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Dispersive PDEs

Nonlinear Schrödinger equation (NLS):

i∂tu = ∆u+N (u)

Nonlinear wave equation (NLW):

∂2
t u = ∆u+N (u)

Korteweg-de Vries equation (KdV):

∂tu = ∂3
xu+ ∂x(u2)

in many physical situations, they are Hamiltonian PDEs:

H(u) =

ˆ
|∇u|2dx± 1

p+ 1

ˆ
|u|p+1dx

Examples of non-Hamiltonian dispersive PDEs (?):

i∂tu = ∆u+ u2 and i∂tu = ∆u+ ∂x(u2)

Two overlapping but distinct fields:

Hamiltonian PDEs (in dynamical system) and dispersive PDEs
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Normal form reductions

Goal: Apply a sequence of transforms to reduce dynamics to the “essential” part
(= normal form) + (hopefully negligible) error

Essential part = linear dynamics

+ resonant dynamics (which can not be eliminated)

General setup:
1 Separate the nonlinear part into (nearly) resonant and non-resonant parts

2 “Eliminate” the non-resonant part =⇒ introduces higher order terms

3 Repeat (or terminate the process at some finite step)

Two major normal form reductions:

Birkhoff normal form reductions
Hamiltonian PDE technique, working on a Hamiltonian

Poincaré / Poincaré-Dulac normal form reductions
dispersive PDE technique, working on an equation (or on an energy functional)
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Birkhoff normal form reductions (in Hamiltonian PDEs):

work on a Hamiltonian (for a Hamiltonian PDE) on a symplectic space

canonical, rigid, but less flexible (needs to be Hamiltonian!!)

“Eliminate”: Lie transform (by generating a new Hamiltonian flow)

Poincaré / Poincaré-Dulac normal form reductions (in dispersive PDEs):

work on an equation (usually, but can be done on a Hamiltonian / energy)

more ad hoc, less canonical, but more flexible

“Eliminate”: integration by parts (in time)

superficial analogy at a philosophical level:

regularity structures︸ ︷︷ ︸
rigid, more powerful

vs paracontrolled calculus︸ ︷︷ ︸
less canonical, more flexible

4/38



Birkhoff normal form reductions:

Kuksin-Pöschel ’96, Bourgain ’00, Bambusi-Grébert ’06, Eliasson, Craig, Wayne,
(Procesi)2, Kappeler, Delort, Szeftel, Faou, Berti, Colliander-Kwon-Oh,
Gérard-Grellier, Bernier, Robert, ...

rational normal form: Bernier-Faou-Grébert ’20

Poincaré / Poincaré-Dulac normal form reductions:

Shatah ’85, Nikolenko ’86, Babin-Ilyin-Titi ’11, Kwon-Oh ’12, Guo-Kwon-Oh ’13,
Erdoğan-Tzirakis ’13, de Suzzoni ’15, Oh-Tzvetkov ’17, Oh-Sosoe-Tzv. ’18,
Oh-Wang ’18, Kishimoto, Correia, ...

space-time resonance method: Germain-Masmoudi-Shatah ’12

also integration by parts in spatial frequencies

renormalization group method: Chen-Goldenfeld-Oono ’94 in physics
(not to be confused with those by Kupiainen, Duch, etc.)

“half-step” normal form (in my view)
Pocovnicu ’13: first and second order effective dynamics for half NLW

on R (Gérard-Grellier ’12: on T via Birkhoff NF)
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Digression: complete integrability

Q: What is integrability?

Solvability via integration by quadratures (i.e. in an explicit manner)

Finite dimensional Hamiltonian dynamics on R2N :
dp

dt
=
∂H

∂q
,

dq

dt
= −∂H

∂p

There exist H1(= H), H2, . . . , HN all in involution: {Hj , Hk} = 0

=⇒ (Liouville) The system is integrable

Action-angle variables (Liouville-Arnold):

(p, q)
symplect.7−→ (I, ϕ) such that dIdt = 0, dϕdt = c(I)

Infinite dimensional case (= PDEs): various notions of integrability
infinitely many conservation laws (⇐= bi-Hamiltonian structure)
Lax pair formulation
Action-angle coordinates: invariant tori (quasi- / almost-periodic motions)

...
Reducibility (to the linear equation): No Hamiltonian structure required
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Kolmogorov-Arnold-Moser theory

Given an integrable Hamiltonian H(p, q) ( action-angle coordinates), consider a
perturbed Hamiltonian H(p, q) + εεεF (p, q)

KAM theory = study how invariant tori are deformed under a small perturbation
of an integrable system

Kuksin-Pöschel ’96: first result in the PDE setting

Birkhoff normal form
finite-dimensional invariant tori
strong non-resonant assumption
external parameter (Cantor-like sets)

Infinite-dimensional invariant tori: Bourgain ’96, ’05, Pöschel ’02, ...

non-integrable models

Bernier-Grébert-Robert ’24: infinite-dim’l tori without an external parameter

=⇒ Construction of quasi- and almost-periodic solutions
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Reducibility and normal form method
Reducibility: By a local change of the coordinates, transform

∂tx = F (x)

to the associated linear equation:

∂tz = dF (0)z

in a neighborhood of the origin (weak form of integrability)

