space Ω of field configurations ϕ : Rd Ñ R and action S : Ω Ñ R, e.g.

Spϕq “

ż

Rd

“

ϕpxqpQϕqpxq ` λϕpxq4‰

dx, Q “ 1 ´ ∆,

the goal of the constructive Euclidean QFT is to make sense of the
probability measure on Ω formally given by

νpdϕq “
1
Z

expp´Spϕqq
ź

xPRd

dϕpxq.

Osterwalder–Schrader axioms:
1. Invariance under Euclidean transformations of Rd.
2. Reflection positivity: Let pθϕqpx1, . . . , xdq “ ϕp´x1, x2, . . . , xdq. Then

ż

F pθϕqF pϕq νpdϕq ě 0

for all functionals F pϕq that depend only on ϕ|tx1ą0u.
3. Regularity: exponential integrability.
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Constructions of interacting models

Sε,τ pϕq “ εd
ÿ

xPTd
ε,τ

“

ϕpxqpQεϕqpxq ` λϕpxq4 ´ rε,τ ϕpxq2‰

, Qε “ 1 ´ ∆ε,

νε,τ pdϕq “
1
Z

expp´Sε,τ pϕqq
ź

xPTd
ε,τ

dϕpxq.

Existence of continuum and infinite volume limit and OS axioms for Φ4
d model:

§ d “ 2: [60’: Nelson, Glimm, Jaffe, Segal, Guerra, Rosen, Simon, ...],
§ d “ 3: [70’: Glimm, Jaffe, Feldman, Park, Osterwalder, Magnen, Senéor, ...].

Triviality of ϕ4 model – the continuum limit does not exist or is Gaussian:
§ d “ 4: [Aizenman, Duminil-Copin (2021)],
§ d ą 4: [Aizenman (1982)], [Fröhlich (1982)].

Several other models were constructed in d ď 3.
Only very special models are expected to exist in d “ 4.
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Fractional Φ4
3 model with cutoffs

Action of fractional Φ4
3 model with cutoffs:

Sε,τ pϕq “ ε3
ÿ

xPT3
ε,τ

“

ϕpxqpQεϕqpxq ` λ
2 ϕpxq4 ´ rε,τ ϕpxq2‰

§ T3
ε,τ – lattice with spacings ε P p0, 1s and period τ P N`,

§ Qε “ p´∆εqσ{2 ` 1,
§ p´∆εqσ{2 – fractional Laplacian of order σ ą 0,
§ rε,τ – mass counterterm.

Measure of fractional Φ4
3 model with cutoffs ε P p0, 1s, τ P N`:

νε,τ pdϕq :“ 1
Z

expp´Sε,τ pϕqq
ź

xPT3
ε,τ

dϕpxq.

We are interested in the limit ε Œ 0, τ Ñ 8 of νε,τ .
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Fractional Φ4
3 model – different regimes of parameters

Concentrate on continuum limit ντ “ limεŒ0 νε,τ for fixed size of torus τ .

Finite regime σ P p3, 8q

ντ pdϕq “ Z´1 expp´V pϕqq µτ pdϕq,

§ µτ is Gaussian measure with covariance pp´∆qσ{2 ` 1q´1,
§ V pϕq “ λ

2
ş

T3
τ

ϕpxq4 dx is the interaction potential.

Wick renormalization σ P p9{4, 3s

ντ pdϕq “ Z´1 expp´ :V pϕq:q µτ pdϕq.

Subcritical regime beyond Wick renormalization σ P p3{2, 9{4s

Short distance behavior of interacting measure ντ similar to Gaussian
measure µτ but ντ and µτ are singular [Hairer, Kusuoka, Nagoji (2024+)].

Critical and supercritical regime σ P p0, 3{2s

Continuum limit limεŒ0 νε,τ does not exist or is Gaussian [Panis (2023+)].
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Main result

Recall that the measure νε,τ of the fractional Φ4
3 model depends on:

§ lattice spacing ε P p0, 1s and size of the torus τ P N`,
§ order of fractional Laplacian σ, mass counterterm rε,τ .

