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Abstract. In this work, we propose a dynamic multi-objective local
search (MOLS) algorithm whose parameters are modified while it is run-
ning and a protocol for automatically configuring this algorithm. Our ap-
proach applies automated configuration to a static pipeline that sequen-
tially runs multiple configurations of the MOLS algorithm. In a series
of experiments for well-known benchmark instances of the bi-objective
permutation flowshop scheduling problem, we show that our dynamic
approach produces substantially better results than static MOLS, and
that longer pipeline (with a higher number of parameters) outperform
shorter ones.

Keywords: Algorithm Configuration · Multi-Objective Combinatorial
Optimisation · Local Search.

1 Introduction

Many metaheuristic algorithms for solving multi-objective optimisation prob-
lems have parameters that highly affect their performance, and that should be set
to different values to achieve good performance for various types of problem in-
stances. The problem of configuring such parameters for optimised performance
can be approached in an off-line or on-line manner. Static algorithm configu-
ration approaches can handle many parameters but provide configurations that
can be highly specific to a given set or distribution of problem instances (see,
e.g., [10,14]). Dynamic configuration approaches adapt parameters during the
run of a given algorithm but generally consider only one or two parameters
(see, e.g., [11]); they can, in principle, achieve robust performance over a broad
range of problem instances. In this work, we leverage the advantages of both
types of approaches by considering a framework in which we switch between
different configurations of a multi-objective optimisation algorithm while it is
running on a given problem instances. We determine these configurations, and
the static schedule we use for switching between them, using a general-purpose,
static algorithm configurator. Our approach thus represents a simple mechanism
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for dynamically changing many algorithm parameters in a way that optimises
overall performance on a given type of problem instances.

The bi-objective permutation flowshop scheduling problem (bPFSP), in which
makespan and total flowtime are to be minimised, is a prominent and widely
studied combinatorial multi-objective optimisation problem. The bPFSP can be
solved effectively by multi-objective local search (MOLS) algorithms [6,12]; in
the design of these algorithms, multiple design choices are encountered, and when
using them, several parameters have to be set. Therefore, MOLS algorithms for
the bPFSP provide an excellent test bed for our dynamic configuration approach.

The remainder of this article is organised as follows. First, in Section 2, we
introduce our dynamic algorithm framework and a protocol to automatically
configure it. Then, in Section 3, we describe the multi-objective local search al-
gorithm. Sections 4 and 5 detail the setup of our experimental study and the
results obtained from it, respectively. Finally, Section 6 provides some conclu-
sions and perspectives on future work.

2 Automatic Design of a Dynamic Algorithm

2.1 Static vs Dynamic Design Approaches

Over the last decade, automatic algorithm configuration (AAC) techniques have
been increasingly exploited in the off-line design of high-performance heuris-
tic algorithms, such as metaheuristics. These algorithms present design choices,
such as strategy components, and tunable parameters that heavily affect their
performance. In the following, we will assume that all design choices have been
exposed as parameters.

Given a parametrised target algorithm A, a configuration θ is a specific set-
ting of all the parameters of A. The configuration space Θ of A is the set of
all valid configurations. Automated algorithm configuration (AAC) can be seen
as an optimisation problem, where the objective is to determine one or more
configurations that lead to the best performance for a given set or distribution
of problem instances. AAC can be seen as a supervised, off-line learning process,
in which training instances are used to learn and determine the best configura-
tions of the given target algorithm. This configuration is then fixed and used,
in a completely static manner, whenever A is run on new problem instances.
Prominent AAC procedures include irace [14] and ParamILS [10], which opti-
mise a single configuration objective, and MO-ParamILS, a recent extension of
ParamILS that handles multiple configuration objectives [1].

In parallel with AAC procedures, dynamic algorithm design techniques have
been proposed [11] to permit the modification of strategy components or numeri-
cal parameters of a given target algorithm A while it is running. These so-called
parameter control approaches use techniques such as multi-armed bandits [8]
or adaptive pursuit [19] to dynamically determine good parameter settings in
response to observations made while trying to solve a given problem instance.
However, the number of configurations of A that can be handled by such ap-
proaches is very limited.
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In this work, we are interested in algorithms that expose several design
choices, in the form of categorical parameters. This scenario falls outside of most
dynamic design scenarios, as they usually deal with a single numerical parameter
or very few categorical choices. Nevertheless, we want to be able to dynamically
modify parameters while running our target algorithm, and to this end, we in-
troduce a framework that successively runs several configurations, in the form
of a static pipeline, which we configure using a standard, general-purpose AAC
procedure.

