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Abstract. This work extends the concept of neutrality used in single-
objective optimization to the multi-objective context and investigates
its effects on the performance of multi-objective dominance-based local
search methods. We discuss neutrality in single-objective optimization
and fitness assignment in multi-objective algorithms to provide a general
definition for neutrality applicable to multi-objective landscapes. We also
put forward a definition of neutrality when Pareto dominance is used to
compute fitness of solutions. Then, we focus on dedicated local search ap-
proaches that have shown good results in multi-objective combinatorial
optimization. In such methods, particular attention is paid to the set of
solutions selected for exploration, the way the neighborhood is explored,
and how the candidate set to update the archive is defined. We inves-
tigate the last two of these three important steps from the perspective
of neutrality in multi-objective landscapes, propose new strategies that
take into account neutrality, and show that exploiting neutrality allows
to improve the performance of dominance-based local search methods on
bi-objective permutation flowshop scheduling problems.

Keywords: neutrality, multi-objective optimization, local search, per-
mutation flowshop scheduling

1 Introduction

In the single-objective context, solving large optimization problems with local
search approaches allows to obtain good solutions in a reasonable time [6]. These
local search methods are based on a neighborhood relation that enables to per-
form local improvements. It has been shown that such methods are sensitive to
the properties of the landscape of the problem studied, and that it is crucial to
analyze and understand such properties in order to improve the performance of
the algorithms.



This work focuses on neutrality, a property that characterizes neighboring
solutions having the same fitness. In single objective-optimization it is known
that the degree of neutrality of a landscape impacts the behavior of local search
methods. There are also several studies showing that exploiting neutrality in a
local search method can improve performance of the method [7].

In the multi-objective context, there are also efficient local search methods
that have been proposed to approximate the Pareto optimal set, such as the
Dominance based Multi-objective Local Search (DMLS) [4]. However, not much
is known about neutrality, its effects, and how to take advantage of it in order
to improve the performance of multi-objective algorithms. Indeed, the perfor-
mance of a DMLS algorithm is closely related to the geometry of the landscape
of the problem to solve. Moreover, the Pareto dominance relation induces land-
scapes where many solutions cannot be compared with many others (solutions
equivalent in term of quality), and one major difficulty of DMLS algorithms is,
at each iteration, to choose a selected neighbor which may be equivalent, i.e.
incomparable with the current explored solution.

This work extends the concept of neutrality to multi-objective optimization
with the aim to analyze whether exploiting neutrality is also beneficial in a multi-
objective context. We discuss neutrality in single-objective optimization and
fitness assignment in multi-objective algorithms to provide a general definition
for neutrality applicable to multi-objective landscapes. We also put forward a
definition of neutrality when Pareto dominance is used to compute fitness of
solutions. Then, we analyze existing DMLS from the point of view of neutrality,
in order to propose new efficient schemes. We focus on strategies that take into
account neutrality, particularly during the neighborhood exploration and the
creation of the candidate set of solutions to update the archive, showing that
exploiting neutrality allows to improve the performance of dominance-based local
search methods on bi-objective permutation flowshop scheduling problems.

The paper is organized as follows. Section 2 states background definitions of
multi-objective combinatorial optimization. It presents the problem that will be
used as an illustration, the Permutation Flowshop Scheduling Problem (PFSP)
and Dominance based Multi-objective Local Search approaches (DMLS). In Sec-
tion 3, we propose a multi-objective concept of neutrality, and analyze its inte-
gration in existing DMLS algorithms. This leads us to propose several improve-
ments to DMLS algorithms to efficiently incorporate this notion. In Section 4,
experiments are conducted in order to emphasize the importance of taking care
of neutrality in DMLS algorithms and to measure the impact of our propositions
on the Permutation Flowshop Scheduling Problem (PFSP). At last, Section 5
gives the conclusions of the presented work and future research interests.

2 Background

This work investigates the effects of neutrality focusing on Dominance-based
Local Search Methods using the Bi-objective Permutation Flowshop Schedul-
ing Problem as an illustrative example. This section describes the optimization



problem and the local search methods used, together with necessary notation to
better understand the paper.