Nikolenko ’86: Poincaré normal form method (KAM / Nash-Moser scheme)

non-resonant NLS on Td = (R/Z)d, assuming some Diophantine property.
Also, for the heat equation

McKean-Shatah ’91: “local reducibility” (basically small data scattering)

Chung-Guo-Kwon-Oh ’17: reducibility for i∂tu+ ∂2
xu = i∂x(u2)

infinite iteration of the Poincaré-Dulac normal form reductions, generating
higher order terms, which corresponds to the (convergent) Taylor series expansion

of the Hopf-Cole transform “w = e−
i
2

´
udx”: i∂tw + ∂2

xw = 0

=⇒ all small solutions are periodic in time

Note: No Hamiltonian structure =⇒ Birkhoff normal form method is not applicable
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Other applications:
1 small data global well-posedness & scattering: Shatah ’85

2 almost global existence: Shatah ’85, Bambusi-Delort-Grébert-Szeftel ’07

3 construction of solutions: Babin-Ilyin-Titi ’11, Guo-Kwon-Oh ’13 (∞-iteration)
4 unconditional uniqueness: Kwon-Oh ’12, Oh-Sosoe-Wang ’25 (for SKdV)
5 nonlinear smoothing & growth of Sobolev norms (also Talbot effect):

Bourgain ’04, Colliander-Kwon-Oh ’12, Erdoğan-Tzirakis ’13, Bambusi-Grébert ’21,
Chapouto-Killip-Vişan ’24 (quasi-periodic in space)

6 long-time stability / Nekhoroshev-type stability: Bambusi-Nekhoroshev ’02,
Bambusi-Grébert ’06, Faou-Grébert ’13, Bambusi-Gérard ’24

7 Arnold diffusion (divergence after a long time):
Colliander-Staffilani-Keel-Takaoka-Tao ’10, Carles-Faou ’12 (geometric optics)

8 energy estimate (P-D NF applied to the equation satisfied by an energy):
higher order I-method (by adding correction terms): CKSTT ’03, ’08
quasi-invariance: Oh-Tzvetkov ’17, Oh-Sosoe-Tzv. ’18, Oh-Sosoe-Tzv. ’21

9 modulated dispersive PDEs (replacing the sewing lemma): Gubinelli-Li-Li-Oh ’25
10 numerical scheme (normal form integrator): Chapouto-Forlano-Oh ’25
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Small data global well-posedness & scattering

Quadratic NLW on Rd:

∂2
t u = ∆u+N (∂tu,∇u, ∂2

t u,∇2u), N (v) = O(|v|2)

decay estimate: ‖u(t)‖L∞ . |t|−
d−1

2

=⇒ ‖u(t)‖Z ≤ ‖u(0)‖Z +

ˆ t

0

|t|−
d−1

2 ‖u(t′)‖Zdt′

d ≥ 4: |t|−
d−1

2 is integrable on [1,∞) =⇒ small data global well-posedness

d = 3: |t|−1 is log divergent =⇒ almost global existence

Idea: Use a NF reduction to transform to a cubic nonlinenarity

Poincaré normal form reduction: Shatah ’85

non-resonant (can remove the quadratic part completely)
⇐⇒ null condition: Klainerman ’85 (vector field method)

Shatah ’85, Klainerman ’85: small data global well-posedness for d = 3

(almost global existence Tε ∼ exp( c
ε2

) when d = 2)

W. Craig ’16, “Birkhoff normal form for nonlinear wave equations” on Youtube
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Craig ’16: “If you have small data scattering, why care about NF?” (47:15 on Youtube)

NF iterations =⇒ linear equation

scattering: u(t)
t→∞
7−→ linear solution W (t)u+

t→0
7−→ flow back by linear flow

Both conjugate the equation into a linear equation
=⇒ can think of small data scattering as a NF but it is not explicit

Space-time resonance method: Germain-Masmoudi-Shatah ’12

Birkhoff / P-D normal form: time resonance (no oscillation in time)

Ex: quadratic NLS: i∂tu+ ∆u = u2

Consider two wave packets uj0, j = 1, 2, localized at x = 0 and ξ ∼ ξj
group velocity∇ω(ξj) (ω(ξ) = |ξ|2: dispersion relation)
=⇒ If ∇ω(ξ1) = ∇ω(ξ2), two wave packets stay together (space resonance)

⇐⇒ ∇ξ1Φ(ξ, ξ1) = 0 where Φ(ξ, ξ1) = ω(ξ)− ω(ξ1)− ω(ξ − ξ1)

Use integration by part in ξ1 (need to work in weighted Sobolev spaces)
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Birkhoff normal form reduction (1-d NLS)

Idea: Apply a sequence of symplectic transformations to the nonlinear part

N(q) =
∑

n1−n2+···−n2p+2=0

qn1 q̄n2 · · · qn2p+1 q̄n2p+2

of the original Hamiltonian into expressions involving only (nearly) resonant
monomials of the form

qn1
q̄n2
· · · qn2r−1

q̄n2r

where n1 − n2 + · · ·+ n2r−1 − n2r = 0 and

|D(n̄)| ≤ K|D(n̄)| ≤ K|D(n̄)| ≤ K with D(n̄) := n2
1 − n2

2 + · · ·+ n2
2r−1 − n2

2r

and some large K � 1 (chosen later), plus an error.