2.2 A Dynamic Algorithm Framework

Given a configurable algorithm A and its configuration space Θ, we use Aθ,T
to denote A under configuration θ ∈ Θ with cut-off time T . Then, we define
the dynamic algorithm FA

(θi,Ti)k
as a pipeline with k stages, which sequentially

runs Aθ1,T1
,Aθ2,T2

, . . . ,Aθk,Tk
. Specifically, when applied to a multi-objective

optimisation problem, we first run A under configuration θ1, starting from a
initial set of solutions, up to time T1. At that point, we switch to configuration
θ2 and continue our computation from the current set of solutions, with a cut-off
time of T2. We note that A is not restarted when switching between configu-
rations. Overall, the maximum running time of the dynamic algorithm is then
T =

∑k
i=1 Ti.

Figure 1 depicts two examples of dynamic algorithms FA and F ′A. While
F uses k = 3 configurations to divide the total time budget into three intervals
of equal duration, F ′ uses k = 4 configurations, of which two are run quickly in
the beginning, after which more time is allocated to last two configurations.

The configuration space of our framework comprises the Cartesian product
Θk, the time budgets T1, . . . , Tk and the integer k ≥ 1. For k = 1, our framework
degenerates to the original, static target algorithm A.

2.3 Automatic Configuration of our Framework

The purpose of this work is to assess the performance gains that can be obtained
by switching between different configurations of an algorithm A while it is run-
ning. Towards this end, we use a general-purpose, static algorithm configurator
to configure the framework introduced in the previous section. Since the size of
the configuration space exponentially increases with the maximum number of
pipeline stages, K, we only consider a fixed number sk of different cut-off times
for each stage, where k is the number of actual pipeline stages used in a spe-
cific instantiation of our framework. This leads to a configuration space of size∑K
k=1 sk · |Θ|k. Using this approach, we can also assess the influence of K and

sk (for k = 1, . . . ,K) on the performance achieved by automatically configuring
our dynamic algorithm framework.

2.4 Related Work

In addition to being conceptually related to adaptive algorithms or hyper-heuristics,
since it enables modifications of the configuration of an algorithm while it is
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Fig. 1. Two examples of dynamic algorithms, FA and F ′A

running, our approach also bears resemblance to per-instance algorithm schedul-
ing [13]. There are, however, several major differences. Firstly, per-instance al-
gorithm scheduling uses instance features to determine which of a given set of
distinct algorithms to run, one after the other, on a given problem instance; in
contrast, our approach uses different configurations of a single algorithm and
does not require instance features. Secondly, in per-instance algorithm schedul-
ing, results are not passed from one stage of the schedule to the next, while in our
pipeline approach, each stage continues from the result of the previous stage – as
explained previously, it can thus be seen as a single algorithm whose parameter
configuration changes while running on a given problem instance. Finally, the
primary goal of per-instance algorithm scheduling is robustness resulting from
performance complementarity between the algorithms in the schedule; the goal
of our approach is to achieve improvements over the performance of the static
version of the given target algorithm, which uses a single configuration for the
entire run, based on the idea that different configurations are best suited for
different phases of solving a given problem instance.

3 Multi-objective Local Search

In the following, we consider a Pareto optimisation approach to solve the bi-
objective permutation floswhop scheduling problem. More precisely, we focus on
multi-objective local search algorithms, since they are known to provide good
solutions to classical multi-objective permutation problems [2,7,12].

3.1 The MOLS Framework

Stochastic local search (SLS) algorithms are widely used for solving a broad
range of NP-hard problems, including many single-objective optimisation prob-
lems [9]. The key idea is to iteratively improve a candidate solutions, by choosing,
in each step, a neighbouring solution to move to, making use of randomisation to
balance intensification and diversification. SLS algorithms have also been devel-
oped for multi-objective optimisation problems, where they operate on a set of
non-dominated candidate solutions dubbed an archive. Among the most widely
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used SLS methods for multi-objective optimisation problems we find Pareto Lo-
cal Search (PLS) [17] and its numerous variants, such as the stochastic PLS [5],
the iterated PLS [16] and the anytime PLS [7], and the Dominance-based Multi-
Objective local search [12].

