Multi-indice B-series

Yingtong Hou
University of Lorraine
Joint work with Yvain Bruned and Kurusch Ebrahimi-Fard

28th May 2024, LoRDeT workshop

Outline

(1) B-series
(2) Multi-indices
(3) Multi-indices B-series

4 Composition Law
(5) Substitution Law

B-series

The Ordinary Differential Equation (ODE)

$$
d y=f\left(y_{t}\right) d t, \quad y(0)=y \in \mathbb{R}^{d}
$$

"An algebraic theory of integration methods" J.C.Butcher (1972) [2]

$$
\begin{aligned}
y_{t}-y_{s} & =\int_{s}^{t} f\left(y_{t_{1}}\right) d r_{1} \\
& =\int_{s}^{t} \sum_{k} \frac{1}{k!} f^{(k)}\left(y_{s}\right)\left(y_{r_{1}}-y_{s}\right)^{k} d r_{1} \\
& =f\left(y_{s}\right)(t-s)+\sum_{k \in \mathbb{N}_{+}} \int_{s}^{t} \frac{1}{k!} f^{(k)}\left(y_{s}\right)\left(y_{r_{1}}-y_{s}\right)^{k} d r_{1} \\
& =f\left(y_{s}\right)(t-s) \\
& +\sum_{k \in \mathbb{N}_{+}} \int_{s}^{t} \frac{1}{k!} f^{(k)}\left(y_{s}\right)\left(\int_{s}^{r_{1}} \sum_{n} \frac{1}{n!} f^{(n)}\left(y_{s}\right)\left(y_{r_{2}}-y_{s}\right)^{n} d r_{2}\right)^{k} d r_{1}
\end{aligned}
$$

B-series

$$
\begin{aligned}
y_{t}-y_{s} & =f\left(y_{s}\right)(t-s)+\left(f^{(1)} f\right)\left(y_{s}\right) \int_{s}^{t} \int_{s}^{r_{1}} d r_{2} d r_{1} \\
& +\frac{1}{2}\left(f^{(2)}(f, f)\right)\left(y_{s}\right) \int_{s}^{t}\left(\int_{s}^{r_{1}} d r_{2} \int_{s}^{r_{1}} d r_{2}\right) d r_{1}+\ldots
\end{aligned}
$$

Butcher Series

$$
B\left(a, h, f, y_{0}\right)=a(\emptyset) y_{0}+\sum_{\tau \in \mathrm{T}} \frac{h^{|\tau|} a(\tau)}{S(\tau)} F_{f}[\tau]\left(y_{0}\right)
$$

For a tree $\tau=B_{+}\left(\tau_{1}, \ldots, \tau_{n}\right)=\widetilde{c}^{\tau_{1} \cdots 0_{n}}$, the elementary differential is

$$
F_{f}[\tau]=f^{(n)}\left(F_{f}\left[\tau_{1}\right], \ldots, F_{f}\left[\tau_{n}\right]\right)
$$

The symmetry factor is

$$
S(\tau)=\prod_{i} r_{j}!\left(S\left(\tau_{j}\right)\right)^{r_{j}} .
$$

Motivation

The Ordinary Differential Equation (ODE)

$$
\begin{equation*}
d y=f\left(y_{t}\right) d t, \quad y(0)=y \in \mathbb{R} \tag{1}
\end{equation*}
$$

Butcher Series

$$
B\left(a, h, f, y_{0}\right)=a(\emptyset) y_{0}+\sum_{\tau \in \mathrm{T}} \frac{h^{|\tau|} a(\tau)}{S(\tau)} F_{f}[\tau]\left(y_{0}\right)
$$

For a tree $\tau=B_{+}\left(\tau_{1}, \ldots, \tau_{n}\right)=\overbrace{}^{\tau_{1}} \boldsymbol{0}^{\tau_{n}}$, the elementary differential is

$$
F_{f}[\tau]=f^{(n)} \prod_{i=1}^{n} F_{f}\left[\tau_{i}\right]
$$

In 1-dimension, it is not injective from trees to elementary differentials.

$$
F_{f}[\text { 〇 }]=F_{f}[\text { ఏ }]=f^{2} f^{(1)} f^{(2)}
$$

Multi-indices

The concept of multi-indices emerged initially within the context of studying singular stochastic partial differential equations by Otto, Sauer, Smith, and Weber [5].