Goal: Obtain a transformed HamiltonianH of the form:

H(q) = H0(q)︸ ︷︷ ︸
original quadratic part

+ N0(q)︸ ︷︷ ︸
(nearly) resonant

+ Nr(q)︸ ︷︷ ︸
small error
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Change of coordinates: Consider a Hamiltonian flow associated to F :

qt = i
∂F

∂q̄

Let Γt = Γt(F ) denote the flow map generated by F at time t

Lemma: Chain rule
Let Γt be as above. Then, for a smooth function G, we have

d

dt
(G ◦ Γt) = {G,F} ◦ Γt,

where {H1, H2} = i
∑
n

[
∂H1

∂qn
∂H2

∂q̄n
− ∂H1

∂q̄n
∂H2

∂qn

]
(Poisson bracket)

Let Γ := Γt=1 =Γ := Γt=1 =Γ := Γt=1 = Lie transform. By Taylor expansion of G ◦ Γ centered at t = 0,

G ◦ Γ =

∞∑
k=0

1

k!
{G,F}(k),

where {G,F}(k) denotes the k-fold Poisson bracket of G with F , i.e.

{G,F}(k) := {· · · {G,F}, F}, · · · , F}︸ ︷︷ ︸
k times

, {G,F}(0) = G
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General strategy: Suppose H = H0︸︷︷︸
quadratic part

+ N . Write N as N = N0 +N1:

resonant part N0: |D(n̄)| ≤ K
non-resonant part N1: |D(n̄)| > K

Goal: Eliminate the non-resonant part N1 by the Lie transform (for suitable F )

=⇒ the transformed HamiltonianH ′ = H ◦ ΓH ′ = H ◦ ΓH ′ = H ◦ Γ is given by

H ′ = H ◦ Γ = H0 ◦ Γ +N0 ◦ Γ +N1 ◦ Γ

= H0 +N0 +N1 + {H0, F}N1 + {H0, F}N1 + {H0, F}+ {N0, F}+ {N1, F}+ h.o.t.

Choose F satisfying the homological equation: {H0, F} = −N1{H0, F} = −N1{H0, F} = −N1

=⇒ this removes the non-resonant part N1

Define resonant part N ′0 and non-resonant part N ′1 of H ′ by

N ′0 := N0 + resonant part of {N0, F}+ {N1, F}+ h.o.t.

N ′1 := non-resonant part of {N0, F}+ {N1, F}+ h.o.t.
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More concretely, consider (a part of) a Hamiltonian obtained at some stage:

N(q, q̄) =
∑

n1−n2+···−n2r=0

c(n̄)qn1
q̄n2
· · · qn2r−1

q̄n2r
= N0︸︷︷︸

resonant

+ N1︸︷︷︸
non-resonant

H0(q) =
∑
n

n2|qn|2 ⇐= quadratic part

=⇒ Choose F ∼ “D−1N1”. More precisely,

F (q, q̄) =
∑

n1−n2+···−n2r=0
|D(n̄)|>K

c(n̄)

D(n̄)D(n̄)D(n̄)
qn1 q̄n2 · · · qn2r−1 q̄n2r

Then, F satisfies the homological equation: {H0, F} = −N1

{H1, H2} = i
∑
n

[
∂H1

∂qn

∂H2

∂q̄n
− ∂H1

∂q̄n

∂H2

∂qn

]
At each step, the degrees of non-resonant terms increase at least by 2
since degF ≥ 4
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General case: Given N (q, q̄) =
∑

n1−n2+···−n2r=0

c(n̄)qn1 q̄n2 · · · qn2r−1 q̄n2r ,

define the “size” of a Hamiltonian N by

‖N‖ = sup
∗

∑
n

|c(n̄)||q(1)
n1
||q(2)
n2
| · · · |q(2r)

n2r
|,

where the supremum is taken over factors q(j), satisfying some condition

ex: all factors . 1 in L2, and all but two factors . 1 in H1

Algebra property: H1 and H2, homogeneous Hamiltonians. Then, we have

‖{H1, H2}‖ . ‖H1‖‖H2‖

Inductive hypothesis: Assume that the Hamiltonian is of the form:

H(q) =
∑
n

n2|qn|2 + N0(q)︸ ︷︷ ︸
|D(n̄)|≤K

+ N1(q)︸ ︷︷ ︸
|D(n̄)|>K|D(n̄)|>K|D(n̄)|>K

+Nr(q)

such that ‖N0‖, ‖N1‖ . 1 and

remainder part Nr: ‖Nr‖ < K−C for some large C > 0

Remark: The initial Hamiltonian satisfies this hypothesis (by Sobolev)
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Given non-resonant part

N1 =
∑

n1−n2+···−n2r=0
|D(n̄)|>K|D(n̄)|>K|D(n̄)|>K

c(n̄)qn1 q̄n2 · · · qn2r−1 q̄n2r ,

choose F (q, q̄) ∼ “D−1D−1D−1N1” such that {H0, F} = −N1. Then, we have

H′ = H ◦ Γ = H0 +N0 +N1

+ {H0, F}+ {N0, F}+ {N1, F}+ h.o.t. +Nr ◦ Γ

= H0 +N0 + {N0, F}+ {N1, F}+ h.o.t. +Nr ◦ Γ

Since |D(n̄)| > K, we have ‖F‖ ≤ K−1‖N1‖ .K−1K−1K−1

By Taylor expansion and algebra property, Nr ◦ Γ is “small”:

