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Abstract. This report is the result of a three month internship at the end of the first year of
a master’s degree in mathematics. First, we introduce the definition of a Lie group, its associated
Lie algebra and the coadjoint action linking them. Then we prove that the coadjoint orbits of a
Lie group admit a canonical symplectic structure. Most of the examples given are about matrix
Lie groups. See Subsection for an abstract with more details.
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1 Introduction

1.1 Abstract and motivations

About this report. This internship has taken place in the section of mathematics of the Uni-
versity of Geneva for three month at the end of a first year of a master’s degree in fundamental
mathematics at the Ecole normale supérieure de Rennes. It is about a symplectic structure on the
coadjoint orbits of a Lie group. We start from the level of a bachelor’s degree in mathematics in
addition to a basic course in differential geometry. In particular, we use some results about smooth
functions on manifolds, k-forms on manifolds and immersed and embedded submanifolds. We add
in the bibliography a course about smooth manifolds ([10]).

About its subject. Why studying coadjoint orbits in this report ? From a mathematical point
of view, Lie groups are very interesting and useful objects. They combine the structure of a group
and of a smooth manifold, hence join algebra, analysis and geometry. Lie groups are very im-
portant as they have a useful application in a lot of fields, such that functional analysis, number
theory, quantum mechanics or string theory. This internship started with the reading of 2], which
present several features of interest about the use of smooth manifolds and symplectic manifolds
in physics. The notions of Lie groups and Lie algebra are also introduced. These two important
structures are linked by the coadjoint action of a Lie group (on its associated Lie algebra). The
corresponding orbits, called the coadjoint orbits of the Lie group, have been studied by Alexandre
Kirillov in the nineteen-sixties and can also be used in physics. The main goal of this report is
to state Theorem to prove it and to illustrate it. This theorem assures that any coadjoint
orbit admit a canonical invariant symplectic form (and in particular is a symplectic manifold). We
briefly introduce two main examples of coadjoint orbits : in the special unitary group of degree 2
SU, (which is often used in quantum mechanics to describe spins or angular momentums) and the
real special linear group of degree 2 SLa(R).

About its content. First, we give the useful notations that we use in the rest of the report
in Secondly, we see a very short introduction to symplectic geometry. We define symplectic
vector spaces in and symplectic manifolds in ([r4]). Thirdly, we explain what is a Lie group
and its associated Lie algebra. We define Lie groups and Lie algebras in (12} 8]). In we
define the Lie algebra X(M) of vector fields on a manifold M using the correspondance between
derivations on the smooth functions algebra C*°(M,R) and vector fieds X(M) ([4]). In[3.3|we define
the Lie algebra of a Lie group, seen as the set of its left-invariant vector fields or as the tangent
space at the neutral element ([11]). In we define the exponential map from the Lie algebra
g of a Lie group G in this Lie group (|12]), and with this new tool we give a new interpretation
of the Lie bracket on g with the commutativity of the flow (|2]) and we give the Cartan magic
formula ([14]). Fourthly, we define the coadjoint orbits of a Lie group and state and talk about
their geometry. In we define a Lie group action and see the classical diffeomorphism between
an orbit and the quotient of the Lie group by a stabilizer of an element of the orbit (|3} 8}, [rol [16]).
In we define the adjoint and coadjoint actions associated to a Lie group ([11, 12} 14} 16]) and
see that they carry a canonical symplectic structure (this is Theorem the main result of this
report) ([1}[6} [7; [9]). In[4:3] we give two classical examples of Lie groups with their coadjoint orbits
represented in R3 to illustrate the previous subsection (|1} |5, 13} 15, [17]). Fifthly, we mention some
news and applications about this subject and give the bibliography. Sixthly and finally, we give in
the appendix some figures to illustrate this report.

About proofs. We do not give any proof of a result that is not about symplectic structures,
Lie groups or Lie algebras. We admit Cartan’s theorem about Lie subgroups, Theorem
about quotient manifolds, and Theorem about passing a smooth function to the quotient. We
only prove Proposition in the particular case of a Lie subgroup of the general linear group of
degree n € N* over K and we admit it in the general case.

Acknowledgement. I would like to express my sincere gratitude to professor Anton Alekseev for
its assistane at every stage of the internship and for having introduced me to Lie groups, which were



part of a completely new field for me. I also would like to thank research associate Elise Raphael,
events officer Patricia Parraga, administrator Isabelle Bretton, administrator Joselle Besson and
all the members of the section of mathematics of the University of Geneva who helped me and
made my stay in Geneva very easy.

1.2 Settings and notation

We give in this section some useful notations and reminders to read this report. In addition to
them, we will use some classical results of differential geometry without proof : most of them can
be found in [10].

o NoTATIONS. For all this report, let n € N* and K the field R or C.

o NOTATIONS. About linear algebra.

o The conjugate transpose of a matrix M € M,,(C) is M*, the transpose of a matrix M € M,
(resp. of a vector v € K") is M7 (resp. vT). We will often use the identification between
M, (K) and K.

e The set of Hermitian matrices is H,, and the set of symmetric matrices is S,,. The unitary
group is U, = {U € M,,(C) ’ U*U =U0U* = In} and the special unitary group is SU,, :=
{U €U, | detU =1}. The special linear group is SL;,(K) = det ™' ({1}).

e Given F a K-vector space, we denote by E* := Lk (E,K) its dual space.

o REMARKS. An open set of R™ is a submanifold of R™. We can notice that M, (K) is isomorphic

to R™ and M,,(C) to R(Q")z, hence is a manifold. As an open set of M,,, GL,, is then a manifold.

With F : U € M,,(C) — U*U —1,, € H,, the set U(n) is given by the equation F' = 0 and for

all U € U, dyF is surjective, hence U, is a submanifold of M,,(C). The set SU,, is given by the

equation det |y(,) = 1 and for all U € SU,, ddety is surjective, hence SU,, is a submanifold of U,,.
Likewise, SLy, (R) is a submanifold of M, (R).

¢ NOTATIONS. About manifolds.

e A manifold is a differential real manifold of unique dimension. A n-manifold is a manifold
such that dim M = n. A smooth function between two K-manifold M and N is an element
of C*(M,N).

e Let M be a manifold. For every x € M, the tangent space to M at x is denoted by T, M.
The tangent bundle of M is denoted by T'M and the tangent cobundle of M is denoted T*M.

o Let (U,z1,...,2,) a chart of a manifold M and ¢ € [1,n]. For all z € U, we denote the

unitary vector at x associated to the coordinate x; by ai,_ ’m € T,M. We also denote the
)

function 5~ : 2 € U = %hﬁ € TM. Given a manifold N, this is the same notation as the

operator palrtial derivation with respect to the coordinate x; on the vector space C*°(M, N).

o REMINDER. For (U, zy,...,2,) a chart of a manifold M and z € U, (% 0

| g Ba I) is a basis
of T,M.

& NOTATIONS. About smooth function on manifolds. Let M and N be manifolds on K.

e For f: M — N a smooth function, we denote its derivative map by df and for all x € M
dfy = df (x) : T, M — Ty, N. For J an open subset of R and vy : J — N a smooth function,

for all t € J we denote +/(t) := i(v(s))|8:t = dy(1).

S

e The set of diffeomorphisms of M (i.e. the set of every bijective smooth functions M — M
such that its inverse is smooth) is denoted by Diff (M).



A wector field on M is a smooth function X : M — T'M such that, for all x € M, X(z) €
T, M. The vector space of all vector fields on M is denoted by X(M). Given X € X(M)
and a chart (U,x1,...,2,) on M, saying that (uj,...,u,) is the component of X in the
coordinates (z1,...,2,) means that (uq,...,u,) € C*(U,K)" and X[y =Y i, uia%i'

Suppose there is an embedding ¢ : M — N. We consider i as an inclusion : for all z € N,
x=1i(x) and T,N = di,(T,N) C T, M.

We remind here a useful proposition about submanifolds :

o NOTATIONS. About k-forms. Let k € N and M be a manifold.

The set of k-forms on M is QF(M). The set of forms on M is QM) := @, Q2 (M). For
we QM) and x € M, we denote w(x) by wy.