2.1 The Bi-objective Permutation Flowshop Scheduling Problem

The Permutation Flowshop Scheduling Problem (PFSP) is a multi-objective
combinatorial optimization (MoCO) problem widely investigated in the litera-
ture. The PFSP consists in scheduling a set of N jobs {J1, . . . , JN}, on a set
of M machines {M1, . . . ,MM}. Machines are critical resources that can only
process one job at a time. A job Ji is composed of M tasks {ti,1, . . . , ti,M} for
the M machines respectively. A processing time pi,j is associated to each task
ti,j , and a due date di is associated with each job Ji. The operating sequence
is the same on every machine. Therefore, a schedule may be represented as a
permutation of jobs π = {π1, . . . , πN}. Ω is the set of the feasible solutions.

The two objectives, f1 and f2, considered in this paper are the makespan
Cmax (eq. 1), i.e. the total completion time, and the total tardiness T (eq. 2).
Both objectives have to be minimized.

f1 = Cmax = max
i∈{1,...,N}

{Cπi} (1)

f2 = T =

N∑
i=1

{
max {0, Cπi − dπi}

}
(2)

The feasible outcome vectors of the objective space are compared using Pareto
dominance �. In this minimization context, a solution x ∈ Ω is said to dominate
a solution y ∈ Ω, denoted by x � y, if they satisfy relation (3).

∀i ∈ {1, 2}, fi(x) ≤ fi(y)
∧
∃i ∈ {1, 2}, fi(x) < fi(y) (3)

If solution y is non-dominated by solution x we denote y ⊀ x.
This paper focuses on multi-objective local search methods based on a neigh-

borhood definition. The neighborhood considered in this paper uses the insertion
operator, where a job located at position i is inserted at position j 6= i and the
jobs located between positions i and j are shifted. The number of neighbors per
solution is then (N − 1)2.

2.2 Dominance-based Multi-objective Local Search

In the literature, numerous methods have been proposed to solve MoCO prob-
lems. The Dominance-based Multi-objective Local Search algorithms represent
a class of local search approaches designed to approximate the Pareto front
of a MoCO [4] problem. DMLS algorithms keep an archive of mutually non-
dominated solutions and uses a neighborhood structure to improve the solutions
of the archive. The main steps of a DMLS algorithm are as follows.

Step 1 Initialize the archive with a randomly created solution x, A ← {x}.



Step 2 Select from the archive a set of solutions for exploration, X ⊆ A.

Step 3 For each solution x ∈ X , explore the neighborhood of x until a neighbor
z fulfilling a required criterion is found. During exploration of x, in addition
to z, neighbor solutions x′ non-dominated by x are collected as candidate
solutions to update the archive, C = {x′ ∈ N (x) | x′ ⊀ x} ∪ {z}.

Step 4 Update the archive A with the collected candidate solutions C making
sure that only non-dominated solutions remain in the archive.

Step 5 If termination criterion is not met, repeat from Step 2.

Step 6 Return the archive A.

Fig. 1. Nomenclature of DMLS algorithms.

Several strategies are defined for Step 2 and Step 3, which lead to different
configurations of DMLS algorithms. A specific nomenclature and classification
of DMLS algorithms was proposed by Liefooghe et al. [4], as shown in Figure 1.
In Step 2, the candidate set for exploration X can be obtained by selecting
from the archive either one solution randomly (DMLS (1 · )) or all solutions
(DMLS (F · )). In Step 3, the neighborhood exploration of each solution x ∈ X
can be either exhaustive or partial. If it is exhaustive (DMLS ( ·F)), all the
neighbors are visited and all non-dominated neighbors x′ ⊀ x are collected in
the candidate set C to update the archive. If the exploration is partial, different
strategies can be used. A possible partial exploration strategy is to accept a
random neighbor whatever its quality (DMLS ( ·1)). This strategy corresponds
to a random search. Other strategy is to explore the neighborhood of a solution
until a dominating neighbor z � x is found (DMLS ( · 1�)). A third partial
exploration strategy is to explore the neighborhood of a solution until a non-
dominated solution is found z ⊀ x (DMLS ( · 1⊀)), in which case z could
be a dominating solution z � x or mutually non-dominated with respect to x,
z ⊀ x and x ⊀ z.