‖Nr ◦ Γ‖ ≤ ‖Nr‖
∞∑
k=0

‖F‖k

k!
. ‖Nr‖ . K−C

Higher order terms with sufficiently high degrees are also small

⇐= new error part N ′r
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Remaining terms N:

N :=

M∑
k=1

1

k!
{N0, F}(k) +

.K−1‖N1‖︷ ︸︸ ︷
M∑
k=1

1

k!
{N1, F}(k) +

M∑
k=2

1

k!
{H0, F}(k)

From ‖{N0, F}‖ . K−1‖N0‖‖N1‖ . K−1‖N1‖

=⇒ ‖{N0, F}(k)‖ . K−k‖N1‖ =⇒ ‖N‖ . K−1‖N1‖

With N = N0 + N1 = resonant part + non-resonant part,

H′ = new Hamiltonian := H0 +N ′0 +N ′1 +N ′r

new resonant part: N ′0 := N0 + N0 with ‖N ′0‖ . 1

new non-resonant part: N ′1 := N1 with ‖N ′1‖ .K−1K−1K−1‖N1‖
⇐= gets smaller at each iteration step

After sufficiently many iterations, we obtain

H(q) =
∑
n

n2|qn|2 +N0(q)︸ ︷︷ ︸
resonant

+Nr(q),

where ‖N0‖ . 1 and ‖Nr‖ . K−C
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Small data setting: no need to assume largeness K � 1, since the degree of
non-resonant part gets higher (and hence smaller at each iteration step)

needs a non-resonant condition, i.e. D(n̄) 6= 0, often coming from Diophantine
assumption + external parameter

can combine with the dispersive techniques (Bourgain ’04, ’04)

Ex 1: use the space-time estimate to obtain improved spatial estimates.

L6-Strichartz estimate (Bourgain ’93) implies

max
a∈Z

∣∣∣∣ ∑
n1−n2+···−n6=0

D(n̄)=a

|c(n̄)||q(1)
n1
||q(2)
n2
| · · · |q(6)

n6
|
∣∣∣∣ . n0+

max

6∏
j=1

‖q(j)
nj ‖L2

Ex 2: (upside-down) I-method: Bourgain ’04, Colliander-Kwon-Oh ’12
used Birkhoff NF reductions in place of P-D NF reductions
(for getting higher order modified energies)
- Also with Bourgain’s high-low method (Bourgain ’98)
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Poincaré-Dulac normal form reductions

Poincaré-Dulac Theorem: Consider a differential equation:

∂tx = Ax+ F (x) = Ax+

∞∑
j=a

fj(x), x = (x1, x2, . . . , xN ),

where fj(x) denotes nonlinear terms of degree j in x

Under some assumption, we can introduce a sequence of changes of variables:

z1 = x+ y1,

z2 = z1 + y2 = x+ y1 + y2,

...

z = z∞ = x+

∞∑
j=1

yj ,

to reduce the system to the canonical form:

∂tz = Az +G(z) = Az +

∞∑
j=a

gj(z)
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Canonical form: ∂tz = Az +G(z) = Az +

∞∑
j=a

gj(z)

where gj(z) = resonant monomials of degree j in z

After the J th step, we have

∂tzJ = AzJ +GJ(zJ),

where monomials of degree up to J(a− 1) + a− 2 in GJ(zJ) are all resonant

Interaction representation: x(t) = e−tAx(t), etc.

∂tx = Ax+ F (x) =⇒ ∂tx = e−tAF (etAx)

Also, the resulting canonical equations become∂tzJ = e−tAGJ(etAzJ), after the J th step

∂tz = e−tAG(etAz), J =∞

Remark: interaction representation (terminology from quantum mechanics)
- widely used in dispersive PDEs (such as the Fourier restriction norm method)
- allows us to easily capture multilinear dispersive oscillations
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After integrating in time, we obtain
zJ(t) = zJ(0) +

ˆ t

0

e−t
′AGJ(et

′AzJ(t′))dt′, after the J th step

z(t) = z(0) +

ˆ t

0

e−t
′AG(et

′Az(t′))dt′, J =∞

The main goal point of the classical Poincaré-Dulac normal form reductions is to
renormalize the flow so that it is expressed in terms of resonant terms. We, however,
introduce the following change of viewpoint to study dispersive PDEs

Generalized Duhamel formulation:

After the J th step:

x(t) = x(0)−
J∑
j=1

[
yj(t)− yj(0)

]
+

ˆ t

0

e−t
′AGJ(et

′AzJ(t′))dt′

With J =∞:

x(t) = x(0)−
∞∑
j=1

[
yj(t)− yj(0)

]
+

ˆ t

0

e−t
′AG(et

′Az(t′))dt′

Original Duhamel formulation: x(t) = x(0) +

ˆ t
0

e−t
′AF (et

′Ax(t′))dt′
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This change of viewpoint turned out to be useful in various settings:

Unconditional uniqueness for dispersive PDEs in low regularities
uniqueness in the entire C([0, T ];Hs)

construction of solutions without any auxiliary functions spaces such as Strichartz
spaces or the Xs,b-spaces
precursor (two iterations & no mention of NF): Babin-Ilyin-Titi ’11, Kwon-Oh ’12

infinite iterations: Guo-Kwon-Oh ’13 , Oh-Wang ’21, Kishimoto, etc.