For w € Q(M), its exterior derivative is denoted by dw. The exterior product on Q(M) is
denoted by A. Let (U,z1,...,2,) be a chart of M and I := (iy,...,i;) € [1,n]* such that
iy < ...<i,. We denote by dz! the k-form dri, N...Ndz;,.

For t € R, J C R a t-neighbourhood in R and (w!);e; € QF(M)7 a differential form family
such that for allz € M and vy, ...,v; € T, M the map s € R — w3 (v1,...,v;) € Rissmooth,

we denote by %(ws)h:t the k-form on M such that, for all x € M and vy,...,vx € T, M,

d%(ws)‘sztz(vl, cvp) = A (wi (v, ’Uk))’s:t'

For f € C*°(M,N) and w € Q(M), we denote by f*w € Q(M) the pullback of w by f.
Let X € X(M) and w € QF(M). We denote by ix(w) the interior product of X and w.

o REMARK. Let k € N, M be a manifold, w € Q¥(M) and X € X(M). If k > 1, ixw is the
(k — 1)-form on M defined by : for all x € M and vy,...,v5—1 € T M, ix(w)z(v1,...,06-1) =
we (X (x),v1,...,0-1). k=0, w € C>®(M,R) and ixw = 0.

¢ REMINDER. Let M be a manifold and X € X(M) be a complete vector field. The interior product
by X is linear on Q(M). In addition to that, for all k € N, w; € QF(M) and wy € Q(M), we have
ix(wl A\ LUQ) = (inl) N wg + (—1)’%}1 A (ixwg).



2 Symplectic geometry

We give here some basic definitions about symplectic geometry, based on [14].

2.1 Symplectic vector spaces

DEFINITIONS 2.1. o Let V be a finite-dimensional K-vector space. A sympectic form (or non-
degenerate form) on V is a skew-symmetric bilinear form Q : V' x V' — K such that

Q: |V — v
v — uweViQu) ek

is bijective.

e A sympectic vector space is a finite-dimensional K-vector space V associated to a symplectic
form Q on V, denoted (V, Q).

> ExAMPLE. For all p € N, the map

R2+P x R2ntP R
0 0 0
(u,v) — w0 0 I,]w
0 —-I, O

is symplectic if, and only if, p = 0.

PROPOSITION 2.2. A symplectic vector space has an even dimension.

Proof We prove this statement by induction : for all n € N, a symplectic vector space V such
that dim V' < n has an even dimension. The basic case, n = 0, is clear.

Let (V,Q) be a sympectic vector space such that dimV > 1. Let e; € V\{0}. Since
Q) is symplectic, there is f; € V such that Q(e;, fi) # 0. Let Vi = {es, fi} and V¥ =
{veV |Vu €V, Qv,v1) =0}. We want to show that V = V; @ V{* and that Vi is symplectic.

For all (a,b) € K? such that ae; +bf; € V2,0 = Q(ae;+bf1,e1) = —band 0 = Q(aey +bf1, f1) =
a, hence a = b = 0. We deduce than V; NV = {0}. In addition to that, for all v € V, with
a:=Qv,er) and b := Q(v, f1), we have v = (—af; + bey) + (v + af; — bey), —afi +bey € Vi and
v+af, —bey € V2 Hence V =V, + V% and V = V; @ V. Secondly, we want to show that Vi
is symplectic. Let @, € V such that for all @, € V£ Q(9,10;) = 0. By definition of V, for all

w eV, Q(v1,w) =0, hence ©; = 0. Thus (VIQ, lelszxvlsz) is symplectic.
To sum up, dimV = dimV; + dim V2. We have dimV; = 2 and, by induction hypothesis,
dim V is even. This concludes. ]

2.2 Symplectic manifolds

DEFINITIONS 2.3. Let M be a manifold. A symplectic form on M is a closed 2-form w on M
such that, for all x € M, w, is symplectic. A symplectic manifold is a manifold M associated to a
symplectic form w on M, denoted (M, w).

o REMARK. Using Proposition [2.2] a symplectic manifold has an even dimension.

> EXAMPLE. Let 1,...,%n,%1,...,¥Yn be the canonical coordinates on R?”. We can check that
dx Ndy = >, dz; A dy; is a symplectic form on this manifold.

o REMARK. If you want to know more about the example above, see the Darboux theorem to see
that every symplectic form looks like this one : see Subsection 8.1 of [14].



3 Lie Groups and Lie algebras

In this section we present two main new structures : Lie groups and Lie algebra. We see in
Subsection how these two can be linked with the Lie algebra of a Lie group.

3.1 Definition and examples

This subsection is mainly based on |2} |8].

3.1.1 Basic definitions about Lie groups

A Lie group combines two important structures (as a group and as a manifold) linked by the fact
that the group operations are smooth. This subsection is mainly based on [14} |2].

DEFINITION 3.1.  We call Lie group a manifold G with a group law such that

G? — G and G — G
(91,92) — G192 g — gt

are smooth.

> EXAMPLES. (classical Lie groups)

e The Euclidean space R™ with the law + and the usual manifold structure is a Lie group :
(,y) e R" X R" —» z+y € R" and € R" — —x € R™ are polynomial, hence smooth.

e The circle S! C C with x : (61,62) € R? — 6; + 0, € R and § € R — —f € R are smooth.
We notice that St ~ U(1) ~ SO(2).

o The sets of matrices GL,, (K), SU,, and SL,, (R) with X : the group operations are polynomial,
hence smooth. Using the continuity of the determinant, we notice that GL,(R) is a non-
connected Lie group.

o Let G be a Lie group. The cartesian product manifold G x G together with the cartesian
product group G x G laws is a Lie group.

We can adapt the definition of a group morphism and a group action to this new notion :

DEFINITIONS 3.2. e A morphism of Lie groups from G; to G2 is a smooth group morphism
from G; to Gs.

e Given G a Lie group, a Lie subgroup of G is a subgroup H < G with a Lie group structure
such that h € H — ¢g € G is an injective immersion.

o REMARK. We have define here a Lie subgroup as immersed manifold : in fact, in this report, we
only consider closed Lie subgroup i.e., by Cartan’s theorem below, embedded Lie subgroups.

THEOREM 3.3. (Cartan’s theorem)
Let H < G a closed subgroup of G for G-topology. There is a unique manifold structure on H such

that H is an embedded Lie subgroup of G.

Proof See Theorem 15.29 page 392 in [10]. O

o NOTATION. Given G a Lie group and H a closed subgroup of G, we consider that H is equiped
with the embedded Lie group structure of Theorem

In Subsection we will see the definition of a Lie group action (and some of its properties).
It is another important notion coming from classical groups we use later in this report.



3.1.2 Basic definitions about Lie algebras

DEFINITIONS 3.4. o Given a vector space L and a skew-symmetric map [-,-] : L x L = L, [+, ]
satisfies the Jacobi identity if for all (A, B,C) € L3

[A, B],C] + [[B,C], A] +[[C, A], B] = 0.

e A Lie algebra is a vector space L associated to a bilinear skew-symmetric map which satisfies
the Jacobi identity. Such a map is called a Lie bracket.

o A Lie subalgebra of a Lie algebra (L, [,-], is a Lie algebra (M, [-,-],,) such that M C L is a
linear subspace of L and for all (4, B) € M?, [A, B],, = [A, B];.

> ExAMPLES. (of Lie algebras)

o Let L a vector space. The map (u,v) € L? + 0 € L is a Lie bracket. Any linear subspace of
L with the null Lie bracket is a Lie subalgebra of L.

o Let A be the vector multiplication in R3. It is bilinear and skew-symmetric. In addition to
that, we know that for all u,v,w € R? we have (u Av) Aw = (u-w)v — (v-w)u. Hence, A
satisfies the Jacobi identity and (R3, A) is a Lie algebra.

o Let (A, +, x,-) an associative K-algebra. For all (a,b) € A? we denote [a,b] = ab — ba. This
bilinear operation gives A a Lie algebra structure. If A = M,,(K), [-,-] is the commutator
(used in quantum mechanics, for example). If A is commutative, this Lie bracket is null.

e With the commutator on M, (K) and on su,, := {A € M, (K) ’ A+A*=0,trA = ()}7 SU,, is
a Lie subalgebra of M, (K).