Liefooghe et al. [4] experimented on the bi-objective PFSP showing that some
DMLS configurations perform better than others. In the rest of the paper, only
the following configurations DMLS (1 · 1⊀), DMLS (1 · 1�) and DMLS (F · 1�)
are considered.



3 Neutrality extended to Multi-Objective Optimization

In this section, we discuss the concept of neutrality in single objective optimiza-
tion, propose a definition of neutrality in the multi-objective context, particularly
for Pareto dominance based approaches, clarify how neutrality has been used so
far in the DMLS algorithm, and propose new strategies for DMLS aiming to
further exploit neutrality in multi-objective optimization.

3.1 Neutrality in Single-Objective Optimization

In single-objective optimization, neutrality arises when neighboring solutions
have the same quality. More formally, let us denote Ω the space of the admis-
sible solutions, N a neighborhood structure, and f a fitness function. A fitness
landscape of the problem is defined by the triplet (Ω, N , f). A neutral neighbor
of a solution s ∈ Ω is a neighbor solution s′ ∈ Ω with the same fitness value,
f(s) = f(s′). Given a solution s ∈ Ω, its set of neutral neighbors Nn(s) is defined
by:

Nn(s) = {s′ ∈ N (s) | f(s′) = f(s)}

The neutral degree of a solution is the number of its neutral neighbors |Nn(s)|.
A fitness landscape is said to be neutral if there are many solutions with a high
neutral degree |Nn(s)|.

Neutral solutions can be considered in the design of local search algorithms [1,
7, 10] either to escape from a local optimum or to explore more widely the search
space. Since equivalent solutions have proved to be useful in single-objective
optimization, we propose to study the effects of exploiting equivalent solutions
in multi-objective optimization.

3.2 Neutrality in Multi-Objective Optimization

The definition of neutrality in single-objective optimization is based on neighbor
solutions that have same fitness values. In order to give a definition of neutrality
in multi-objective optimization, we need to characterize neutral neighbors in this
context. Particularly, what means equal fitness of two solutions.

In multi-objective optimization there are various approaches to compute fit-
ness of solutions. These include Pareto dominance, Pareto dominance and density
estimation, scalarization functions, and indicator functions such as the hyper-
volume IHV or the epsilon indicator Iε+ . In general, we can say that fitness
f is a function of the n single-objective fitness values f1, f2, · · · , fn computed
for a solution, i.e. f = g(f1, f2, · · · , fn). Thus, a similar definition used for
neutrality in single-objective optimization can be used for neutrality in multi-
objective optimization. Namely, a multi-objective neutral neighbor of a solution
s ∈ Ω is a neighbor solution s′ ∈ Ω with the same fitness value f(s) = f(s′),
where g(f1, f2, · · · , fn) is a function of the single-objective fitness values and
f = g(f1, f2, · · · , fn).



It should be noted that each approach to compute fitness in multi-objective
optimization implies a different fitness function and therefore a different land-
scape. This also means that the set of neutral neighbors of a solution might vary
depending on the approach used to compute fitness. However, all approaches
aim to find the Pareto optimal set of the problem or a good approximation of it.
It will be very interesting to study the effects of neutrality in the different ap-
proaches to multi-objective optimization. In this work, we restrict our attention
to approaches that use Pareto dominance to determine fitness of solutions.

Given a a solution x to explore based on a neighborhood structure N , Pareto
dominance implies three types of neighbors x′ respect to x: dominating neighbors
x′ � x, dominated neighbors x � x′, or mutually non-dominated neighbors
x ⊀ x′ and x′ ⊀ x, as shown in Figure 2. These latter neighbors are non-
comparable solutions. Therefore, they can be viewed as equivalent neighbors, or
same fitness neighbors, that define the neutral neighbors in the multi-objective
context when fitness of solutions is computed using Pareto dominance. More
precisely, given a solution s ∈ Ω, its set of neutral neighbors is defined by:

Ne(s) = {s′ ∈ N (s) | s ⊀ s′ and s′ ⊀ s}

Note that this definition includes the case where two neighbors have the same
objective vector (s′ ∈ N (s),∀i ∈ [1, n], fi(s) = fi(s

′)).