Multi-indice

$$
z^{\beta}:=\prod_{k \in \mathbb{N}} z_{k}^{\beta(k)}
$$

is a collection of abstract variables $\left(z_{k}\right)_{k \in \mathbb{N}}$.

- z_{k} : nodes within a rooted tree possessing k children.
- $\beta(k)$: number of nodes possessing k children within a rooted tree.
- We assume finite support for β, i.e., $|\{i \in \mathbb{N} \mid \beta(i) \neq 0\}|<\infty$.

Link with Rooted Trees

$$
\begin{array}{lll}
0 & \beta=(1,1) & z_{0} z_{1} \\
0 & \beta=(1,2) & z_{0} z_{1}^{2} \\
0 & \beta=(2,0,1) & z_{0}^{2} z_{2} \\
0 & \beta=(2,1,1) & z_{0}^{2} z_{1} z_{2} \\
0 & \beta=(2,1,1) & z_{0}^{2} z_{1} z_{2}
\end{array}
$$

From the above examples, it should be clear that different trees can have the same multi-indice.

Populated Multi-indices

Given our aim to exclusively examine multi-indices corresponding to non-planar rooted trees, we shall focus on those fulfilling the so-called "population" condition [3].

$$
\begin{gathered}
{[\beta]:=\sum_{k \in \mathbb{N}}(1-k) \beta(k)=|\beta|-\sum_{k \in \mathbb{N}} k \beta(k)=1} \\
|\beta|=\sum_{k \in \mathbb{N}} \beta(k)
\end{gathered}
$$

From a tree point of view, $|\beta|$ corresponds to the number of nodes and the sum $\sum_{j \in \mathbb{N}} j \beta(j)$ corresponds to the number of edges.

$$
\begin{aligned}
\text { ! : } \quad[(1,1)] & =|(1,1)|-0-1=1 \\
\text { : }: \quad[(1,2)] & =|(1,2)|-0-2=1
\end{aligned}
$$

Link with Rooted Trees

－Mapping multi－indices to trees
For any populated multi－indice $z^{\beta} \in \mathrm{M}_{0} \backslash\left\{z_{0}\right\}$ and any $n \in \mathbb{N}_{+}$with $\beta(n) \neq 0$ ，there exist populated multi－indices $z^{\beta_{1}}, \ldots, z^{\beta_{n}} \in \mathrm{M}_{0}$ such that $\quad z^{\beta}=z_{n} \prod_{j=1}^{n} z^{\beta_{j}}$ ．
For every populated multi－indice z^{β} ，there exists at least one tree t such that，for each $k \in \mathbb{N}$ ，the number of arity－k nodes in t equals $\beta(k)$ ．
－Mapping trees to multi－indices
Consider the general form of a tree $t=B_{+}\left(t_{1}, \ldots, t_{n}\right)$ ，then we have

$$
\Psi(\bullet)=z_{0}, \quad \Psi(t)=z_{n} \prod_{j=1}^{n} \Psi\left(t_{j}\right)
$$

One can verify that $z_{n} \prod_{j=1}^{n} \Psi\left(t_{j}\right)$ is populated by induction．

Multi-indices B-series

Multi-indices B-series

$$
B(a, h, f, y)=a\left(z^{0}\right) y+\sum_{z^{\beta} \in M_{0}} \frac{h^{\left|z^{\beta}\right|} a\left(z^{\beta}\right)}{S\left(z^{\beta}\right)} F_{f}\left[z^{\beta}\right](y)
$$