DEFINITION 3.5. Let (Lq,[-,-];) and (Lo, [,],) be Lie algebra on K. A Lie algebra morphism
from L to Lo is a linear map ¢ € L£(Lq, Lo) such that for all A4;,B; € Ly

¢([A1, Bi1]y) = [p(A1), ¢(B1)], -

> ExamMpLE. Let (L,[,]) be a Lie algebra. Thanks to the Jacobi identity, the map ¢ : A € L —
[A,] € L(L) is a Lie algebra morphism. We see this example in Proposition with the map ad.

3.2 The Lie algebra of vector fields on a manifold

Let M be a manifold of dimension n. In this subsubsection we present a Lie bracket on the
vector space made of all the vector fields on M, using a correspondance between vector fields and
derivations of smooth functions. This will allow us to construct the Lie algebra associated to a Lie
group. This subsection is mainly based on [4].

DEFINITIONS 3.6. o Let A be a K-algebra. A derivation on A is D € Lg(A) such that, for all
(a,b) € A2, D(ab) = D(a)b+ aD(b). The set of all derivations on A is denoted by Der(A).

e Given X € X(M), the directional derivative in the direction X is

C*(M,K) — C>°(M,K)
f — zeM—dfy(X(x)eK"

The directional derivative of f in the direction X is denoted X (f) or df o X. The directionnal
derivative in the direction X is also denoted X.

o NOTATION. Let X € X(M). Given another manifold N and f € C>°(M,N), we also denote
x € M w— dfy(X(x)) € TN by df o X.

> EXAMPLES. (of derivations and directional derivative)



e The directional derivative in the direction of a vector field X € X(M) is a derivation
on the K-algebra C*°(M,K) : the Proposition allows us to prove that for all f,g €
C>(M,K), X(fg) = X(f)g + [X(9).

o Let (E,||||z) be a normed R-vector space and (F,||-||z) be a normed R-algebra. Let h € E
and U an open set of E. We have, for all f1, fo € C*°(U,F) and = € Q, d(f1f2)(x)(h) =
dfi(x)(h) fo(x) + fi(x)df2(x)(h). Hence the differential in the direction h is a derivation on
the R-algebra C>*°(U, F) : f € C®°(U,F) — df(-)(h) € C>(U, F). We notice that if E = R"
(and then is a connected manifold) and F = R this is the derivative in the direction of the
constant vector field equal to h.

We often want to compute directional derivatives using coordinates (z1,...,z,) on M. For
every X € X(M) there are uy,...,u, € C*(M,R) such that X = > 1", uia%i' Using this result
with the following proposition allow us to compute directional derivatives.

ProOPOSITION 3.7. Let X € X(M), (U,z1,...,2,) be a chart of M, uy,...,u, € C®(U,K),
f e C>®(M,K) a smooth function. Let (u;); be the component of X in (x;);. We have, on U,

Proof Forallz € U, X(f)(z) = df. (Z?:l Uz‘(@%) = >0 wi@)df, (%) =>", ui(x)g—i(:z).

In the following Theorem [3.9] we see a very interesting and useful correspondance between the
vector fields on M and the derivation operators on smooth functions. In order to prove it, we need
the following lemma :

LEMMA 3.8. 1. Let A be a K-algebra. The set Der(A) is a K-linear subspace of £(A).
2. For all D € Der(C*(M)) and A : M — R a constant smooth function, D(\) = 0.

3. Let D € Der(C>*(M)) and U C M an open subset of M. Let g1,g2 € C>°(M) such that
g1lu = g2lv. We have D(g1)|v = D(g2)|uv-

4. Let U C M and open set of M, f € C*(U) and x € M. There is an open neighboorhood
V CUof z and f € C°(M) such that f|y = f|v.

Proof 1. We have 0 € Der(A), so Der(A4) # 0.

2. Letl: 2 € M —0e€K. Wehave D(1) =D(1x1)=D(1)x1+1xD(1)=2-D(1) so
D(1) = 0. By linearity of D, it is null on the set of constant functions M — K.

3. Let x € U. There is x € C*®°(M) and an open neighboorhood V' C U of x such that
suppy C U and x(V) = {1}. We have g1 — g2 = (g1 — 92) X (1 — x), hence Dg; — Dgs =
D(g1—92)(1 =) + (91 — 92)(0— D), hense (Dg1 — Dg2)(x) = D(g1 — g2) X 0—0x (Dy)(z),
Le. (Dg1)(z) = (Dyg2)(x).

4. Since U is open, there is V' C U an open neighboorhood of z and x € C*(M) such that

_ ;. x(x)f(z) ifzeU
suppx C U and x(V) = {1}. Letf.xGMH{O if 2 € M\U eR.
|
THEOREM 3.9. The following map is an isomorphism of R-vector spaces
(M) — Der(C*(M,R))
X +— feC®M)—dfoX eC®M)"

Proof We use the method seen in [4]. We denote by v this map. By Proposition 1 is well
defined. The derivation is linear so % is linear.



Let X # 0 : there is # € M such that X(x) # 0. Let (U, x1,...,2,) a chart of M such that

x € U, and uq,...,u, € R the coordinates of X(z) in (6%@|m) There is ¢ € [1,n] such that

u; # 0. There is V; C U; a compact set of M and y; : M — K such that Xilv, = xi|v, and
Xlamw, = 0. We have x; € C*°(M) and X (x;)(z) = dzs(X(x)) = u; # 0, thus X(x) # 0. We
deduce that Kert = {0} and ¢ is injective.

For surjectivity, we start to prove it on an convex open set M C R™. Let (z1,...,z,) the
canonical global coordinates on M. Let D a derivation on Der(C*(M)). For all i € [1,n], let
d; = D(z;). Let X := > 1, dia%i' We have X € X(M) and we want to show that (X) = D.
Let f € C*. Let z € M. By Taylor’s theorem with the remainder under integral form at order 1,
for all y € M,

f) = F(@) + / 0foss(y—o) (y — )t

= f(z) + Zn: 2i(y = 2)dfot1(y—a) ( ; )

: axl |y7:v
=1

= 1)+ w0 — ) g+ oty ).

For all ¢ € [1,n] we denote f; : y € M gﬂi(ert(yfx)) € K. Hence for all y € M,

(D)) = 0+ X1 (Ds)(y) — 0fily) + (2:(y) — 7:(2)D(f:)(). Al the functions in this
equality are continuous so the limit as y — z gives us (Df)(z) = Y./, D(z;)(z)fi(z) + 0 =
S uz(x)%(x) = (X)) (f)(z). We deduce that ¥(X) = D.

Finally, we verify the surjectivity in the general case. Let (U;, ;)icr an atlas on M such that
for all ¢ € I, U; is convex. By the theorem of the partition of unity, there is (x;); € C*°(M,R™)
such that

Vi € I,suppx; C U;
Ve € M,3V, C M open neighboorhood of z, Card {z el | U,NV, # (Z)} < 400
dierXi =1

Let i € I. Let z € U;. By point {4 of the lemma, there is V,, C U; an open neighboorhood of
z and g, € C(M) such that f o pily = gelv. Let Di(f)(z) := ((xi X D(gz)) 0 ¢; ') (x). By
point 3} D;(f)(x) does not depend on the choice of g,, only on (f,4,2). This allows us to define
D;(f) : V; = R. By composition, D;(f) is smooth on an open neighboorhood of every = € V;,
so D;(f) is smooth. Let D; : f € C®(V;) — D;(f) € C>*(V;). We want to show that D; is a
derivation. Let (f1,f2) € C°(V;)? and z € M. For j € {1,2}, there is v c U; and open
neighboorhood of = and g;gj) € C*°(M) such that gg(gj)|v(j> = f; Let V, := Vm(l) N VI(Q). We

have 9.51)9;2)\\/ = fifalv so

Di(fif2)@) = ((xi x D (692) ) 07" ()

= ((ux D () 9) o) @)+ (i x oD (9)) o) (@)
= (Dif1)(@) f2(2) + f2(x)(D;f2) ()

