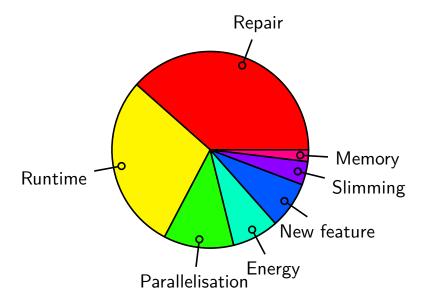
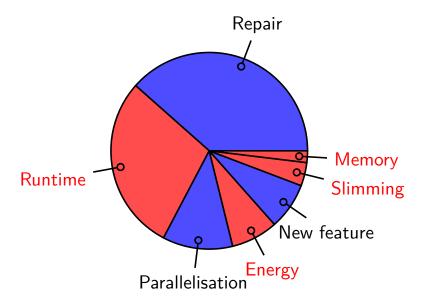
On Adaptive Specialisation in Genetic Improvement

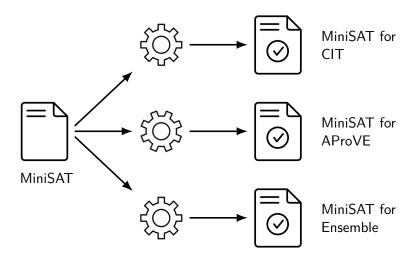

Aymeric Blot Justyna Petke

University College London

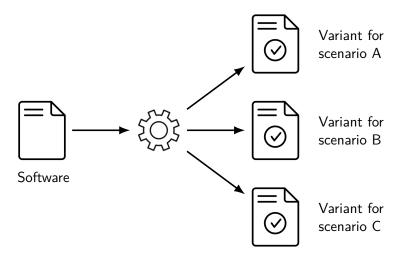
GI@GECCO'19 — 13 July 2019



Genetic Improvement



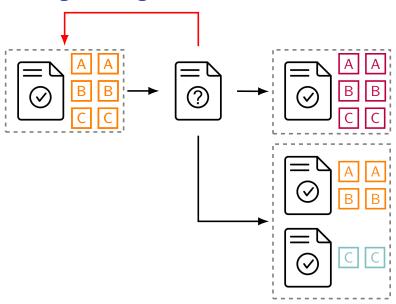
Genetic Improvement



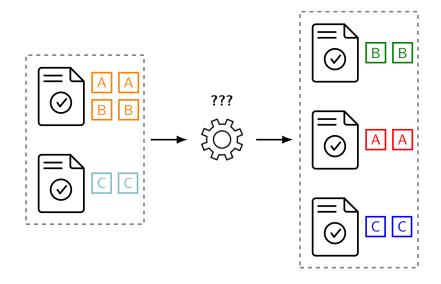
Manual Software Specialisation

Adaptive Software Specialisation

In a Nutshell


Assumptions

- Specialisation (GI) is very time consuming
- ► Edits can be shared between applications
- Edits can be specific to single applications
- Input boundaries can be surprising


Proposition

- Merge all training inputs
- Start with a single variant
- Branch on statistical difference in performance
- Grow a mapping of software variants

Partitioning Training Data

Evolving a Mapping of Mutated Software

Challenges

Partitioning

- How to detect heterogeneity?
- ▶ With which constraints?

Algorithm

- Which search process is the most relevant?
- Will it be competitive?

Training Data

- ► Will it scale?
- ► At what trade off?

Final Words

Adaptive Software Specialisation

- ▶ No expert knowledge
- ▶ No feature identification/computation/selection
- Automated black box

Why?

- Improve time consumption
- ► Improve final software variants
- Discover new parameters and compilation switches

Selected References

Justyna Petke, Saemundur O. Haraldsson, Mark Harman, William B. Langdon, David Robert White, and John R. Woodward.

Genetic improvement of software: A comprehensive survey.

IEEE Transactions on Evolutionary Computation, 22(3):415–432, 2018.

Justyna Petke, Mark Harman, William B. Langdon, and Westley Weimer. Specialising software for different downstream applications using genetic improvement and code transplantation.

IEEE Transactions on Software Engineering, 44(6):574-594, 2018.

Lin Xu, Holger H. Hoos, and Kevin Leyton-Brown.

Hydra: Automatically configuring algorithms for portfolio-based selection.

In AAAI Conference on Artificial Intelligence (AAAI 2010), pages 210–216. AAAI Press, 2010.