- $M_{0}:=\left\{z^{\beta}:[\beta]=1\right\}$ is the set of populated multi-indices
- z^{0} : the empty multi-indice is $\beta(k)=0$, for all $k \in \mathbb{N}$.
- a: a linear map from \mathcal{M}_{0} into \mathbb{R} with a finite support, where

$$
\mathcal{M}_{0}:=\left\{\tilde{\prod}_{j=1}^{n} z^{\beta_{j}}: z^{\beta_{j}} \in \mathbb{M}, n \in \mathbb{N}_{+}\right\}
$$

a preserves the multiplicativity of the forest product. Therefore, if $a\left(z^{0}\right)=1$, a is a character of multi-indices with respect to the forest product.

Multi-indices B-series

Multi-indices B-series

$$
B(a, h, f, y)=a\left(z^{0}\right) y+\sum_{z^{\beta} \in M_{0}} \frac{h^{\left|z^{\beta}\right|} a\left(z^{\beta}\right)}{S\left(z^{\beta}\right)} F_{f}\left[z^{\beta}\right](y)
$$

- $S\left(z^{\beta}\right)$ is the symmetry factor given by

$$
S\left(z^{\beta}\right):=\prod_{k \in \mathbb{N}}(k!)^{\beta(k)} .
$$

- $F_{f}\left[z^{\beta}\right]$: elementary differentials

$$
F_{f}\left[z^{\beta}\right](y):=\prod_{k \in \mathbb{N}}\left(f^{(k)}(y)\right)^{\beta(k)}
$$

Connection with local affine equivariant methods

Theorem (Munthe-Kaas and Verdier, 2016 [4])

If a smooth mapping $\varphi: \mathfrak{X}\left(\mathbb{R}^{d}\right) \mapsto \mathfrak{X}\left(\mathbb{R}^{d}\right)$ is local and affine equivariant, then its Taylor development at the zero vector field is an aromatic B-series.

In 1-dimension case, the elementary differentials of aromatic trees collapse to

$$
F_{f}\left[z^{\beta}\right](y)=\prod_{k \in \mathbb{N}}\left(f^{(k)}(y)\right)^{\beta(k)}
$$

Therefore, multi-indices B-series uniquely characterize the Taylor expansion of local and affine equivariant maps.

Multi-indices B-series

Multi-indices B-series

$$
B(a, h, f, y)=a\left(z^{0}\right) y+\sum_{z^{\beta} \in M_{0}} \frac{h^{\left|z^{\beta}\right|} a\left(z^{\beta}\right)}{S\left(z^{\beta}\right)} F_{f}\left[z^{\beta}\right](y)
$$

Proposition (Bruned,Ebrahimi-Fard,Hou 2024)

We suppose that $f \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$. Then the exact solution of (1) is given by a multi-indice B-series with a linear map a given by:

$$
a\left(z^{\beta}\right)=\frac{1}{\left|z^{\beta}\right|} \sum_{z^{\beta}=z_{k} \prod_{i=1}^{k} z^{\beta_{i}}} \prod_{i=1}^{k} a\left(z^{\beta_{i}}\right) .
$$

Composition Law

The composition of two multi-indices B-series is defined as

$$
B(a, h, f, \cdot) \circ B(b, h, g, y)=B(a, h, f, B(b, h, g, y))
$$

Theorem (Bruned,Ebrahimi-Fard,Hou 2024)

For linear maps a and b with $b\left(z^{0}\right)=1$, the composition of two multi-indices B-series satisfies

$$
B(a, h, f, \cdot) \circ B(b, h, f, y)=B\left(b \star_{2} a, h, f, y\right)
$$

where for $z^{\beta} \in M$

$$
\left(b \star_{2} a\right)\left(z^{\beta}\right):=<b \otimes a, \Delta_{2} z^{\beta}>.
$$