We deduce that D; € Der(C>(V;)). We already proved the surjectivity in the case of a con-
vex open subset of R™, so there is X; € X(V;) such that for all f € C>®(V;), D;(f) = Xi(f).
Let X'i = (dcpi_l oXi) ow; € X(U;). We want to extend X'i on M in order to add it to
the other similar vector fields on the maps of the atlas. Let W; := U;\suppy;. For all f €
C®(W;), = € W; and f € C>°(M) coinciding with f on a neighboorhood of z, X;|w,(f)(z) =
X; (f|U1) () = D (f|U1) () = 0 x D(f) (¢~'(z)) = 0. Using the beginning of the proof
about injectivity, we then deduce that for all x € W;, X;(z) = 0. For all x € V;\y; (supp x:),
Xi(z) = (dgpi—l)%(w) Xi(pi(z)) = (d‘Pi_l)%(m) (0) = 0. Hence we can extend X; by zero on

M\U;, and we still denote it by X;, which is now an element of X(M). Since for all x € M

|y -
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there is a neighboor of x intersecting a finite number of maps of the atlas, we can define X :=

> icr Xi. We now want to show that ¢)(X) = D to conclude. For all f € C*(M) and 2 € M,
with I i= {i € 1| 2 € U}, X(N(@) = Diey Ki(N@) = Sier, & (4 (671, (Kili(a))) =
Sier d(Foer), o (Xil@i@) = Tier, Xi (Fo ) (0i@)) = Sier, Dilf 0 o7 ) oi(a)) =
Yier, xiD(f)) (x) = D(f)(x). Hence D = (X). This concludes. .

o REMARK. Let X,Y € X(M). Using this theorem, to show that X =Y it is enough to show that
for all f € C>®(M,K) X(f)=Y(f).

We now see a lemma that will allow us to define the Lie bracket on X(M), which look like the
classical Lie bracket on M, (K).

LEMMA 3.10. Forall X,Y € X(M), f € C®°(M) — Y(X(f))—X(Y(f)) € C>®(M) is a derivation.

Proof Let (X,Y) € X(M)? and (U, z1,...,7,) a chart on M. Let (u;);, (v;); be the component
of X,Y in this coordinate system. Let f € C*°(M,K). At first sight V(X (f)) — X(Y(f)) includes
second order partial derivative of f : let’s use Schwarz’s theorem to see how these disappear.

n o n Ov; 9 02 . .
On U we have X(Y(f)) = X (ijl vjachj) =D iim1 uiTmT’ZJ + uivng;j and likewise
Y(X(f)) = szzl v; g’f %"‘Uiujiam?gmj yhence Y(X(f)-X(Y(f)) =>7 (Ui% — g?) of |

ij=1 ox;

n o 82f o 82f _ n du; Ovj af
Zi,j:l UjVigg00; — YiVi 9w, 00 — Zi,j:l Vige; — Yigz, ) Bz, - u

DEFINITION 3.11. For all X, Y € X(M), we define the Lie bracket of X and Y as the unique vector
field [X, Y] such that for all f € C*(M,K)

(X, Y](f) = XY (f) = Y(X(f))
Before we give an example, the proof of Lemma and Theorem [3.9] gives us the

COROLLARY 3.12. Let X,Y € X(M), (U,z1,...,x,) a chart on M and (u;);, (v;); the components
of XY in these coordinates. We have on U

N (3, 0w, 00 O
[X’ Y] B Z (Z vi 8$i Ui 8.131) (9l‘j '

j=1 \i=1

> ExAMPLES. (of Lie brackets of vector fields)

e For all X,Y € X(M) such that their components in the chart (U, x1,...,x,) are constants,
[X,Y]isnull on U.

ox
(0% 2z -2 x 045> x0-0x0) & + (0x0-a>x0+y>x0-0x2y) 5 = 0. With
7 =y* & wehave [X, Z] = (y® x 22 —2® x 0+ 0x 0 — 0 x 2y) Z=+(4> x0=2® x 04+ 0x 0 —0x0) £ =
2xy2%:2acZ.

« On R? with the global coordinates (x,y), let X := 222 and YV := y2a%. We have [X,Y] =

COROLLARY 3.13. The vector space X(M) associated to [, -] of definition is a Lie algebra.

Proof We want to show that [+, -] : X(M)? — X(M) satisfies deﬁnition using the last corollary.
It is easy to show that [-,-] is bilinear and skew-symmetric. A longer direct calculus allows us to
prove the Jacobi identity on each chart of M : the development of each sum gives us 3 x 6 terms,
which can be paired by opposite sign. O

This last proposition gives us an important example of Lie algebra, and will be used to define
the Lie algebra associated to a Lie group.
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3.3 The Lie algebra of a Lie group

Let G be a Lie group over K with an identity element e. The aim of this subsubsection is to define
the Lie algebra of GG, which is a useful tool to describe G. There are two main points of view on
this Lie algreba : we can see it as a set of particular vector fields or as the tangent plane at the
neutral element. This subsection is mainly based on [11].

3.3.1 Definition of the Lie algebra of a Lie group

DEFINITION 3.14. For all g € G we define Ly : h € G — gh € G the left multiplication by g and
R, : h € G hg € G the right multiplication by g. A vector field X € X(G) is left invariant (resp.
right invariant) if for all h € G, (dLg)n(X (h)) = X(L4(h)) (resp. (dRg)n(X(h)) = X(R4(h))). The
vector space of all left invariant vector fields on G is denoted by g.

EXAMPLE. We take the example of the Lie group G = GL,(K). Let B € G. We can show that
TG = B-T1, G and we see in Proposition that 71, GL,,(K) = M, (K). Hence TG = M, (K).
For all A € M,,(K), B € G+— BA € TG is an invariant vector field on G.

REMARKS. e In this report we mostly look at the left invariant vector fields.

e Let X € X(G). Given g € G\ {e}, the map h € G — X(gh) € TM is not necessarily a
vector field : it is smooth, valued in TM but we have for all g € G X (gh) € Ty, M while
we demand X (gh) € T, M. However, we notice that X is left invariant if an only if for all
h € G, (dLg)g-14(X (g7 h)) = X(h). This last condition is an equality between two vector
fields : we can use Theorem We use this in the proof of Proposition [3.16

PROPOSITION 3.15. Let X € g, g € G and f € C*(G,K). We have X(foL,) = X(f)o L,.

Proof Forall h € G, X(f o Ly)(h) = (d(f o Ly) o X)(h) = dfyn(X(Ly)(h)) = dfyn(X(gh)) =
X(f)(gh). 0

PROPOSITION 3.16. The set g is a K-vector space and for all X,Y € g we have [X,Y] € g. Hence
(8, 3x) is a K-Lie algebra.

Proof For all (g,h) € G?, (dL,), is linear, hence g is a K-vector space. Let X,Y € g> We
want to prove that [X,Y] is left invariant : by the remark above, if we introduce Z : h € G —
(dLg)g-1n(X (g7 'h)) € TG then it is equivalent to show that for all f € C>(M,K) and h € G,
Z(£)(h) = [X.Y)(/)(h). .

Let f € C°°( ,K), h € Gand h := g~*h. We have > Z(f)(h) = dfh (d (Lg)s, ([X,Y](h))) =d(fo
|Ait([X Y](h) = [X, Y](foL )(h) = Y(X(f o Ly))(h) = X(Y(f o Ly))(h). Hence by Proposition
3.15) Z(f)(h) = Y (X(f)oLg) (h) = X(Y(f)oLg) (h) = (Y(X(f))oLy) (h) = (X(Y(f))oLg) (h) =
Y(X(f)(h) = XY () (h) = [X,Y](f)(R). 0

DEFINITION 3.17. We also denote [,-] : (X,Y) € g? — [X,Y] € g. The Lie algebra of the Lie
group Gis (ga ['a ])

3.3.2 The Lie algebra of a Lie group as a tangent space

We now see another point of view of the Lie algebra g, as the tangent space at the identity T.G.
PrOPOSITION 3.18. The evaluation at the identity

g — T.G
X — X (e)
gEG (dLg)eX. € TG +— X

eve :

is a vector space isomorphism.
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Proof The evaluation ev, is clearly well defined and linear. Let X,Y € g such that X (e) =Y (e).
For all g € G, X(g9) = X(ge) = (dLy)c(X(e)) = (dLg)e(Y(e)) = Y (g), hence X =Y. So ev, is
injective.