Recently, Blot et al. have proposed a generic local search framework that
encompasses most of the multi-objective local search (MOLS) algorithms of the
literature as well as many new variants [3]. A MOLS algorithm iterates over
several phases: selection of solutions within the current archive, exploration of
these solutions, and archiving of the neighbouring solutions that have been vis-
ited. Similarly to single-objective local search algorithms, iterated local search
(ILS) approaches have been developed, which add a perturbation phase designed
to more effectively explore of the underlying search space [15]. Within the generic
MOLS framework, different strategies can be selected for each of these phases
in order to optimise performance for a given set or distribution of benchmark
instances.

3.2 MOLS Component Strategies

In the following, we explain the different components of the MOLS algorithms
and describe the strategies available for instantiating them in our experiments
(see Section 5). Since our investigation is focussed on these strategies, all nu-
merical parameters have been set to values determined in previous work [2].

Initialisation. First step of MOLS, in which one or more solutions are gener-
ated from which the search process is started. Here, 10 solutions are generated
uniformly at random; these form the initial archive.

Selection. Solutions are chosen within the current archive according to strategy
select strat. One option is to select all solutions in the archive; alternatively,
a subset of s solutions can be selected uniformly at random, or according to their
age (i.e., the time they have been in the archive), among the newest or the
oldest. In our experiments (see Section 5), s has been set to 1.

Exploration. The neighbourhood of each solution that has been selected in the
previous step is explored, and an archive of candidate solutions is created, con-
taining some of the visited neighbours. The strategy for exploring the neigh-
bourhood (explor strat) can either involve exploring it entirely or partially,
using different techniques for comparing new candidate solutions with those in
the current archive. In the first case, the all and all imp strategies evaluate
all the neighbours of the selected solution and consider as candidates either all
non-dominated or all dominating neighbours, respectively. On the other hand,
the exploration may end before all the neighbours have been visited, when r non-
dominated neighbours have been evaluated (ndom), or when r dominating neigh-
bours have been found. In this last case, either only the dominating neighbours
are kept (imp), or dominating neighbours as well as all visited non-dominated
neighbours (imp ndom) are considered as candidate solutions. In the following
experiments (see Section 5), r has been set to 5.
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Table 1. Configuration space of MOLS considered in our experiments.

Parameter Values

select strat {rand, all, new, old}
explor strat {imp, ndom, imp ndom, all, all imp}

perturb strat {restart, kick, kick all}

Archiving. All candidate solutions identified in the exploration phase are added
to the current archive; then, dominated solutions are removed from the archive.

Perturbation. In order to facilitate exploration of the search space, the pertur-
bation strategy (perturb strat) can either restart the search process, or merely
kick (i.e., remove) solutions from the current archive. A restart is performed by
forming a new archive, as in the initialisation phase. The kick strategy replaces
one or more solutions by neighbours selected uniformly at random. It can be
applied to either r solutions in the current archive (kick), or to all the solutions
in the archive (kick all). In the following experiments (see Section 5), r has
been set to 1.

Table 1 shows all strategies we considered when configuring our MOLS frame-
work; these jointly give rise to 60 (4× 5× 3) different configurations of MOLS.

4 Experimental Setup

Benchmark Sets for the bPFSP. As previously mentioned, we are considering a
bi-objective version of the classical Permutation Flowshop Scheduling Problem
(PFSP), which involves scheduling a set of n jobs {J1, . . . , Jn} on a set of m
machines {M1, . . . ,Mm}. In the PFSP, each machine can only process one job
at a time, and each job Ji is sequentially processed on each of the m machines,
with fixed processing times {pi,1 , . . . , pi,M }. Furthermore, the jobs are processed
in the same order on every machine. Therefore, each solution of a PFSP instance
(called the schedule) can be represented by a permutation of jobs of size n. In
the bi-objective PFSP (bPFSP), two objectives are considered: the makespan
and the flowtime of the schedule, where makespan is the total completion time,
and flowtime is the sum of the individual completion times of the n jobs. We
use a widely studied set of benchmark instances proposed by Taillard [18]. It is
known that the difficulty of these instances increases with the number of jobs. We
evaluated our approach on 6 sets of 10 Taillard instances each, with 20 jobs and
20 machines, 50 jobs and 5 machines, 50 jobs and 10 machines, 50 jobs and 20
machines, 100 jobs and 10 machines and 100 jobs and 20 machines, respectively.