Theorem [D., Gubinelli, Rinaldi (2024+)]
Assumptions: σ P p3{2, 2q.
There exists a choice of mass counterterm prε,τ qεPp0,1s,τPN`

such that:
(1) the continuum/infinite volume limits ν :“ limεŒ0 limτÑ8 νε,τ exist

(along a subsequence),
(2) ν is reflection positive, translation-invariant and has sub-Gaussian tails.

§ Similar result [Esquivel, Weber (2024+)].
§ In general uniqueness of measure not expected.
§ Non-triviality – every accumulation point non-Gaussian.
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Parabolic stochastic quantization

Idea: establish the bound below and use Prokhorov’s theorem

sup
εPp0,1s,τPN`

ż

}ϕ}B νε,τ pdϕq ă 8.

Langevin dynamic in finite dimension
Measure νpdϕq “ expp´2Spϕqqdϕ over Rn is invariant under dynamic

dϕt “ dWt ´ ∇Spϕtq dt.

Dynamical fractional Φ4
3 model on R ˆ T3

ε,τ
`

Bt ` p´∆εqσ{2 ` 1
˘

Φε,τ “ ξε,τ ´ λΦ3
ε,τ ` rε,τ Φε,τ

§ Finite-dimensional SDE in a gradient form.
§ Let Φε,τ be the global stationary solution.
§ Then νε,τ “ LawpΦε,τ pt, ‚qq for all t P R.
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Main idea of the proof of tightness

§ The following bound implies tightness

sup
εPp0,1s,τPN`

E}Φε,τ pt, ‚q}B ă 8.

§ Φε,τ satisfies a parabolic SPDE
`

Bt ` p´∆εqσ{2 ` 1
˘

Φε,τ “ ξε,τ ´ λΦ3
ε,τ ` rε,τ Φε,τ

We can use some PDE tools to prove the above bound.
§ Difficulty: SPDE becomes singular in the continuum limit ε Œ 0.

Strategy
§ Use flow equation approach to singular SPDEs to make sense of the

equation in the continuum limit.
§ Apply maximum principle to derive coercive estimate implying tightness.
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Stochastic quantization equation and coarse-grained process

Dynamical fractional Φ4
3 model
`

Bt ` p´∆qσ{2 ` 1
˘

Φ “ F rΦs.

Notation:
§ F rφs :“ ξ ´ λφ3 ` r φ – force,
§ ξ – spacetime white noise,
§ r – mass counterterm.

Coarse-grained process

Φµ :“ Jµ ˚ Φ P C8, µ P p0, 1s,

§ Φ – solution of the dynamical fractional Φ4
3 model,

§ Jµ – smooth approximation of Dirac delta of characteristic length scale µ.
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Effective force

§ In the limit ε Œ 0 the dynamical Φ4
3 model becomes a singular SPDE

`

Bt ` p´∆qσ{2 ` 1
˘

Φ “ F rΦs, F rφs :“ ξ ´ λφ3 ` r φ .

§ Idea: Rewrite the equation as a certain equation that involves only the
coarse-grained process pΦµqµPp0,1s.

`

Bt ` p´∆qσ{2 ` 1
˘

Φµ “ Jµ ˚ F rΦs

Effective force
A family of functionals Fµrφs depending differentiably µ P r0, 1s such that:

§ the boundary condition Fµ“0rφs “ F rφs holds,
§ the remainder ζµ :“ F rΦs ´ FµrΦµs is “small”.

`

Bt ` p´∆qσ{2 ` 1
˘

Φµ “ Jµ ˚ pFµrΦµs ` ζµq
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Effective equation

$

&

%

`

Bt ` p´∆qσ{2 ` 1
˘

Φµ “ Jµ ˚ pFµrΦµs ` ζµq

ζµ “ ´
şµ
0 pHηrΦηs ` DFηrΦηs ¨ pBηGη ˚ ζηqq dη

Notation:
§ G “ pBt ` p´∆qσ{2 ` 1q´1 “ fractional heat kernel,
§ BηGη :“ BηJη ˚ G – scale decomposition of the fractional heat kernel,
§ Hηrφs :“ BηFηrφs ` DFηrφs ¨ pBηGη ˚ Fηrφsq – source in equation for ζµ.