Composition Law

$$
\begin{aligned}
& F_{f}\left[z^{\alpha}\right](B(b, h, f, y))=\sum_{k \in \mathbb{N}} \frac{1}{k!} \partial^{k} F_{f}\left[z^{\alpha}\right](y)(B(b, h, f, y)-y)^{k} \\
& =\sum_{k \in \mathbb{N}} \frac{1}{k!} \partial^{k} F_{f}\left[z^{\alpha}\right](y)\left(\sum_{z^{\beta} \in M_{0}} \frac{h^{\left\lfloor z^{\beta} \mid\right.} b\left(z^{\beta}\right)}{S(\beta)} F_{f}\left[z^{\beta}\right](y)\right) \\
& =F_{f}\left[z^{\alpha}\right](y)+\sum_{k \in \mathbb{N}_{+}} \sum_{z_{1}, \ldots, z^{\beta_{k}} \in M_{0}} \frac{1}{k!} \partial^{k} F_{f}\left[z^{\alpha}\right](y) \prod_{j=1}^{k}\left(\frac{\left.b\left(z^{\beta_{j}}\right) h^{\beta_{j}}\right]}{S\left(z^{\beta_{j}}\right)} F_{f}\left[z^{\left.\beta^{\beta}\right]}\right](y)\right) . \\
& F_{f}\left[\tilde{\prod}_{j=1}^{k} z^{\beta_{j} \star_{2} z^{\alpha}}\right](y)
\end{aligned}
$$

Composition Law

For $z^{\beta_{j}} \in M_{0}$ and $\tilde{z}^{\tilde{\alpha}} \in \mathcal{M}$, define

$$
\tilde{\prod}_{j=1}^{n} z^{\beta_{j}} \star 2 \tilde{z}^{\tilde{\alpha}}:=\left(\prod_{j=1}^{n} z^{\beta_{j}}\right) D^{n} \tilde{z}^{\tilde{\alpha}}, \quad D=\sum_{k \in \mathbb{N}} z_{k+1} \partial_{z_{k}}
$$

Proposition (morphism property of elementary differentials w.r.t. \star_{2})

For every $z^{\beta_{j}} \in M_{0}$ and $z^{\alpha} \in M_{0}$, one has

$$
F_{f}\left[\prod_{j=1}^{n} z^{\beta_{j}} \star_{2} z^{\alpha}\right]=\left(\prod_{j=1}^{n} F_{f}\left[z^{\beta_{j}}\right]\right) \partial^{n} F_{f}\left[z^{\alpha}\right]
$$

- proof inspired by "Composition and substitution of Regularity Structures B-series (Bruned, 2023)" $[1]$.
- Taylor expansion to elementary differentials around y
- Use the morphism property
- Δ_{2} is the dual of \star_{2}

Substitution Law

Firstly, the substitution of two multi-indices B-series is defined as:

$$
B(a, h, f, \cdot) \circ_{s} B(b, h, g, y):=B(a, h, B(b, h, g, y), y) .
$$

Since the substitution is replacing f by $B(b, h, g, y)$, by applying the definition of elementary differentials, one has

$$
B(a, h, f, \cdot) \circ_{s} B(b, h, g, y)=a\left(z^{0}\right) y+\sum_{z^{\beta} \in M_{0}} \frac{a\left(z^{\beta}\right) h^{\left|z^{\beta}\right|}}{S\left(z^{\beta}\right)} \hat{F}_{g}\left[z^{\beta}\right](y)
$$

where

$$
\hat{F}_{g}\left[z^{\beta}\right](y)=\prod_{k \in \mathbb{N}}\left(\partial^{k} B(b, h, g, y)\right)^{\beta(k)}
$$

Substitution Law

$$
F_{g, f}\left[z^{\beta}>z^{\alpha}\right]=\sum_{k \in \mathbb{N}} \alpha(k) F_{f}\left[z^{\alpha}\right] \frac{\partial^{k} F_{g}\left[z^{\beta}\right]}{f^{(k)}}=\sum_{k \in \mathbb{N}} \alpha(k) F_{f}\left[z^{\alpha}\right] \frac{F_{g}\left[D^{k} z^{\beta}\right]}{F_{f}\left[z_{k}\right]}
$$