Dynamic MOLS for the bPFSP. We used the implementation of MOLS for
the bPFSP provided by Blot et al. [2] and considered two instantiations of
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our dynamic algorithm framework described in Section 2.2, with up to K = 2
and K = 3 pipeline stages, respectively, and three ways of dividing the over-
all running times between the pipeline stages: For K = 2, we used (T1, T2) =
(1/4, 3/4) ·T , (1/2, 1/2) ·T and (3/4, 1/4) ·T , where T is the overall cut-off time,
while for K = 3, we considered (T1, T2, T3) = (1/3, 1/3, 1/3)·T , (1/4, 1/4, 1/2)·T
and (1/2, 1/4, 1/4) · T . Therefore, whilst the basic MOLS algorithm has 60
distinct configurations, the dynamic MOLS algorithm, dubbed D-MOLS, has
60+3·602 ≈ 1.1·104 configurations for K = 2, and 60+3·602+3×603 = 6.6·105

configurations for K = 3 stages. We note that this configuration space is very
large compared to on-line algorithms from the literature, which typically involve
only very few configurations. In our experiments, we chose an overall cut-off time
of T = n2ṁ/1000 for D-MOLS.

Automatic Configuration of D-MOLS. Blot et al. [2] showed that a multi-objective
AAC is the best approach to automatically configure multi-objective algorithms
such as MOLS. Therefore, in order to configure D-MOLS, we used the state-of-
the-art multi-objective algorithm configurator MO-ParamILS[1], with two per-
formance indicators: unary hypervolume[20], a volume-based convergence per-
formance indicator, and ∆ spread[4], a distance-based distribution metric. In
order to simplify the use of MO-ParamILS and interpretation of results, we
used a variant of hypervolume, denoted 1−HV , in which after normalisation to
the interval [0, 1], the hypervolume values are subtracted from 1, so that both
indicators (1−HV and ∆) need to be minimised.

To obtain training sets to be used as the basis for automatic configuration, we
generated uniformly at random a set 100 instances for each the six instance size
we considered, following the same protocol as Taillard [18]. Since MO-ParamILS
is a stochastic algorithm, we performed 20 independent runs for each config-
uration scenario, each with 1000 and 10 000 runs of D-MOLS for K = 2 and
K = 3, respectively. Then, the best of the 20 resulting D-MOLS configurations
(according to performance on the respective training set) was evaluated on the
10 Taillard instances in each of our testing sets, based on 15 independent runs.
The performance indicators – hypervolume and spread – reported for a single
D-MOLS configuration were obtained by averaging the respective values over
the 15 independent runs and the 10 instances per set.

5 Experimental Results

First, we present results for D-MOLS, our dynamic version of MOLS, for the
bPFSP for K = 2 and 3 pipeline stages, i.e., one or two changes in configuration
during each run. Next, we compare the results for D-MOLS with those for static
MOLS.

5.1 Evaluation of Dynamic MOLS

Table 2 shows the number of D-MOLS configurations in the Pareto-optimal
sets obtained from automatic configuration using MO-ParamILS; specifically,
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Table 2. Number of non-dominated D-MOLS configurations determined through
automatic configuration (see text for details).

Instances K = 1 K = 2 K = 3
k = 1 k = 2 k = 1 k = 2 k = 3

20x20 20 5 4 1 7 9
50x5 9 - 7 - 5 9
50x10 9 - 7 - 10 8
50x20 11 - 12 - 3 8
100x10 8 1 9 - 5 5
100x20 8 - 13 N/A N/A N/A
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Fig. 2. Performance of Pareto-optimal D-MOLS configurations for the 20x20 bench-
marks.

for K = 2 and K = 3, we report the number of non-dominated configurations
with k = 1, 2 and 3 pipeline stages. For example, for the 20x20 scenario and
K = 3, we obtained 1 configuration for static MOLS, 7 for dynamic MOLS with
K = 2 and 9 for dynamic MOLS with K = 3 pipeline stages. For 8 of the 11
benchmark sets considered, all non-dominated D-MOLS configurations obtained
from MO-ParamILS had at least 2 pipeline stages k ≥ 2, which clearly indicates
the performance advantage gained by switching between configurations during
a single run of MOLS.