Claim: System of equations for µ ÞÑ pΦµ, ζµq remains meaningful in the
continuum limit ε Œ 0 provided effective force Fµrφs is chosen appropriately.
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Flow equation

§ A natural choice for the effective force Fµrφs is to define it so that
Hµrφs “ 0, i.e. the following flow equation is satisfied

BµFµrφs ` DFµrφs ¨ pBµGµ ˚ Fµrφsq “ 0.

Then the unique solution of the equation for the remainder is ζµ “ 0.

§ Constructing an exact solution Fµrφs of the flow equation is quite
complicated and is typically only possible if a small parameter is available.

§ We choose instead Fµrφs that satisfies the flow equation up to some small
error term Hµrφs.
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Construction of effective force

§ The force F rφs “ Fµ“0rφs “ ξ ´ λ φ3 `
ři7

i“1 λi rpiqφ.

§ Goal: Construct an effective force Fµrφs such that

BµFµrφs ` DFµrφs ¨ pBµGµ ˚ Fµrφsq “ Opλi5`1q.

§ Multilinear ansatz for effective force

Fµrφspxq “

i5
ÿ

i“0
λi

3i
ÿ

m“0

ż

F i,m
µ px; dy1, . . . , dymq φpy1q . . . φpymq.

§ Kernels F i,m
µ satisfy flow equation that has a lower-triangular structure.

§ We construct F i,m
µ recursively using the above-mentioned flow equation.

§ Finite collection of kernels F i,m
µ plays the role of the enhanced noise.
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Fµrφspxq “

i5
ÿ

i“0
λi

3i
ÿ

m“0

ż

F i,m
µ px; dy1, . . . , dymq φpy1q . . . φpymq.

§ Kernels F i,m
µ satisfy flow equation that has a lower-triangular structure.

§ We construct F i,m
µ recursively using the above-mentioned flow equation.

§ Finite collection of kernels F i,m
µ plays the role of the enhanced noise.
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Analysis of effective equation

§ Recall that we want to prove a bound for the solution of stochastic
quantization equation uniform in the lattice spacing ε and lattice size τ .

§ We study system of equations for µ ÞÑ pΦµ, ζµq
$

&

%

`

Bt ` p´∆qσ{2 ` 1
˘

Φµ “ Jµ ˚ pFµrΦµs ` ζµq

ζµ “ ´
şµ
0 pHηrΦηs ` DFηrΦηs ¨ pBηGη ˚ ζηqq dη .

§ Functionals Fµ, Hµ are expressed in terms of kernels F i,m
µ (enhanced noise).

To control Fµ, Hµ we prove bounds uniform in ε, τ for moments of F i,m
µ .

§ At small scales µ the effective force does not differ much from the force,
which involves a cubic nonlinearity. Consequently, Jµ ˚ FµrΦµs » ´λΦ3

µ and
coarse-grained process Φµ satisfies cubic fractional heat equation

`

Bt ` p´∆qσ{2 ` 1
˘

Φµ ` λΦ3
µ “ fµ.
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Plan of the talk

1. Fractional Φ4
3 model

2. Idea behind the construction

3. Flow equation approach

4. Coercive estimate



Application of maximum principle

Lemma
If Ψ P C2

0 pR ˆ Rdq and f “ pBt ` p´∆qσ{2qΨ ` Ψ3, then }Ψ}3
L8 ď }f}L8 .

Proof.
§ Let z‹ P R ˆ Rd be the maximum point of Ψ .
§ pBtΨqpz‹q “ 0 and by positivity of kernel of es∆ and Jensen’s inequality

pp´∆qσ{2Ψqpz‹q “ Cσ

ş8

0 pΨpz‹q ´ pes∆Ψqpz‹qqs´1´σ{2ds ě 0.
§ Consequently, supzPRˆRd Ψpzq3 ď Ψpz‹q3 ď fpz‹q ď }f}L8 .

To complete the proof we apply the above reasoning to ´Ψ .

15 / 17



Application of maximum principle

Lemma
If Ψ P C2

0 pR ˆ Rdq and f “ pBt ` p´∆qσ{2qΨ ` Ψ3, then }Ψ}3
L8 ď }f}L8 .