Let X, € T.G. Let X : g € G~ (dL,).(X.) € TG. Since G is a Lie group, X is smooth and
for all g € G, X(g) € T4G. So X € X(G). Since L, = Idg, X(e) = X.. Finally, we want to show
that X is left invariant. For all g,h € G, (dLy)p X (h) = (dLg)n(dLp)eXe = (dLg)n(dLp)eXe =
d(LgoLp)eXe = d(Lgn)Xe = X(gh). So X € g and ev.(X) = X.. Hence ev, is surjective, and
this concludes. 0

> EXAMPLE. We see in the proof of Proposition that for all X, € T1, GL,,, ev,' X, : A €
GL, — AX, € Ty, GL.,.

o REMARKS. o We can see that (X,Y.) € (T.G)? — ev, ([evoH(Xe), evo1(Ye)]) € T.G de-
fines a Lie bracket on the tangent space T.G. With this Lie bracket, ev, is a Lie algebra
isomorphism.

e The same proposition holds for right invariant vector fields :

{X € X(G) | X right invariant} — T.G
X —  X(e)
g€ G (dRy) X € TG — X,

is a bijection. To prove it, we use the same technique than in the proof above, with right
translation instead of left translation. This side result is used in the proof of Lemma

COROLLARY 3.19. We have dim G = dim g.

Proof 1t is a direct application of Proposition O

o NOTATIONS. o We also denote the tangent space T.G by g and its Lie bracket (given by ev,,
cf last remark) by [-,-]. Depending on the context, the Lie algebra g of G can be the set of
set of left invariant vector fields on G or the set of tangent vector at the identity.

o We denote the Lie algebra of a Lie group by the notation of the Lie group in Fraktur lower-
cases. Given a finite dimensional vector space V, the Lie algebra of GL(V) is gl(V).

PRrROPOSITION 3.20. The Lie algebra of a Lie subgroup of G is a Lie subalgebra of g.

Proof Let H < G a Lie subgroupd of G and b its Lie algebra. Let X,Y € bh. There is
(U,z1,...,2,) a chart of M and m € [1,n] such that e € U and NNU = {x,41 = ... = z, = 0}.
Let (u )i (resp. (v;);) the component of X (resp. Y) in the coordinates (U N N,zy,...,7,). Let
X € g (resp. Y € g) the left invariant vector field associated to X (e) (resp. Y (e)) by Proposition
- Let (u;); (vesp. (%;);) the component of X (rvesp. Y) in (U, z1,...,x,). By unicity, we have

uy = u1|UmN,.. Uy, = um|UmN and U 41|unn =...= Unluny = 0. Hence, by Corollary
[X,Y](e) = [X, Y]( ), ie. [X(e),Y(e)] = [X(B)J”(e)]-

PROPOSITION 3.21. We have

:{XeM K)| tr X =0}
{XeM,(C)| X +X* =0, trX*O}

Proof o We described the Lie group GL,, (K) as a submanifold of M,,(K). Hence T3, GL, (K) C
M, (K).
Let X € GL,(K). The path v :t €] — 1,1[— exp(tX) € GL,(K) is smooth and statisfies
~7(0) =1, and 7/(0) = X. Hence, X € T1, GL,(K).

o Let X € sl,. There is v :] — 1,1[— SL,, such that v(0) = I, and 4/(0) = X. For all
t €] —1,1[, dety(t) = 1, hence d(det), )7’ (0) = 0, i.e. tr (Com(I,)TX) =0, i.e. trX = 0.
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Thus sl,, C Ker tr.
Let X € Kertr. For all t €] —1, 1], tX is triangularizable on C so det exp(tX) = exp(tr¢tX) =
1. Thus we can define the path v : ¢ €]—1, 1[— exp(tX) € SL,(K) and conclude that X € sl,.

o Let X € su,. Thereis v :]—1,1[— SU, such that v(0) =1, and 7/(0) = X. By the previous
point, tr X = 0. For all t €] — 1,1, v(¢)v(¢)* = I, hence +'(0)v(0)* + v(0)y'(0)* = 0, i.e.
X+X*=0.

Let X € M,,(K) such that X + X* =0 and tr X = 0. For all t €] — 1, 1], exp(tX) exp(tX)* =
exp(tX)exp(tX*) = exp(t(X + X*)) = I,. Thus we can define the path v : t €] — 1,1[—
exp(tX) € SU,(K) and conclude that X € su,,.

]

PROPOSITION 3.22. Let G < GL,(K) be a Lie subgroup of GL,,(K). We have g C M,,(K) and all
X,Y €9, [X,Y]=XY — YX (the Lie bracket of its Lie algebra is the commutator).

Proof Let X.,Y, € T1,G. For all A € G, B € M,(K) — AB € M,(K) is linear so d(La). :
B € G+~ AB € TG. Thus, if we denote X = ev_(X.) and Y := ev_}(Y.), X : A € G —
AX, € TGand Y : A€ G — AY, € TG. Let (i,j) € [1,n]* and z;; : (ak71)k7le[[1,n]]2 €gr—
a;; € K. It is clear that z; ; € C*(g). In addition to that, the associated map on the whole
space M, is linear, hence for all Z € X(G) and g € G, Z(z;;)(g) = i;(Z(g)). We deduce
that @ ;([Xe,Ye]) = 2i;([X,Y](In)) = [X, Y] (@i5) () = X(V(2ig))(Tn) = Y (X(2i;))(In) =
2 (X(T)Ye) — 2, (Y (I,) Xe) = 2 j(XeYe — Yo X.). This shows that [X,, Y] = X Y. - Y. X.. O

REMARKS. o Using Proposition [3.20} it would have been enough to show that the Lie bracket
on GL,(K) is the commutator.

o The Lie algebra su,, is a Lie subalgebra of sl,,(C), which is a Lie subalgebra of gl,,(C).

¢ We could have shown an intersting thing about the correspondance between Lie group mor-
phisms and Lie algebra motphisms. Let H be a Lie subgroup and b its Lie algebra. For all
f: G — H Lie group morphism, df. : g — b is a Lie algebra morphism.

3.4 The exponential map on the Lie algebra of a Lie group

Let G be a Lie group, g its Lie algebra and [, ] its Lie bracket. This subsection is mainly based
on (2} 12} [14].

3.4.1 Definition of the exponential map

We can define the exponential on a Banach algebra B (such that M, (K)) as a conveging series
exp : ¢ € B — j;of ‘%7: € B. In this subsubsection we see a generalization to Lie groups :
it is an interesting link between a Lie group and its Lie algebra. To understand the rest of the
report, it is possible to skip this subsubsection about the exponential by reading Proposition [3.27]
This proposition is useful to define the Lie derivative in Subsubsection |3.4.3|and in some proofs in

Subsection .2

DEFINITIONS 3.23. e Given M a manifold, x € M and X € X(M), an integral curve of X
throught x is a smooth function « from an open neighboorhood of 0 € R to M such that

S

A vector field X on a manifold M is complete if for all x € M there is an integral curve
R — M of X throught x.

o A one-parameter group of G is a smooth homomorphism (R,+) — (G,-). The set of all
one-parameter groups of G is denoted by Z.
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> EXAMPLES. o If we consider the manifold R™, looking for an integral curve of a vector field
X € X(R™) is looking for a solution to an ordinary differential equation. Let M a manifold
and X € X(M) : in local coordinates, the condition of v beeing an integral curve of X can
be written as an ordinary differential equation. We see in the remark below an example of
how important this observation is.

e By the Cauchy-Lipschitz theorem, every smooth Lipschitz map f : R™ — R" is a complete
vector field. In the proof of Proposition we have seen some examples of integral curves
of complete vector fields on matrices (we also notice that we have used the exponential on a
Banach algebra). On the other hand, the vector field # € R — x? € R has integral curves
and yet is not complete.

o The real exponential exp : R — R™* is a one-parameter subgroup of (R™*, x).

o REMARKS. e Since every vector field X on a manifold M is smooth by definition and because
of the first point of the example we have just seen, we can use the Cauchy-Lipschitz theorem
: for all x € M, there is a unique maximal integral curve of X throught . See Theorem 12.9
page 314 of [10]. For example, we use this result in the proof of Lemma below.

e Let v € Z. Since R is commutative, Im~ is commutative : for all s,t € R, v(t)y(s) = v(s)v(t).
LEMMA 3.24. With Z the set of all one-parameter groups of G, the map

D:|7T — T.G
v — (0)

is a bijection.