The motivation to extend neutrality from single- to multi-objective optimiza-
tion comes from the fact that single-objective local search algorithms can benefit
from equivalent/neutral solutions. These solutions allow to continue the search
when it is trapped in a local optimum without degrading. Similarly, in multi-
objective optimization that uses Pareto dominance to establish fitness of the
individuals, a local search algorithm can be trapped in a Pareto local optimum
(PLO) and some equivalent/neutral neighbors can help to escape from it. In the
following, we use the term neutral to qualify these equivalent neighbors.

f2

f1

s

dominated neighbors

neutral/equivalent neighbors

dominating neighbors

neighborhood of s

Fig. 2. Neighborhood in bi-objective optimization.



3.3 Neutrality in DMLS Algorithms

Section 2.2 briefly described the DMLS algorithms for multi-objective optimiza-
tion. Analyzing these algorithms, we can see that some of them can exploit
neutral neighbors to approach the Pareto front, but require that the neighbors
survive several steps of the algorithm. For example, during Step 3 DMLS (1 ·1⊀)
and DMLS (F · 1⊀) algorithms can generate at most one neutral neighbor so-
lutions per x ∈ X if and only if during exploration a dominating solution is not
found first. On the other hand, DMLS (1 · 1�) and DMLS (F · 1�) can generate
more than one neutral neighbor solution per x ∈ X until the first dominating
solution is found or the whole neighborhood has been explored if there is no
dominating solution. The neutral neighbors found in Step 3 become part of the
candidate solution set C to update the archive. In Step 4 these neutral neighbors
could be included in the archive only if they are non dominated by all members
of the current archive. Then in Step 2 of the next iteration the newly found
neutral neighbors can be selected for exploration. Thus, DMLS algorithms in
order to exploit a neutral neighbor of x also requires that it is non-dominated
by the archive.

Neutrality seems to be exploited to increase the performance of DMLS as
equivalent neighbors may be candidates to be archived. However, it is not clear
the contribution of neutral neighbors to the effectiveness of DMLS algorithms.
In this paper, we want to clarify and show the impact of using neutral neighbors
in multi-objective local search. To do so, we will analyze two configurations of
DMLS denoted DMLS (1 · 1�) and DMLS (F · 1�) where neutrality is never ex-
ploited and compare them with already existing strategies for DMLS algorithms
that explore to some degree neutrality. In DMLS (1 ·1�) and DMLS (F ·1�) the
neighborhood of each selected solution is explored until a dominating solution is
found and only this neighbor represents a candidate to be archived, thus never
exploiting the neutral neighbors of a solution.

3.4 New Neutrality-based Strategies

In addition to configurations of DMLS, proposed by Liefooghe et al., where neu-
trality could be implicitly exploited if neutral neighbors are non-dominated by
the archive, we propose in this paper two new configurations where neutrality
can be exploited in two different steps of the algorithm: either during the explo-
ration of the neighborhood or in the formation of the candidate set of solutions
to be archived.

In DMLS (1·1⊀) [4], neutrality can be exploited when the first non-dominated
neighbor found during exploration of the neighborhood happens to be a neutral
neighbor and later it is non-dominated by the archive. In the 1⊀ exploration
strategy, the first non-dominated solution found could be either a neutral neigh-
bor or a dominating neighbor. It is arguable whether the first neutral neighbor
found would be the best to improve later the Pareto front in the archive, so
that neutrality could be exploited. Similarly, it is also arguable whether the first



dominating neighbor could be the best dominating neighbor. Therefore, we pro-
pose a k⊀ exploration strategy, where the neighborhood of a solution is explored
until k different non-dominated neighbors have been found. This strategy gives
the opportunity to explore more widely the neighborhood of a solution. Indeed
more chance to find one or more dominating neighbors is given. In addition,
since all non-dominated neighbors are collected in the candidate set C to update
the archive, this strategy increases the likelihood of finding neutral neighbors
that can become part of the archive, diversifies the Pareto front, and emphasizes
the exploitation of neutrality. The new DMLS with the k⊀ exploration strategy
is denoted DMLS (1 · k⊀), where the number k is an integer defined from 1 to
the neighborhood size.