Cubic NLS on TTT: interaction representation u(t) = S(−t)u(t):

∂tûn = −i
∑

n=n1−n2+n3

e−iφ(n̄)tûn1 ûn2 ûn3 =: −iN (1)(u)n,

where φ(n̄) := n2 − n2
1 + n2

2 − n2
3 = 2(n2 − n1)(n2 − n3)

Given a parameter K = K(‖u(0)‖L2) > 0, write

N (1)(u) = N (1)
0 (u)︸ ︷︷ ︸

nearly resonant

+ N (1)
1 (u)︸ ︷︷ ︸

non-resonant

, depending on |φ(n̄)| ≤ K|φ(n̄)| ≤ K|φ(n̄)| ≤ K or> K> K> K

Nearly resonant partN (1)
0 (u) satisfies a good estimate

No estimate is available for the (highly) non-resonant partN (1)
1 (u)

=⇒ Apply a NF reduction toN (1)
1 (u)
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e−iφ(n̄)tûn1 ûn2 ûn3 =: −iN (1)(u)n,

where φ(n̄) := n2 − n2
1 + n2

2 − n2
3 = 2(n2 − n1)(n2 − n3)

Given a parameter K = K(‖u(0)‖L2) > 0, write

N (1)(u) = N (1)
0 (u)︸ ︷︷ ︸

nearly resonant

+ N (1)
1 (u)︸ ︷︷ ︸

non-resonant

, depending on |φ(n̄)| ≤ K|φ(n̄)| ≤ K|φ(n̄)| ≤ K or> K> K> K

Nearly resonant partN (1)
0 (u) satisfies a good estimate

No estimate is available for the (highly) non-resonant partN (1)
1 (u)

=⇒ Apply a NF reduction toN (1)
1 (u)
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1st step of NF reductions (= differentiation by parts)

N (1)
1 (u)n =

∑
n=n1−n2+n3

|φ(n̄)|>K

eiφ(n̄)tûn1
ûn2

ûn3

= ∂t

[∑
∗

eiφ(n̄)t

φ(n̄)
ûn1

ûn2
ûn3

]
−
∑
∗

eiφ(n̄)t

φ(n̄)
∂t
(
ûn1

ûn2
ûn3

)
=: ∂t B(2)(u)n︸ ︷︷ ︸

easy

+N (2)(u)n︸ ︷︷ ︸
quintic

Divide the quintic term N (2)(u) into

(i) nearly resonant part N (2)
0 (u): bounded in Hs

⇐= modulation restriction + divisor counting argument

(ii) non-resonant part N (2)
1 (u): no estimate available

=⇒ 2nd step of NF reductions

Repeat the process indefinitely
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Difficulty:
When we apply differentiation by parts, the time derivative may fall on any of
the factors ûnj . In general, the structure of such terms can be very complicated,
depending on where the time derivative falls

We use ordered trees for indexing such terms arising in the general steps of the NF
reductions

ordered trees = (ternary) trees “with memory”
⇐= The order in which time derivative fall matters!!

Example: ∂t( ) = + + =⇒

∂t( ) = + + + +

∂t( ) = + + + +

∂t( ) = · · ·

As ordered trees, and are different!!

Indexing via ordered trees allows us to handle combinatorial complexity
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After the JJJth step:

∂tu(t) = ∂t

( J+1∑
j=2

B(j)(u)

)
+

J+1∑
j=1

N (j)
0 (u) +N (J+1)

1 (u)︸ ︷︷ ︸
bad

In order to justify the formal computations, we consider frequency truncated initial data

P≤Nu(0) and the associated smooth solutions (No need if u(t) ∈ L3
x)

In general, we only have∣∣N (J+1)
1

∣∣ ≤ F (NNN,JJJ) with lim
N→∞N→∞N→∞

F (N, J) =∞ for each fixed J ∈ NJ ∈ NJ ∈ N

This, however, does not cause an issue since we also show

lim
J→∞J→∞J→∞

F (N, J) = 0 for each fixedN ∈ NN ∈ NN ∈ N.

Therefore, by first taking the limit J →∞J →∞J →∞ and thenN →∞N →∞N →∞, we conclude that the

error termN (J+1)
1 vanishes in the limit (order is crucial)

Putting all together, we obtain the normal form equation:

u(t) = u(0) +
∞∑
j=2

B(j)(u)

∣∣∣∣t
0

+

ˆ t

0

∞∑
j=1

N (j)
0 (u)(t′)dt′

⇐= B(j)(u) of deg 2j − 1, N (j)
0 (u) of deg 2j + 1
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Normal form equation: B(j)(u) of deg 2j − 1, N (j)
0 (u) of deg 2j + 1

u(t) = u(0) +
∞∑
j=2

B(j)(u)

∣∣∣∣t
0

+

ˆ t

0

∞∑
j=1

N (j)
0 (u)(t′)dt′

Moral: This infinite iteration of NF reductions allows us to exchange analytical
difficulty with algebraic / combinatorial difficulty

relevant analysis involves simple Cauchy-Schwarz’s inequality

can be viewed as an (analytical) renormalization
- equivalent to the original cubic NLS for smooth solutions (in H

1
6 (T) ⊃ L3(T))

but behaves better for rough solutions:

original cubic NLS: UU holds in Hs for s ≥ 1
6 (sharp)

NF equation: UU holds for s ≥ 0 (and in FLp for p <∞, i.e. ∼ H− 1
2 +)

Various applications:

nonlinear smoothing, growth of Sobolev norm, reducibility, energy estimate, ...