Proof.
§ Let z‹ P R ˆ Rd be the maximum point of Ψ .
§ pBtΨqpz‹q “ 0 and by positivity of kernel of es∆ and Jensen’s inequality

pp´∆qσ{2Ψqpz‹q “ Cσ

ş8

0 pΨpz‹q ´ pes∆Ψqpz‹qqs´1´σ{2ds ě 0.
§ Consequently, supzPRˆRd Ψpzq3 ď Ψpz‹q3 ď fpz‹q ď }f}L8 .

To complete the proof we apply the above reasoning to ´Ψ .

15 / 17



Coercive estimate and tightness
We study a system of equations for p0, µ̄s Q µ ÞÑ pΦµ, ζµq

$

&

%

`

Bt ` p´∆qσ{2 ` 1
˘

Φµ ` λΦ3
µ “ fµ

ζµ “ ´
şµ
0 pHηrΦηs ` DFηrΦηs ¨ pBηGη ˚ ζηqq dη ,

where
fµ “ pJµ ˚ FµrΦµs ` λΦ3

µq ` ζµ.

Strategy of the proof of tightness

§ Apply the coercive estimate to the equation for the coarse-grained process
Φµ to bound |||µ ÞÑ Φµ|||

3
µ̄ in terms of |||µ ÞÑ fµ|||

7,µ̄.

§
ˇ

ˇ

ˇ

ˇ

ˇ

ˇµ ÞÑ Jµ ˚ FµrΦµs ` λΦ3
µ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

7,µ̄
À µ̄δ |||µ ÞÑ Φµ|||

m
µ̄ with finite big m.

§ Estimate equation for the remainder ζµ using the Gronwall lemma.
§ Choose the terminal scale µ̄ random and small enough.
§ Control moments of }Φ}B in terms of |||µ ÞÑ Φµ|||µ̄ and µ̄´1.

16 / 17



Coercive estimate and tightness
We study a system of equations for p0, µ̄s Q µ ÞÑ pΦµ, ζµq

$

&

%

`

Bt ` p´∆qσ{2 ` 1
˘

Φµ ` λΦ3
µ “ fµ

ζµ “ ´
şµ
0 pHηrΦηs ` DFηrΦηs ¨ pBηGη ˚ ζηqq dη ,

where
fµ “ pJµ ˚ FµrΦµs ` λΦ3

µq ` ζµ.

Strategy of the proof of tightness
§ Apply the coercive estimate to the equation for the coarse-grained process

Φµ to bound |||µ ÞÑ Φµ|||
3
µ̄ in terms of |||µ ÞÑ fµ|||

7,µ̄.

§
ˇ

ˇ

ˇ

ˇ

ˇ

ˇµ ÞÑ Jµ ˚ FµrΦµs ` λΦ3
µ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

7,µ̄
À µ̄δ |||µ ÞÑ Φµ|||

m
µ̄ with finite big m.

§ Estimate equation for the remainder ζµ using the Gronwall lemma.
§ Choose the terminal scale µ̄ random and small enough.
§ Control moments of }Φ}B in terms of |||µ ÞÑ Φµ|||µ̄ and µ̄´1.

16 / 17



Coercive estimate and tightness
We study a system of equations for p0, µ̄s Q µ ÞÑ pΦµ, ζµq

$

&

%

`

Bt ` p´∆qσ{2 ` 1
˘

Φµ ` λΦ3
µ “ fµ

ζµ “ ´
şµ
0 pHηrΦηs ` DFηrΦηs ¨ pBηGη ˚ ζηqq dη ,

where
fµ “ pJµ ˚ FµrΦµs ` λΦ3

µq ` ζµ.

Strategy of the proof of tightness
§ Apply the coercive estimate to the equation for the coarse-grained process

Φµ to bound |||µ ÞÑ Φµ|||
3
µ̄ in terms of |||µ ÞÑ fµ|||

7,µ̄.

§
ˇ

ˇ

ˇ

ˇ

ˇ

ˇµ ÞÑ Jµ ˚ FµrΦµs ` λΦ3
µ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

7,µ̄
À µ̄δ |||µ ÞÑ Φµ|||

m
µ̄ with finite big m.

§ Estimate equation for the remainder ζµ using the Gronwall lemma.
§ Choose the terminal scale µ̄ random and small enough.
§ Control moments of }Φ}B in terms of |||µ ÞÑ Φµ|||µ̄ and µ̄´1.