The candidate set of solutions C considered to update the archive is a key
element when dealing with neutrality. Indeed, Liefooghe et al. take into account
all neutral neighbors visited during the neighborhood exploration when a 1�
strategy is used. In this paper, in addition to collect neutral neighbors in the
candidate set C of solutions to update the archive, we propose to use some of
them for further exploration, before they are used to update the archive.

DMLS (F · 1�) [4] is a configuration where all solutions of the archive are
selected to be explored until a dominating neighbor is found for each one. This
algorithm may integrate a large number of solutions in C during a single step
of archiving. We modify Step 3 of the DMLS (F · 1�) algorithm. When a non-
dominated neighbor x′ is found, we check Pareto dominance between x′ and
those already in the set X selected for exploration. If no solution in X is dom-
inated by x′, then x′ is added to the exploration set X . Thus, the exploration
set X grows dynamically as neutral neighbors are found. This strategy allows
to explore neutral neighbors that could not be archived in Step 4 after find-
ing the dominating neighbors of solutions in X . This proposed DMLS, denoted
DMLS (F + X⊀ · 1�), takes advantage of neutrality more intensively than the
known configurations of DMLS. Figure 3 gives the complete nomenclature of
DMLS algorithms with the proposed configurations (in the red boxes) and the
most used DMLS configurations. Note that in this figure the definition of the
candidate set of solutions C used to update the archive is explicitly described.

4 Experiments and Discussion

The aim of this section is to compare performance of the different DMLS con-
figurations studied in this work and clarify the effects of neutrality on the Per-
mutation Flowshop Scheduling Problem (PFSP).

4.1 Experimental Protocol

Instances Experiments are realized on classical Muti-objective PFSP instances.
These instances have been proposed by Minella et al. [8] as an extension of the
well-known random generated instances of Taillard [9], in which due dates have
been added. In the following, these instances are denoted by a triplet (JJJ ×



Fig. 3. Nomenclature of DMLS algorithms with the proposed configurations.

MM ×NN), where JJJ is the number of jobs, MM is the number of machines,
and NN is the identifier of the (JJJ ×MM) instance.

Performance Assessment In order to rank the different algorithms and ob-
serve the behavior and influence of the neutral neighbors on performance, three
complementary indicators are used as recommended in [3]. Namely, unary ε-
indicator I1ε+, hypervolume difference indicator I−H , and Spread. These indicators

are based on set Zall that is the union of the final sets of solutions obtained by

all algorithms and on the reference set R that contains the Pareto set of Zall.
The three performance indicators are explained below, where A stands for the
set of solutions found by an algorithm.

ε-indicator I1ε+ The unary ε-indicator is computed using the binary version given
by (4) and the reference set R, with I1ε+(A) = Iε+(A,R).

Iε+(A,R) = inf
ε∈R
{∀z1 ∈ R,∃z2 ∈ A,∀i ∈ 1 . . . n, z1i ≤ ε+ z2i } (4)

Hypervolume difference indicator I−H The hypervolume indicator IH is computed
by the measure of the hypervolume between a set of solutions and the point
z = (z1, . . . , zn) where zk is the upper bound of the kth objective considering

all solutions of Zall. The hypervolume difference indicator I−H is then computed
with I−H(A) = IH(R)− IH(A).

Spread The spread indicator used in this paper is computed as follows. First,

the two solutions of Zall that reach the extrema relatively to the two objectives
are selected, and filtered out of the set of the considered solutions. Given df and
dl the distances to those extreme points, d̄ the mean of the distances, and di the
distance between solutions of the set, the spread indicator is given by (5).

∆ =
df + dl +

∑
|di − d̄|

df + dl +
∑
d̄

(5)



Experimental design All DMLS implementations are realized under the Par-
adisEO 2.0 software framework [5]. Most of the performance assessment indices
are computed using the PISA platform [2] and its performance assessment mod-
ule. The spread indicator has been developed to be automatically computed into
PISA. The results are then verified with the Friedman statistical test, and a
global ranking is computed using the Wilcoxon statistical test.