Proof Let 1,72 € Z such that v{(0) = 74(0) =: X.. For all (s,t) € R? ~v1(s +t) = y1(s)1(t) =
L, s (1 (1)), sovi(s+t) =d (L 71(5))71“) (v1(¥)). Hence, for all ¢t € R, '71( )=d(L 71(5)) (X.). Let
X :=ev_ }(X,) : we have, for allt € R, v} (t) = X (71(t)) and in the same way v4(t) = X (72(t)). In
addltlon to that, v1(0) = 72(0) = e so by the Cauchy-Lipschitz theorem 7, = 2. We have shown
that D is injective.

Let X, € T.G and X :=ev, ' (X.) € X(G). There is € > 0 and an integral curve v :| —¢,e[— G
of X through e. Let s €] —eg,¢[, J®* =] —s—e,—s+¢[N] —e, e[,y :t € J° = y(s+1t) € G and
v5 it € J° — y(s)v(t) € G. We want to show that these two functions are equal. For all ¢t € J*°,
(1) (1) =7 (t +5) = X(7(t + 5)) = X(71) and as we saw earlier (3)'(t) = d (Ly(5)) ) (V(1)) =
4 (o) (X(1() = X(1()7(8)) = X(35(8)). Tn addition to that, ;(0) = 73(0) = 7(¢), hence
~i and v are two integal curves of X through ~(¢). By the Cauchy-Lipschitz theorem, v§ = ~3.
We deduce that for all s,t €] — e, e[ such that s+t €] —e, ¢, (s +t) = v(s)y(t). We now want to
extend v to R. For all m € N we define J,,, :== |—2™¢,2™¢[. Let m € N and suppose that there is
an integral curve v, : J,, = G of X through e such that

'7m|]75,€[ =7
Vs, t € s+t € I = (s +1) = n(s)1(t)

Let Ymi1 it € Jmi1 = Ym(t/2)? € G. For all s,t € Jp, 11 such that s+t € Jyi1, Ymi1(s +1) =
Yo (552)7 = (3) 1 (£)7 = Yns1 ()91 (8). For allt €]—e,el, yns1(t) = v (5)° =7 (£)° =
~(t). Let tg € Jyy1. There is n €]0,¢[ such that |to — n,to + n[C Jmy1. For all ¢ €] —n, +1],
Ym+1(to +1) = Ymt1(t0) Ym41(t) = L, (7(1)), hence vy, 44 (to + 1) = d(Lr,, 1 (t0)7(r) (Y (R)). In
particular, v, (to) = d(L,, . (t))e(X(€)) = X(Ym+1(to)). Since ¥m41(0) = e, we deduce that
Ym+1 is an integral curve of X through e. By induction, with ¢ := ~, for all m € N there is
such a curve 7v,,. By the Cauchy-Lipschitz theorem, for all mi,ms € N such that m; < mao,
Yma|Jm, = Ym,- Hence there is a unique 7 : R — G such that for all m € N, 4[;,, = v. Using the
properties we have just shown in the induction, ¥ € Z and D(¥) = 7/(0) = X.. We conclude that
D is surjective. (|
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COROLLARY 3.25. Let X € g. The vector field X is complete and for all g € G there is a unique
integral curve of X through g¢.

Proof Let g € G and 7. := D~*(X(e)). The map g7, defined on the whole line R is an integral
curve of X through g, and by the Cauchy-Lipschitz theorem it is the only one. (]

The lemma [3.24] allows us to introduce the

DEFINITION 3.26. The exponential on g is

exp:| g —

3.4.2 Basic properties about the exponential map on a Lie algebra

The exponential on a Lie group has some of the classic properties of the exponential on the matrices,
as we see for example in the propositions below.

ProposITIONS 3.27. Let X, € g.

1. We have D71(X,) : t € R+ exp(tX,) € G. In particular,

exp(0) =e
Vs, t € Ryexp((s +t)X.) = exp(tX.)exp(sXe)
% exp(tXe)‘tzo =X,
2. We have exp(X,.) ™! = exp(—X,).

Proof Let v, := D 1(X.). Let t € Rand v : s € R+ vy (st) € G. It is clearly smooth and for all
s € R, 7y(s) = d(m)se(t) = t7/(st) = tX(m(s)), hence v, = D~ (tXc) and exp(tXe) = n(t). We
deduce the first statement. From this statement, we have exp(X.) exp(—X.) = exp((1-1)X,) = e,
hence we have the second statement. |

ExXAMPLE. We also have, for all X,, Y, € gsuch that [X,, Y] = 0, exp(Xe+Ye) = exp(X,) exp(Ye).
We do not prove it (but we will not use it).

EXAMPLE. Let f : ¢t € M,(K) s Y72 ¢G40 ¢ GL,(K). We have £(0) = I, and f/(0) = A,
hence exp(A) = f(1), i.e.
+oo Ak
exp(A) = I
k=0

In the same way, for all t € R, exp(t) = ﬁi% % We notice that we used the exponential of a

matrix in the context of Lie groups in the proof of Proposition

PROPOSITION 3.28. The map exp is smooth.

Proof Let X, € g and X € X(G) the left-invariant vector field such that X(e) = X.. For all
Y. € g we denote by 7y, : R — G the integral curve of X through e. By the theorem of smooth
dependance on initial condition of the solutions of an ordinary differential equation, there is U C g
a neighboorhood of X, and & > 0 such that Y. € U — ~|_. € C°([—¢,¢],G) is smooth. In
particular, Y. € U — exp(Y.) € G is smooth. Hence exp is smooth. a

PropoOSITION 3.29. For all X,,Y, € g,

X v=a (j (exp(EX, ) exp(sYz) exp(—tX,)) |$:0> o
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Proof We only prove it for Lie group of matrices. The general result is admitted. We suppose

that G < GL,(K) is a Lie subgroup of GL, (K). Let X,,Y, € g. We have

4 (L (exp(tX.)exp(sY,) exp(—tX,)) |S:0) ’t:O = 4 (exp(tX.)Y. exp(—tX.)) ‘t:O =X.Y.1,+1,Y.(—X.) =
X, Ye]. |

¢ REMARKS. e What does the formula given above means ? Let X,,Y, € g. For all s,t € R we
have exp(tX.) exp(tYs) exp(—tX,) € G, hence for all t € R we have (exp(tX.) exp(tYs) exp(—tX,.)) ’5:0 €
g. By the identification Tpg = g we make, the second derivation of the formula corre-
spond to the classical derivation of a function from R to a normed vector space. Thus
% (% (exp(tX.) exp(tYe) exp(—tX,)) |S:0) |t:0 is indeed an element of g and the formula is

coherent.

o Let X,Y € g left-invariant vector fields. Since the flow of X (resp. V) trough eist € R —
exp(tX(e)) € G, Proposition allows us to see the Lie bracket of two elements of g as a
"measure of the degree of noncommutativity of the flows of these two elements" : see page
210 in [2].

e How to describe the Lie algebra g of the Lie group G ? We have seen two ways of looking
at g : as the set of the left invariant vector fields on G or as the tangent space at the
neutral element. We have also seen three ways of looking at its Lie bracket : in algebra as
an operation on the corresponding derivations of C*°(G), in calculus with a local explicit
formula, and now in geometry as the "degree of noncommutativity" of two flows. This last
one has also interesting consequences : for example see Propositions |4.1

This new tool can also help us to describe the Lie algebra of a Lie subgroup of G, for example
by

PROPOSITION 3.30. Let H < G be a Lie subgroup of G and § its Lie algebra. We have

h={Xc€g|VteR exp(tX.) e H}.