16 / 17



Coercive estimate and tightness
We study a system of equations for p0, µ̄s Q µ ÞÑ pΦµ, ζµq

$

&

%

`

Bt ` p´∆qσ{2 ` 1
˘

Φµ ` λΦ3
µ “ fµ

ζµ “ ´
şµ
0 pHηrΦηs ` DFηrΦηs ¨ pBηGη ˚ ζηqq dη ,

where
fµ “ pJµ ˚ FµrΦµs ` λΦ3

µq ` ζµ.

Strategy of the proof of tightness
§ Apply the coercive estimate to the equation for the coarse-grained process

Φµ to bound |||µ ÞÑ Φµ|||
3
µ̄ in terms of |||µ ÞÑ fµ|||

7,µ̄.

§
ˇ

ˇ

ˇ

ˇ

ˇ

ˇµ ÞÑ Jµ ˚ FµrΦµs ` λΦ3
µ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

7,µ̄
À µ̄δ |||µ ÞÑ Φµ|||

m
µ̄ with finite big m.

§ Estimate equation for the remainder ζµ using the Gronwall lemma.

§ Choose the terminal scale µ̄ random and small enough.
§ Control moments of }Φ}B in terms of |||µ ÞÑ Φµ|||µ̄ and µ̄´1.

16 / 17



Coercive estimate and tightness
We study a system of equations for p0, µ̄s Q µ ÞÑ pΦµ, ζµq

$

&

%

`

Bt ` p´∆qσ{2 ` 1
˘

Φµ ` λΦ3
µ “ fµ

ζµ “ ´
şµ
0 pHηrΦηs ` DFηrΦηs ¨ pBηGη ˚ ζηqq dη ,

where
fµ “ pJµ ˚ FµrΦµs ` λΦ3

µq ` ζµ.

Strategy of the proof of tightness
§ Apply the coercive estimate to the equation for the coarse-grained process

Φµ to bound |||µ ÞÑ Φµ|||
3
µ̄ in terms of |||µ ÞÑ fµ|||

7,µ̄.

§
ˇ

ˇ

ˇ

ˇ

ˇ

ˇµ ÞÑ Jµ ˚ FµrΦµs ` λΦ3
µ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

7,µ̄
À µ̄δ |||µ ÞÑ Φµ|||

m
µ̄ with finite big m.

§ Estimate equation for the remainder ζµ using the Gronwall lemma.
§ Choose the terminal scale µ̄ random and small enough.

§ Control moments of }Φ}B in terms of |||µ ÞÑ Φµ|||µ̄ and µ̄´1.

16 / 17



Coercive estimate and tightness
We study a system of equations for p0, µ̄s Q µ ÞÑ pΦµ, ζµq

$

&

%

`

Bt ` p´∆qσ{2 ` 1
˘

Φµ ` λΦ3
µ “ fµ

ζµ “ ´
şµ
0 pHηrΦηs ` DFηrΦηs ¨ pBηGη ˚ ζηqq dη ,

where
fµ “ pJµ ˚ FµrΦµs ` λΦ3

µq ` ζµ.

Strategy of the proof of tightness
§ Apply the coercive estimate to the equation for the coarse-grained process

Φµ to bound |||µ ÞÑ Φµ|||
3
µ̄ in terms of |||µ ÞÑ fµ|||

7,µ̄.

§
ˇ

ˇ

ˇ

ˇ

ˇ

ˇµ ÞÑ Jµ ˚ FµrΦµs ` λΦ3
µ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

7,µ̄
À µ̄δ |||µ ÞÑ Φµ|||

m
µ̄ with finite big m.

§ Estimate equation for the remainder ζµ using the Gronwall lemma.
§ Choose the terminal scale µ̄ random and small enough.
§ Control moments of }Φ}B in terms of |||µ ÞÑ Φµ|||µ̄ and µ̄´1.

16 / 17



Conclusions and outlook

§ Construction of measure of fractional Φ4
3 model in full subcritical regime.

§ Flow equation approach to singular SPDEs.
§ Coercive estimate based on the maximum principle.

? Rotational invariance.
? Sine-Gordon model, Yang–Mills theory, ...
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