Seven instances have been selected from Minella et al., spanning over seven
problem sizes. The seven algorithms of Figure 3 are compared. For the parameter
k in DMLS (1 · k⊀), two different values low and high have been tested, leading

to two versions of this algorithm: DMLS (1 ·klow⊀ ) and DMLS (1 ·khigh⊀ ). The low

and high values of k depend on the number of jobs of the instance as the size of
the neighborhood depends on it. Parameter k has been set arbitrarily according
to the number of jobs: k = 5 and 10 for 20 jobs, k = 15 and 25 for 50 jobs, and
k = 20 and 50 for 100 jobs.

For each instance, 20 executions have been recorded for each algorithm. A
maximal runtime has been fixed for each size of instance corresponding to N×M
seconds. Those runtimes were sufficient for all algorithms to converge, even if
they did not reach a natural termination.

4.2 Experimental Results

Table 1 shows the rankings computed with the indicator I1ε+ for each instance
with respect to the final Pareto local set R. Similarly, Table 2 and Table 3 show
the rankings computed with I−H indicator and spread indicator, respectively.

The Friedman statistical tests give a p-value of 2.449e−6 for the I1ε+ indi-
cator, 4.796e−6 for I−H and 1.758e−5 for spread. Thus, the behavior of the all
algorithms is statistically different on the three indicators, and ranks give valu-
able information about performance. These tables allow several observations.

Table 1. Rankings according to I1ε+

Instance (1 · 1�) (F · 1�) (1 · 1⊀) (1 · klow⊀ ) (1 · khigh

⊀ ) (1 · 1�) (F · 1�) (F + X⊀ · 1�)

(020× 05× 01) 7 8 1 5 2 6 4 3
(020× 10× 01) 8 7 2 6 5 4 3 1
(020× 20× 01) 8 7 4 5 2 6 3 1
(050× 10× 01) 7 8 2 4 5 6 3 1
(050× 20× 01) 8 7 5 2 4 6 3 1
(100× 10× 01) 7 8 3 5 4 6 2 1
(100× 20× 01) 7 8 3 6 5 4 2 1

mean 7.42 7.57 2.85 4.71 3.85 5.42 2.85 1.28

No neutrality exploitation Tables 1, 2 and 3 show that algorithms DMLS (1 ·1�)
and DMLS (F · 1�) share the worse results on the three indicators. These
two methods select during the neighborhood exploration one single dominat-
ing neighbor for each explored solution, without any neutrality consideration,



Table 2. Rankings according to I−H

Instance (1 · 1�) (F · 1�) (1 · 1⊀) (1 · klow⊀ ) (1 · khigh

⊀ ) (1 · 1�) (F · 1�) (F + X⊀ · 1�)

(020× 05× 01) 8 7 3 4 1 6 5 2
(020× 10× 01) 8 7 2 6 5 4 3 1
(020× 20× 01) 8 7 4 5 2 6 3 1
(050× 10× 01) 7 8 2 4 5 6 3 1
(050× 20× 01) 8 7 5 2 4 6 3 1
(100× 10× 01) 7 8 3 6 4 5 2 1
(100× 20× 01) 7 8 3 6 5 4 2 1

mean 7.57 7.42 3.14 4.71 3.71 5.28 3.00 1.14

Table 3. Rankings according to the spread indicator

Instance (1 · 1�) (F · 1�) (1 · 1⊀) (1 · klow⊀ ) (1 · khigh

⊀ ) (1 · 1�) (F · 1�) (F + X⊀ · 1�)

(020× 05× 01) 8 7 3 5 6 4 1 2
(020× 10× 01) 7 8 3 6 2 4 5 1
(020× 20× 01) 8 7 4 6 3 5 2 1
(050× 10× 01) 7.5 7.5 6 3 5 4 1 2
(050× 20× 01) 8 7 6 5 3 4 2 1
(100× 10× 01) 8 7 3 6 5 4 1 2
(100× 20× 01) 8 7 6 5 4 3 2 1

mean 7.78 7.21 4.42 5.14 4.00 4.00 2.00 1.42

i.e. not even one neutral neighbor is considered as candidate solution to update
the archive. If this strategy allows to quickly optimize at the beginning of the
search, it does not allow to obtain a good approximation of the whole Pareto
front.