Proof Let X, € gsuch that for all t € R, exp(tX,) € H. We have % (exp(tX.)) ’t:O € TexpoyH =
h. Reciprocally, let X, € h. Let i : h € H — h € G the inclusion map. Since H is a Lie group,
there is v : R — H a one-parameter group of H such that 7/(0) = X,.. Hence i o~ is a one-
parameter group of G such that (i o )'(0) = di.(X.) = X.. By unicity, for all ¢ € R we have
i(v(t)) = exp(tX,.), and in particular exp(tX.) € H. O

3.4.3 The Lie derivative and the Cartan magic formula

In differential geometry, two important objects are vector fields and differential forms. They
are naturally linked by the interior product of a vector field and a diffential form (see . In
this subsubsection, we use the exponential map to define another tool : the Lie derivative of a
differential form by a vector field. In fact, the interior product and the Lie derivative are linked
by the Cartan magic formula : see Proposition [3.36] To understand the rest of the report, it is
possible to skip this subsubsection about the exponential by reading this last proposition : it is
very useful in Subsubsection to compute the exterior derivative of an interior product.

DEFINITION 3.31. Let X € X(G) a complete vector field. For all g € G there is a unique integral
curve v, € C*(R,G) of X through g. For all ¢ € R we denote by exp(tX) : g € G — v,4(t) € G.
The exponential map (or flow) of X is (t,g9) € R x G — exp(tX)(g) € G.

o REMARK. This definition has a natural generalisation on a manifold (and not only on a Lie
group). See this interesting definition in Subsection 6.1 of [14].

> EXAMPLE. Let m € N* and f € C*°(R",R™) a smooth Lipschitz map. It is a complete vector
field and its exponential map (or flow) is its flow as seen in the ordinary differential equations
theory.
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PROPOSITION 3.32. Let X € X(G) a complete vector field.
1. The exponential map of X is in C*(R x G) (i.e. is smooth).
2. For all t,s € R, exp(tX) o exp(sX) = exp((t + 5)X).
3. Forallt € Rand g € G, 4 (exp(tX)(g)) |s=t = X (exp(tX)(g))-

Proof The exponential map of X is the flow of a C* map. The first and second statement are a
reminder of some important properties about such flows. The third one comes directly from the
definition of the exponential of X and of an integral curve. ]

Using the exponential defined on g, we can give a formula for the exponential map of some
classical complete vector fields.

PROPOSITION 3.33. Let X € X(G) (resp. X € X(G)) a left-invariant (resp. right-invariant)
vector field. Let X* := X%(e) and X' := X% (e). For all t € R,

exp (tXL) = Rexp(ext) and exp (tXR) = Lexp(txR)-

Proof Let g € G and t € R. We have & (Rexpxz)9) |,_, = o (Lgexp(tXF))|._, =

d(Lg)exp(tXeL)(XL(eXp(tXeL))) = XL(g exp(tXeL)) = XL(Rexp(tXeL)g) and, likewise, dis (Lexp(tXR)g) ’ s—t

i (Ra expltX0) |,y = dlRy)oxpxy (XF(EmUXE) = XH(exp(tXg) = X Lexpxo):
Using the unicity of such integral curves, this concludes.

o REMARK. This last proposition explains why the notation for the exponential of a complete vector
field is convenient : for X € g a left invariant vector field, exp(tX)g can be the group element
exp(tX) € G times g € G or the image of g € G by the map exp(tX) € C°(G, G), and these two
are equals.

DEFINITION 3.34. Let X € X(G) be a complete vector field. The Lie derivative of X is

Lx:| UG — Q(G)
w — %((exp(tX))*w)‘tzO

> EXAMPLE. We consider the case G = GL,,(R). Let M € M, (R) and X : A € G — MA € TG.
This map is a left invariant vector field and for all t € R, exp(tX) : B € G — exp(tA)B € G.
The map det is smooth on G and for all B € G Lx(det)(B) = %((exp(tX))* det)|t:0(B) =

4 (det(exp(tA)B ’t 0= 3 4 (exp(trtA)) ’t:O det B = (tr A)(det B).
o REMARK. Let X € X(G) be a complete vector field. We can quickly notice two things : the Lie
derivative Lx of X is linear and for all k € N we have Lx (Q%(Q)) C QF(G).

Given X € X(G) a complete vector field, the lie derivative Lx on Q°(G), i.e. on C®(G), is
the directional derivative in the direction X we saw in definition In addition to that, it is a
derivation on the R-algebra of the differential form.

PROPOSITIONS 3.35. Let X € X(G) be a complete vector field.

1. For all f € C>(G),
Lxf=X(f)

2. We have Lx € Der((2(M),N)), i.e. the Lie derivative of X is a derivation on the algebra
Q(M) equiped with the exterior product A.

Proof 1. Forall f € C*(G)and g € G, (Lxf)(g) = % (exp(tX))*F)(9)) |,_g = 2 (Fexp(tX)g)
af, (X (9)).
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2. Forallwy,ws € Q(G), Lx(wiAwz) = 4 (exp(tX)* (w1 Aws)) | =4 ((exp(tX) w1) A (exp(tX)*we

t=
% ((exp(tX)*w1)) |t:0 A (Idg we) + (Idg wi) A % ((exp(tX)* | ) Aws +wy A
Ele.

O

PROPOSITION 3.36. (Cartan magic formula)
Let X € X(G) be a complete vector field and w € Q(G). We have

Lxw =ixdw + dixw.

Proof In this proof we use the calculus rules about the interior product we have reminded in
the subsection and the method seen in the exercise page 34 of |14]. Let Dy : w € Q(G) —
Lxw € Q(G) and D : w € QG) — ixdw + dixw € Q(G). For all k € N we denote by Z, the set
{Gi1,... i) € [L,n] | i1 < ... <in}.

We start proving Cartan magic formula on QO(M) Let f € Q°G) = C*®(G). For all g € G,
Di(f)(g) = 4 (f(exp(tX)g }t O—dfg( (exp(tX)g ’t 0)—dfg( (9)) =ixdf =ixdf +dixf =
D5(f)(g). Hence the Cartan magic formula for f.

Secondly, we want to prove that d commutes with D; and D,. Let & € N and w € QF(G).
We have Ds(dw) = ixddw + dixdw = dixdw = dixdw + ddixw = dDs(w). It is harder
to prove it for D;. Let (U,x1,...,7,) a chart of G. There is (wr); € C®(U x R)%* such

that for all ¢t € R we have ((exp(tX)")w)luv = > ez, wr(y ..oy t)del. We have dD;(w)|y =
dd (Xrer, wily .oy t)dat) ’t:o =d) rer, 4 (wi(y..ynt)) ‘t:(]dxl, hence
1
le(w)|U: Z Z xz dt I [ .”t))‘tzodszdﬂf
1€y, i=1
_ , I
= Z Z 7 (81: t)) |t:0dml Adx
I€Zy i=1
d I
== > dwr(s. ) Adat) )]s
1€y,

hence dD1(w)|y = 4 (d(exp(tX)*w))
our second step.

Thirdly, we want to prove that Dy, Dy € Der((€2(G),A)). We saw this result for D; in Propo-
sitions Let k € N, w; € QF(G) and wy € Q(G). We have Da(w; A wa) = ix(d(wy A
OJQ)) + dix(wl N UJ2> = ix(dwl N wo + (—l)kwl A dWQ) + d((ixwl) A wo + (—1)’%1 A\ ixwg) =
ix(dwy A we) + (—l)kix(wl A dws) + d((ixwi) A w2) + (—1)kd(w1 Nixws) = (ixdw) A we +
(71)k+1(dw1)/\in2+(71)k(2‘XW1)/\dWQ+(71)2kwl Aide2+(din1)/\wng(fl)k*l(inl)/\dwng
(—1)k(dw1) Nixwo + (—1)2’%01 Ndixwy = (ixdwl) Awo +wq At xdws + (dixwl) Awo +wi ANdixwy =
(ixdwy + dixwy) Aws + wi A (ixdws + dixws) = Da(wy) Aws + wy A Da(ws). Hence Dy is also a
derivation of (2(G), A).