Note: Not to be confused with a power series expansion, where we use ordinary trees
Christ ’07, Oh ’17, Chevyrev-Oh-Wang ’22, etc.
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Energy estimate: Oh-Wang ’18, Oh-Sosoe-Tzvetkov ’18

Integration by parts is often useful in establishing a good energy estimate

⇐⇒ NF reduction on the evolution equation ∂tE(u) = · · · satisfied by the
(non-conserved) energy functional E(u)

higher order I-method via adding correction terms (= boundary terms in P-D NF)
energy estimate in the short-time Fourier restriction norm method
energy estimate for proving quasi-invariance

...

For bookkeeping, we use “ordered bi-trees” that grow in two directions

Defining a modified energy E∞(u) of an infinite order is given by

E∞(u) = ‖u‖2Hs −
∞∑
j=2

∑
n∈Z

〈n〉2sB(j)(u)(n),

we obtain

E∞(u)(t)− E∞(u)(0) =

ˆ t

0

∞∑
j=1

∑
n∈Z

〈n〉2sN (j)
0 (u)(n, t′)dt′,

where RHS satisfies good estimates

Remark: For NLW, “more classical” IBP in space (not in time) is useful
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Normal form approach to stochastic dispersive PDE

Stochastic KdV on TTT: ∂tu = ∂3
xu+ ∂x(u2) + Φξ

ξ = space-time white noise

Φ ∈ HS(L2;Hs) such that “Φξ(t) ∈ Hs
x”

de Bouard-Debussche-Tsutsumi ’04: local well-posedness for s > − 1
2

When Φ = Id (corresponding to the space-time white noise forcing), s < − 1
2

Oh ’09: local well-posedness
Oh-Quastel-Sosoe ’24: global dynamics (evolution system of measures)

Unconditional uniqueness?

uniqueness in the results above holds in (some versions of) the Xs,b-spaces

UU is a concept of uniqueness which does not depend on how solutions are
constructed and thus is of fundamental importance for SPDEs (ex: agreement with
limits of time discretizations)

Theorem: Oh-Sosoe-Wang ’25

If Φ ∈ HS(L2;L2), then SKdV is unconditionally well-posedness in L2(T)
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Theorem: Oh-Sosoe-Wang ’25

If Φ ∈ HS(L2;L2), then SKdV is unconditionally well-posedness in L2(T)

L2 is sharp in view of the quadratic nonlinearity

normal form approach, applicable to other stochastic dispersive PDEs
- a new way to construct solutions to stochastic dispersive PDEs

transform SKdV with an additive noise to a normal form equation with
multiplicative noises

With φ(n̄) = n3 − n3
1 − n3

2 = 3nn1n2, consider

N (u)(t, n) = in
∑

n=n1+n2
|φ(n̄)|>K

eiφ(n̄)tûn1(t)ûn2(t)

Ito’s lemma: d(X1X2X3) = X2X3dX1 +X1X3dX2 +X1X2dX3

+ 1
2
X1d〈X2, X3〉+ 1

2
X2d〈X1, X3〉+ 1

2
X3d〈X1, X2〉

X1 = eiφ(n̄)t

iφ(n̄) , X2 = ûn1 , and X3 = ûn2 (for fixed n, n1, and n2)

Only the bracket 〈X2, X3〉 is non-zero, but
〈X2, X3〉 = 1n1+n2=0 = 0 (since we can assume n 6= 0)
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Ito’s lemma: d(X1X2X3) = X2X3dX1 +X1X3dX2 +X1X2dX3

+ 1
2
X1d〈X2, X3〉+ 1

2
X2d〈X1, X3〉+ 1

2
X3d〈X1, X2〉

X1 = eiφ(n̄)t

iφ(n̄) , X2 = ûn1
, and X3 = ûn2

(for fixed n, n1, and n2)

=⇒
ˆ t

0

ineiφ(n̄)t′ ûn1(t′)ûn2(t′)dt

=
eiφ(n̄)t′

3n1n2
ûn1

(t′)ûn2
(t′)

∣∣∣∣t
0

− 2

ˆ t

0

eiφ(n̄)t′

3n1n2
ûn1

(t′)dûn2
(t′)dûn2(t′)dûn2
(t′),

where dûn2
(t) = in2

∑
n2=k1+k2

e3in2k1k2tûk1
(t)ûk2

(t)︸ ︷︷ ︸
continuous in time if u(t) ∈ L2

x

+ Φ(n2)eitn
3
2dBn2

(t)

ˆ t

0

eiφ(n̄)t′

3n1n2
ûn1(t′)Φ(n2)eit

′n3
2dBn2(t′) ⇐= multiplicative noise!!