Considering neutrality to update the archive One way to take profit from neutral-
ity during the search is, as exposed before, to collect neutral neighbors during the
neighborhood exploration and use them as candidates to update the archive. A
strategy may consist in exploring the neighborhood until a dominating neighbor
is reached (as in the worst versions), but keeping all equivalent neighbors encoun-
tered. This leads to DMLS (1 ·1�) and DMLS (F ·1�). Note that DMLS (1 ·1�)
is ranked better than DMLS (1 · 1�) and DMLS (F · 1�) is ranked better than
DMLS (F · 1�). This shows that considering neutrality in the candidate set to
update the archive seems to be effective. Methods DMLS (1·1⊀), DMLS (1·klow⊀ )

and DMLS (1 · khigh⊀ ) also consider neutral neighbors as interesting neighbors

to update the archive and explore the neighborhood until one or several (k)
non-dominated solutions (i.e. either neutral or dominating solutions) are found.
Results show that these strategies perform better than methods that only con-
sider the first dominating neighbor encountered. Moreover, when k neighbors
are required, several potential interesting solutions may become part of the can-
didate set to update the archive, which improves the quality of the obtained
approximation of the Pareto optimal set. Note that a high value of k leads to



better results.

Considering neutrality before archiving Another way to exploit neutral neigh-
bors is to add them dynamically to the set of solutions X to be explored in
addition to the set of candidate solutions to update the archive, as explained in
section 3.3. This leads to the method DMLS (F + X⊀ · 1�) which obtained the
best results over all the tested methods. This method outperforms the method
DMLS (F · 1�) that also takes into account neutral neighbors to update the
archive. This is because the dynamical insertion of neutral neighbors into the
set of solutions to be explored allows the method to go deeper in the search. In
addition, it also saves some computational effort.

(a) (b)

Fig. 4. Pareto Fronts for the instances 050× 10× 01 (a) and 100× 20× 01 (b).

These above observations are complemented by Figure 4 (a) and (b) that
show the Pareto fronts obtained by each method on two instances. These figures
illustrate the good average performance of DMLS (F +X⊀ · 1�) and show that
DMLS (F·1�) is able to produce very good results on large instances. These two

figures allow to confirm also that DMLS (1 · khigh⊀ ) outperforms DMLS (1 · klow⊀ )

as indicated on the previous tables.

In summary, these experiments show that non considering neutral neighbors
(method DMLS (1 · 1�) and DMLS (F · 1�) ) is less efficient than considering



them. In particular, the diversity of the Pareto front produced is greatly im-
pacted. Also, as shown by the not so good performance of method DMLS (1·1⊀),
in particular in terms of spread, the first found neutral neighbors are not always
of good quality and it may be important to consider several of them in order
to improve results. Moreover, the exploitation of neutral neighbors that may be
dominated by the archive could lead to improve the performance of local search
Pareto dominance based approaches.

5 Conclusion

Neutrality has obviously a critical role in multi-objective combinatorial opti-
mization, and furthermore in local search algorithms. Small changes in the way
neutral neighbors are handled greatly modify the general behavior of algorithms.
This is why the understanding of the relation between local search and neutrality
is very important in multi-objective as well as in single-objective optimization.
This paper extended the concept of neutrality to multi-objective optimization,
focused the discussions about the neutrality in the context of dominance-based
multi-objective local search algorithms, and proposed new strategies to improve
the behavior of those algorithms towards the exploitation of neutral neighbors.
We verified the proposed strategies on a classical bi-objective problem. Exper-
iments showed overall the advantage of exploiting neutral neighbors. It also
showed the importance of considering a set of neutral neighbors, instead of a
single one, in order to increase the performance in term of diversity and conver-
gence.

However, as it was shown by the not so good performance of method DMLS (1·
1⊀), first found neutral neighbors may not be of good quality, and it could be
interesting, not only to consider several of them, but to select some of them. This
is one of the further question we want to address. Another interesting question,
is to analyze how this neutrality concept may be transposed to multi-objective
problems with more than two objectives, as the number of neutral neighbors
may increase significantly with the number of objectives. Additionally, it will be
interesting to study neutrality under other classes of fitness assignment methods
in multi-objective optimization.
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