# Evaluation of Genetic Improvement Tools for Improvement of Non-functional Properties of Software

#### Shengjie Zuo Aymeric Blot Justyna Petke

University College London

GI@GECCO'22 - 09 July 2022



L http://www0.cs.ucl.ac.uk/staff/a.blot/files/zuo\_gi-gecco\_2022\_slides.pdf

# **Genetic Improvement (GI)**



**Challenges:** Automated refactorisation, performance improvement **Motivation:** Hidden flaws, specification changes, code rot, ...

#### Functional properties (FP)

- Automated bug fixing
- Code transplantation

#### Non-functional properties (NFP)

- Execution time
- Memory/energy usage
- Output quality
- Code size, attack surface

## **Motivation**

#### GI tools for non-functional properties?

RQ1 Availability — Can we find them?
RQ2 Usability — Can they run?
RQ3 Generalisability — Can we recommend them?

- $\rightarrow$  literature review
- $\rightarrow$  experimental study

# **Existing GI Surveys**

### Petke et al. (2018)<sup>1</sup>

- Genetic Improvement of Software: A Comprehensive Survey
- ▶ IEEE Transactions on Evolutionary Computation 22, 3
- ▶ 66 GI core papers (1995–2015)

### Living Survey on GI<sup>2</sup>

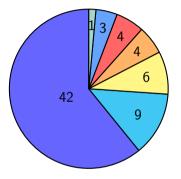
- Based on Bill Langdon's GPBIB
- 468 GI-related papers (1985–2022)

<sup>2</sup>https://geneticimprovementofsoftware.com/learn/survey

<sup>&</sup>lt;sup>1</sup>https://doi.org/10.1109/TEVC.2017.2693219

# **Survey Results**

### Methodology


- Paper should focus on NFP
- Paper should propose, implement, or reuse a GI tool
- Paper should include experimental results

#### Literature review

| Source              | Dates       | Papers | On NFP | With code |
|---------------------|-------------|--------|--------|-----------|
| Petke et al. (2018) | (1995–2016) | 66     | 27     | 19        |
| Living survey on Gl | (2016–2022) | 264    | 63     | 45        |
| ACM Digital Library | (2016–2022) | 35     | 15     | 4         |
| IEEE Xplore         | (2016–2022) | 57     | 10     | 9         |

#### RQ1: 63 unique relevant GI papers on NFP

# **GI of NFP in Practice**

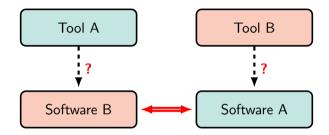


Execution time (42)
Application-specific (9)
Accuracy (6)
Code size (4)
Energy consumption (4)
Memory usage (3)
Readability (1)

 $\rightarrow$  execution time is the most targeted NFP

# **GI Tools for NFP**

#### The quest for source code...


- ▶ 63 GI papers on NFP with empirical results
- only 31 with available code
- only 13 distinct tools

#### Validation

- No application-specific NFP (2 excluded: unnamed)
- No hard hardware requirement (1 fail: GEVO)
- Dependencies should be available (1 fail: Optmizer)
- Tools should run with provided examples (1 fail: HOMI)

RQ2: 13 distinct GI tools for NFP; 8 that we could run: GGGP, Gin, GISMO, locoGP, PowerGauge, PyGGI (+2 unnamed)

# **Tool Cross-Evaluation**



#### Methodology

We test every tool on a new software, using an experimental setup lifted from a previous work involving a different tool (but same NFP).

# **Empirical Study**

#### Gin

 $\blacktriangleright$  Tested on SAT4J  $\rightarrow$  OK

### LocoGP

- ▶ Tested on GSON  $\rightarrow$  gave up
- ► Far too much manual work

## **GISMO**

- ▶ Tested on RNAfold  $\rightarrow$  fail
- ► Unable to generate BNF grammar

## GGGP

- ► Tested on MiniSAT  $\rightarrow$  fail
- Unable to modify example

## PyGGI

▶ Tested on GSON  $\rightarrow$  OK

## Unnamed tool (shader)

- Tested on MiniSAT  $\rightarrow$  fail
- Designed to only work with shaders

# Unnamed tool (OpenCV)

- Tested on MiniSAT  $\rightarrow$  fail
- Unable to expose deep parameters

### PowerGauge

- Tested on MiniSAT  $\rightarrow$  fail
- Designed for assembly pipelines

# Conclusion

RQ1 (Availability) 63 unique GI papers on NFP (mainly execution time)
RQ2 (Usability) 8 GI tools we could easily run
RQ3 (Generalisability) 2 GI tools we could easily reuse (Gin, PyGGI)

#### **Observations:**

- Poor availability
- Poor documentation
- Poor reusability
- (Public) GI tools are not industry-ready

#### Take-home message: Release better (documented) code!

# **Selected References**

 Justyna Petke, Saemundur O. Haraldsson, Mark Harman, William B. Langdon, David R. White, and John R. Woodward.
 Genetic improvement of software: A comprehensive survey.
 *IEEE Trans. Evol. Comput.*, 22(3):415–432, 2018.