This yields UU for s > 1
2

one more NF step to get to L2-regularity (as in the case of the deterministic KdV)

infinite iteration is needed for SNLS (infinitely many multiplicative noise terms)
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Modulated dispersive PDEs

Modulated KdV on TTT: ∂tu+ ∂3
xu · ∂tw∂tw∂tw = ∂x(u2)

modulation function w : R+ → R, continuous but not differentiable

(ρ, γ)(ρ, γ)(ρ, γ)-irregularity (Chouk-Gubinelli ’15, Catellier-Gubinelli ’16): Given ρ > 0,
0 < γ < 1, and T > 0, w is (ρ, γ)-irregular on [0, T ] if we have

|Φwt,r(a)| :=
∣∣∣∣ ˆ t

r

eiaw(t′)dt′
∣∣∣∣ . |t− r|γ〈a〉−ρ〈a〉−ρ〈a〉−ρ, uniformly in a ∈ R, 0 ≤ r ≤ t ≤ T

a fractional Brownian motion of Hurst index H ∈ (0, 1) is a.s. (ρ, γ)-irregular
for any ρ < 1

2H (with some 1
2 < γ < 11
2 < γ < 11
2 < γ < 1)

a “generic” δ-Hölder continuous function is (ρ, γ)-irregular for any ρ < 1
2δ

Interaction representation: u(t) = Uw(t)−1u(t), where Uw(t) = e−w(t)w(t)w(t)∂3
x

=⇒ u(t) = u0 +

ˆ t

0

Uw(t′)−1∂x
(
(Uw(t′)u)2

)
dt′

Main task: Give a meaning to the Duhamel integral term
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u(t) = u0 +

ˆ t

0

Uw(t′)−1∂x
(
(Uw(t′)u)2)dt′

Main task: Give a meaning to the Duhamel integral term
Chouk-Gubinelli ’15, C-G-Li-Li-Oh ’24:
- construct as a nonlinear Young integral IX(u) with the driver X:

Xt,r(f1, f2) =

ˆ t

r

Uw(t′)−1∂x
(
(Uw(t′)f1)(Uw(t′)f2)

)
dt′, f1, f2 on T

=⇒ Fx
(
Xt,r(f1, f2)

)
(n) = in

∑
n=n1+n2

Φwt,r(φ(n̄))f̂1(n1)f̂2(n2)

|Φwt,r(φ(n̄))| =
∣∣ ´ t
r
eiφ(n̄)w(t′)dt′

∣∣ . |t− r|γ〈n〉−ρ〈n1〉−ρ〈n2〉−ρ〈n〉−ρ〈n1〉−ρ〈n2〉−ρ〈n〉−ρ〈n1〉−ρ〈n2〉−ρ

⇐= yields smoothing of arbitrary degree (by taking ρ� 1)

If u ∈ Cααα([0, T ];Hs) with γ + α > 1γ + α > 1γ + α > 1, then the sewing lemma (Gubinelli ’04)
allows us to construct IX(u) = X(u•,u•) as a nonlinear Young integral

=⇒ local well-posedness of the modulated KdV in Hs(T) for s ≥ −ρs ≥ −ρs ≥ −ρ
(regularization by noise)

Robert ’24: analogous result by the Fourier restriction norm method
(adapted to U2- and V 2-spaces)
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=⇒ uniqueness holds only conditionally in Cα([0, T ];Hs), α ∼ 1
2

Goal: Implement a normal form approach for modulated dispersive PDEs

∂t
eiφ(n̄)t

iφ(n̄) = eiφ(n̄)t does not make sense if we replace t by w(t)

With Φwt,r(φ(n̄)) =
´ t
r
eiφ(n̄)w(t′)dt′, we instead use

∂rrrΦ
w
t,rrr(φ(n̄)) = −eiφ(n̄)w(rrr)

Then, by integration by parts, we have

û(t, n)− û(0, n) = in

ˆ t

0

∑
n1,n2∈Z∗
n=n1+n2

eiφ(n̄)w(t′)û(t′, n1)û(t′, n2)dt′
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=⇒ uniqueness holds only conditionally in Cα([0, T ];Hs), α ∼ 1
2

Goal: Implement a normal form approach for modulated dispersive PDEs

∂t
eiφ(n̄)t

iφ(n̄) = eiφ(n̄)t does not make sense if we replace t by w(t)

With Φwt,r(φ(n̄)) =
´ t
r
eiφ(n̄)w(t′)dt′, we instead use

∂rrrΦ
w
t,rrr(φ(n̄)) = −eiφ(n̄)w(rrr)

Then, by integration by parts, we have

û(t, n)− û(0, n) = −in
∑

n1,n2∈Z∗
n=n1+n2

ˆ t

0

∂t′Φ
w
t,t′(φ(n̄))û(t′, n1)û(t′, n2)dt′

= in
∑

n1,n2∈Z∗
n=n1+n2

Φwt,0(φ(n̄))û(0, n1)û(0, n2)

+ 2in
∑

n1,n2∈Z∗
n=n1+n2

ˆ t

0

Φwt,t′(φ(n̄))∂tû(t′, n1)û(t′, n2)dt′
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=⇒ uniqueness holds only conditionally in Cα([0, T ];Hs), α ∼ 1
2

Goal: Implement a normal form approach for modulated dispersive PDEs

∂t
eiφ(n̄)t

iφ(n̄) = eiφ(n̄)t does not make sense if we replace t by w(t)