Figure 2 shows the Pareto fronts of D-MOLS configurations obtained in our
experiments with K = 2 (left) and 3 (right), respectively, for the benchmark
instances with 20 jobs and 20 machines. ForK = 2, static MOLS (k = 1) achieves
better hypervolume, while D-MOLS(2) obtains better spread; for K = 3, on
the other hand, D-MOLS(2) and D-MOLS(3) yield better results w.r.t. both
indicators. Figure 3 shows the our results for benchmark instances with 50 jobs
and 20 machines. As also seen in Table 2, no configurations from static MOLS
are found in the final Pareto sets; furthermore, the sets of configurations from
both D-MOLS scenarios are well distributed over the Pareto front.
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Fig. 3. Performance of Pareto-optimal D-MOLS configurations for the 50x20 bench-
marks.

5.2 Performance of the Dynamic vs Static MOLS

In this section, we further assess the performance of our dynamic MOLS al-
gorithm against static MOLS. Since there are only 60 configurations of static
MOLS, we were able to evaluate all of them. Figure 4 shows the Pareto fronts
of configurations for static MOLS (K = 1) vs dynamic MOLS for K = 2 and
K = 3. Only few of the 60 configurations of MOLS ended up in the Pareto-
optimal sets for each of our benchmarks. We further note that for each instance
size, the Pareto fronts obtained for K = 2 and K = 3 are of roughly similar size.
For 50x10, 50x20, 100x10 and 100x20, the configurations obtained for D-MOLS
are better distributed along the respective fronts. For 100x10 and 100x20, the
fronts obtained by static MOLS (K = 1) are very poorly distributed. Most of the
configurations are tightly clustered; this is particularly pronounced for 100x20,
where there are two types of configurations that obtain either good hypervol-
ume or good spread, but never both. The configurations for dynamic MOLS
(K ≥ 2), on the other hand, are well distributed and cover a broad range of
tradeoffs between the objectives. Furthermore, the configurations for K = 1 are
all dominated by those for K ≥ 2. For the smallest instance size, 50x5, we ob-
served a large improvement in hypervolume, while spread remains comparable;
this effect is less obvious for the 20x20 and 50x20 instances. For 50x20, static
MOLS dominates parts of the fronts for dynamic MOLS, likely as a result of the
large configuration spaces for K ≥ 2; nevertheless, for K ≥ 2, more homogeneous
Pareto fronts of configurations are obtained. For 20x20, all three fronts are quite
close to each other and reasonably well distributed, with the configurations of
dynamic MOLS (K ≥ 2) filling some of the gaps in the front obtained for static
MOLS. We note that, even though the fronts for K = 2 and K = 3 are roughly
similar in size, the one for K = 3 contains more configurations and is overall
preferable.
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for details see text.
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6 Conclusions and Future Work

In this work, we have investigated the use of automatic algorithm configura-
tion techniques for generating dynamic algorithms that modify their parameters
while solving a given problem instance. Specifically, we proposed a dynamic algo-
rithm framework that can be automatically configured with a standard, general-
purpose algorithm configurator. Given a parameterised static algorithm, using
our approach, it is easy to automatically construct a dynamic version of the al-
gorithm whose parameter configuration is adjusted, according to an optimised,
static schedule, while it is running.

We evaluated this approach by applying it to a multi-objective local search
(MOLS) algorithm for the bi-objective permutation flowshop scheduling prob-
lem. Our experiments show that the dynamic MOLS algorithm obtained using
our approach shows better performance than the underlying static MOLS pro-
cedure on the widely studied Taillard instances.

In future work, we plan to analyse the behaviour of our dynamic MOLS
algorithm to further understand how the optimised configurations used by it
contribute to its overall performance. We also intend to apply our approach to
single- and multi-objective metaheuristic algorithms for other challenging com-
binatorial problems.
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