Definition

The insertion of $z^{\beta} \in M_{0}$ into $z^{\alpha} \in M_{0}$ is defined to be

$$
z^{\beta} z^{\alpha}:=\sum_{k \in \mathbb{N}}\left(D^{k} z^{\beta}\right)\left(\partial_{z_{k}} z^{\alpha}\right)
$$

The simultaneous insertion of $z^{\beta_{j}} \in M_{0}$ into $z^{\alpha} \in M_{0}$ is

$$
\tilde{\prod}_{j=1}^{n} z^{\beta_{j}} \star_{1} z^{\alpha}:=\sum_{k_{1}, \ldots, k_{n} \in \mathbb{N}}\left(\prod_{j=1}^{n} D^{k_{j}} z^{\beta_{j}}\right)\left[\left(\prod_{j=1}^{n} \partial_{z_{k_{j}}}\right) z^{\alpha}\right]
$$

Substitution Law

Theorem (Bruned,Ebrahimi-Fard,Hou 2024)

If $b\left(z^{0}\right)=0$ and $\left(b \star_{1} a\right)\left(z^{0}\right)$ is set to be $a\left(z^{0}\right)$, one has

$$
B(a, h, f, y) \circ_{s} B(b, h, g, y)=B\left(b \star_{1} a, h, g, y\right)
$$

- proof inspired by "Composition and substitution of Regularity Structures B-series (Bruned, 2023)" $[1]$.
- By the duality, $R H S=\sum_{z^{\beta} \in M_{0}} \frac{a\left(z^{\beta}\right) h^{\left|z^{\beta}\right|}}{S\left(z^{\beta}\right)} F_{g}\left[M_{b}\left(z^{\beta}\right)\right](y)$, where $M_{b}\left(z^{\beta}\right):=\sum_{\tilde{z} \tilde{\alpha} \in \mathcal{M}} \frac{b\left(\tilde{z}^{\tilde{\alpha}}\right) h \mid \tilde{z}^{\left|\tilde{z}^{\tilde{\alpha}}\right|}}{S\left(\tilde{z}^{\tilde{\alpha}}\right)} \tilde{z}^{\tilde{\alpha}} \star_{1} z^{\beta}$
- Then, the proof boils down to show that

$$
F_{g}\left[M_{b}\left(z^{\beta}\right)\right]=\hat{F}_{g}\left[z^{\beta}\right] \quad \text { for any } z^{\beta} \in M_{0}
$$

- Any $z^{\beta} \in M_{0}$ can be expressed as $\prod_{j=1}^{n} z^{\beta_{j}} \star_{2} z_{0}$.
- $M_{b}\left(\tilde{z}^{\tilde{\beta}} \star_{2} z^{\beta}\right)=M_{b}\left(\tilde{z}^{\tilde{\beta}}\right) \star_{2} M_{b}\left(z^{\beta}\right)$.
Y. Bruned.

Composition and substitution of Regularity Structures B-series.
http://arxiv.org/abs/2310.14242.
(J. C. Butcher.
An algebraic theory of integration methods.
Math. Comp. 26, (1972), 79-106. http://dx.doi.org/10.2307/2004720.
P. Linares, F. Otto, M. Tempelmayr.

The structure group for quasi-linear equations via universal enveloping algebras. Comm. Amer. Math. 3, (2023), 1-64.
https://dx.doi.org/10.1090/cams/16.
围 H. Munthe-Kaas, O. Verdier.
Aromatic Butcher Series.
Found. Comput. Math. 16, (2016), 183-215.
http://dx.doi.org/10.1007/s10208-015-9245-0.
F. Otto, J. Sauer, S. Smith, H. Weber.

A priori bounds for quasi-linear SPDEs in the full sub-critical regime.
https://arxiv.org/abs/2103.11039.