With Φwt,r(φ(n̄)) =
´ t
r
eiφ(n̄)w(t′)dt′, we instead use

∂rrrΦ
w
t,rrr(φ(n̄)) = −eiφ(n̄)w(rrr)

Then, by integration by parts, we have

û(t, n)− û(0, n) = −in
∑

n1,n2∈Z∗
n=n1+n2

ˆ t

0

∂t′Φ
w
t,t′(φ(n̄))û(t′, n1)û(t′, n2)dt′

= Fx
(
Xt,0(u(0))

)
(n) +

ˆ t

0

Fx
(
Nt,t′(u(t′))

)
(n)dt′

where Fx
(
Nt,t′(u(t′))

)
(n)

= −2n
∑

n1,n2,n3∈Z∗
n=n123

Φwt,t′(φ(n, n12, n3))eiφ(n12,n1,n2)w(t′)n12

3∏
j=1

û(t′, nj)
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Normal form equation for the modulated KdV:

u(t) = u(0) + Xt,0(u(0)) +

ˆ t

0

Nt,t′(u(t′))dt′

locally well-posed in L2 via a contraction argument in C([0, T ];L2)

without using any auxiliary function space

equivalent to the original modulated KdV for u ∈ C([0, T ];L2)

Theorem: Gubinelli-Li-Li-Oh ’25

The modulated KdV on T is unconditionally well-posed in L2(T)

L2 is sharp in view of the quadratic nonlinearity

The usual NF argument requires a large parameter K � 1 to create smallness for
boundary terms. In this revised NF argument, the boundary term is given by
Xt,0(u(0)) which becomes small for short time intervals. Hence, no need for a
large parameter (simplification over the usual NF argument)
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Nonlinear Young integration approach via the sewing lemma:

u(t) = u(r) + Xt,r(u(r))− (ΛδΘ)t,r− (ΛδΘ)t,r− (ΛδΘ)t,r, Θt,r = Xt,r(u(r))

Λ = sewing map, δ = coboundary map

Normal form equation for the modulated KdV:

u(t) = u(r) + Xt,r(u(r)) +

ˆ t

r

Nt,t′(u(t′))dt′
ˆ t

r

Nt,t′(u(t′))dt′
ˆ t

r

Nt,t′(u(t′))dt′

In the current modulated setting, the normal form reduction with the controlled
structure (i.e. u is a solution) extends the construction of the nonlinear Young
integral IX(u) to the much larger class C([0, τ ];Hs(T)), providing a concrete
expression for ΛδΘ.

Modulated cubic NLS on TTT: i∂tu+ ∂2
xu · ∂tw = |u|2u

Theorem: Gubinelli-Li-Li-Oh ’25

The modulated cubic NLS on T is unconditionally well-posed in H
1
6 (T)

H
1
6 is sharp in view of the cubic nonlinearity

While an infinite iteration of NF reductions is needed to prove the same result for
the (unmodulated) cubic NLS, only one NF reduction suffices in the modulated
setting ⇐= regularization by noise
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Normal form integrator

The revised NF reduction, using

∂rΦ
w
t,r(φ(n̄)) = ∂r

ˆ t

r

eiφ(n̄)w(t′)dt′ = −eiφ(n̄)w(r) with w(t) = t

yields the normal form equation for KdV on T:

u(tj+1) = u(tj) + Xtj+1,tj (u(tj)) +

ˆ tj+1

tj

Ntj+1,t′(u(t′))dt′

Numerical scheme: u(tj+1) ≈ u(tj) + Xtj+1,tj (u(tj))

Hofmanova-Schratz ’17: exponential integrator
u(tj+1) = u(tj) + Xtj+1,tj (u•) ≈ u(tj) + Xtj+1,tj (u(tj))

=⇒ H1-convergence with rate τ , assuming that a solution is in H3

Theorem: Chapouto-Forlano-Oh ’25

Let s ≥ 0 and 0 ≤ θ < 1. Then,HsHsHs-local error. τ2−θ. τ2−θ. τ2−θ for an Hs+2(1−θ)-solution

Let s > 1
2

and 0 ≤ θ ≤ 1
2

. Then, Hs-conv. with rate τ1−θ for an Hs+2(1−θ)-solution

Also, Hs-convergence for 0 ≤ s ≤ 1
2

for an H
3
2

+-solution
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Modulated KdV on TTT: ∂tu+ ∂3
xu · ∂tw = ∂x(u2)

w is (ρ, γ)-irregular

Normal form equation for the modulated KdV on T:

u(tj+1) = u(tj) + Xtj+1,tj (u(tj)) +

ˆ tj+1

tj

Ntj+1,t′(u(t′))dt′

Numerical scheme: u(tj+1) ≈ u(tj) + Xtj+1,tj (u(tj))

Theorem: Chapouto-Forlano-Oh ’25

Let s ≥ 0. Then,HsHsHs-local error. τ2−. τ2−. τ2− for an Hs-solution if ρ� 1

The modulation function w can be taken as

a fractional Brownian motion of Hurst index 0 < H � 1

a “generic” δ-Hölder continuous function with 0 < δ � 1

The scheme can be applied to the modulated cubic NLS:
For s ≥ 1

6 ,HsHsHs-local error. τ2−. τ2−. τ2− for an Hs-solution if ρ� 1
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