Finally, we prove the Cartan magic formula in the general case. Let k € N* and w € QF(G).
Let (U,21,...,2,) a chart of G. There is (wr); € C*(G)™ such that w|y = 3,7 wrdz'. The
maps D7 and Dy are naturally defined on Q(U) too, and we still denote them D; and Do : for all
Jj€{1,2}, Dj(w|y) = D;(w)|v and the steps 1, 2 and 3 of our proof are still true for D; on Q(U).
We have D1 (w)lv = > ez, Dy (wr)dz! + wrDy(dx!). By the first step, for all I € 7, Dy(wy) =
Dy (wr). In addition to that, for all ¢ € [1,n] we have Dy (z;) = Da(x;), hence dD;(x;) = dDa(x;)
and by the second step D;(dx;) = Ds(dz;). Hence, because Dy and Dy are derivations, for all
I € T;, we have Dy (dx!) = Dy(dx?). Hence D (w)|y = doreT, Dy (wr)dz! +wrDo(dz’) = Dy(w)|y.
We deduce that D; = Do, i.e. the Cartan magic formula. O

|t:0 = 4 (exp(tX)*(dw)) |t:0 = D;(dw)|y. This concludes

REMARK. This proof is an example of a classical method to prove the equality of two maps
defined on differential forms. If we notice that these maps are derivations commuting with the
exterior derivative, it is enough to show that they are equals on o-forms (i.e. on smooth functions)
to show they are equals.
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4 Coadjoint orbits

Let G be a Lie group with an identity e and g its Lie algebra with [-, -] the associated Lie bracket.

4.1 Lie group actions

In this subsection we define a group action in the particular case of a Lie group and see some of
the geometric properties that come from it. This subsection is mainly based on (3} [8} |10}, [16].

4.1.1  Definition of a Lie group action on a manifold

We start to give many definitions, but a lot of them are from the group action theory seen without
any Lie groups.

DEFINITION 4.1. o A left action of a Lie group G on a manifold M is a group homomorphism
1 : G — Diff(M). We denote it by G vy M and for all (g,x) € G x M we denote ¢ (g)(x)
by ¥g(z) or g - .
o A right action of a Lie group G on a manifold M is a map v : G — Diff (M) such that for all
(91,92) € G?, g g, = tbg, 0 Vg,. We denote it by G vy, M and for all (g,7) € G x M we
denote ¥(g)(z) by 14(z) or z - g.

o Let 7 be an action from a Lie group G on a manifold M. The action is transitive (or M is
homogeneous) if for all z,y € M there is g € G such that g - x = y. The action is smooth if

evy: | GxM — M
(9,2) — g-x

is smooth. The action is free if for all (g,z) € G x M, g-x = © = g = e. The action is
proper if the inverse images of compacts by the map (g,x) € G x M — (g-z,9) € G x G are
compacts.

e A representation of a K-Lie group G is a K-vector space V associated to a group morphism
Y G — GL(V).
> EXAMPLES. (of actions and morphisms)

e The map 6 € R+ 20 € R is smooth, hence z € S' + 22 € S! is a Lie group morphism. The
determinant det : GL,, (K) — K* is a Lie group morphism.

« With S* := {z € C| |2| = 1} the unitary circle, the scalar multiplication ev : (A, z) € S x
C™ +— Az € C" defines an action S! ~ C".

e Given a Lie group G, it acts on itself on the left by conjugation ev : (g,h) € G x G
ghg™' € G. If for all g € G we denote L, : h € G+ gh € Gand R, : h € G— hg € G, we
have G ~y, G and G g G.

e See Lemma for another interesting example of a Lie group action.

o NOTATIONS. Given an action of a Lie group G on a manifold M, we talk about the orbits and
stabilizers of the action of the group G on the set M. For all z € M we denote O, :={g -z ; g € G}
its orbit, and G, := {g eqd | g-x= m} its stabilizer.

o REMINDER. Let an action of a group G on a set X. Let z € X and the action G\~ G, given
by for all (h,g) € G x G, h- g = Ry(g9) = gh. The map g € G — g.x € O, induces a bijection
¢:G/Gy = O, such that for all g € G, p(9G,) =g - .

LEMMA 4.2. Let M and N two manifolds, a transitive smooth action ™ from G on M and
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a smooth action " from G on N. Let f : M — N a smooth map such that for all g € G,
fo 1/);‘/[ = wé\’ o f. The map f has a constant rank, i.e. for all x1,x2 € M we have df,, = df,,.

Proof Let 1,22 € M. There is g € G such that g - 21 = x9. We have d(wév)f(zl) odfy, =
dfz, 0d (wéw)wl. But d(wév)f(xl) and d (z/Jé”)ml are bijective, so dfy, = rgdfs,. |

REMARK. In Subsubsection[f.1.2] we use this lemma together with a classical result of differential
geometry that we do not prove in this report : Proposition 5.17 at page 111 of [10].

4.1.2 Basic geometry about Lie group actions

In this subsubsection we see some basic properties about the geometry of smooth Lie group actions.
First, Theorem gives us a manifold structure on the quotient space. In addition to that,
Propositions {4.8] give us a manifold structure on each orbit and a link between an orbit and the
quotient space associated to a stabilizer.

Let M be a manifold of unique dimension and a smooth action of G on M.

THEOREM 4.3. Let M be a manifold of unique dimension and a smooth, free and proper action
from the Lie group G on M. The quotient M/G has a unique manifold structure such that the
canonical surjection 7 : x € M — G -x € M/G is a smooth submersion. The quotient space M/G
is then a manifold of dimension dim M — dim G.

Proof See Theorem 7.10 page 153 in [10]. O

REMARK. From now on, if we have a smooth, free and proper action from a Lie group on a
manifold of unique dimension, we equip the quotient space with the manifold structure given in
Theorem [£.3]

As always with quotient structures, we now see a theorem that allows us to "pass a map to the
quotient”.

THEOREM 4.4. Let My, M5, N smooth manifolds, = : My — M a surjective submersion, and
f: My — N such that for all z;,75 € M, 7(z1) = 7(x2) = f(21) = f(x2). There is a unique
smooth map f: Ms — N such that for = f.

Proof Tt is Proposition 5.20 page 112 of [10]. O

Hence theorems [£.3] and [4.4] gives us

COROLLARY 4.5. Let M be a manifold of unique dimension and a smooth, free and proper action
from the Lie group G on M. Let m: x € M — G -z € M/G be the canonical surjection. Let N a
manifold and f: M — N a smooth map such that for all 1,29 € M, w(z1) = 7(x2) = f(x1) =
f(z3). There is a unique smooth map f : M/G — N such that for = f.

f
M — N
MG

PROPOSITION 4.6. Let H be a closed subgroup of G and G v~ H the action of H on G by right
translation : for all (h,g) € H X G, h-g = Rp(g) = gh. This action is smooth, free and proper.

Proof By definition of a Lie group, (h,g) € G X G +— gh € G is smooth. Since H is an emmeded
submanifold of G, (h, g) € HxG +— gh € G is smooth, i.e. G« H is smooth. For all (h, g) € HxG,
gh=g= h=¢e, hence G H is free. Let m: (h,g) € H X G (gh,g) € GxGand K CGx G
a compact subset. Since a manifold is in particular a separated topological space, we can use
the sequential characterisation of compactness. Let (hi, g;); € (H x G)N such that for all 4 € N,
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(gihi,gi) € K. There is ¢ : N — N a strictly increasing map such that (g, ) he(i))i and (ge))i

are convergent in G. By continuity, (hyx;): = (gw(i)h@(i)h;(li)) _is convergent in G, and since H
is closed, is convergent in H. Hence (hy (), g,(:))i converges in H x G. ]
o REMARK. Given H a closed subgroup of G, we now have a Lie group structure on H (as an
embedded submanifold) and a manifold structure on G/H such that dim G/H = dim G — dim H.

LEMMA 4.7. Let H a closed subgroup on G and the left action from G on G/H given by for all
91,92 € G, g1 - (92H) = (g192)H. This is a smooth transitive action from the Lie group G on the
manifold G/H.

Proof We already know that it is transitive. We want to show that it is a smooth Lie group action.
Let m: g€ G gH € H, 7: (g1,92) € G = (91,7(g2) € G x G/H and f : (g1,92) € G* —
(91.7(9192)) € G x G x G/H. Both Id¢ and 7 are surjective submersions (by Theorem [£.3)), hence
7 is a surjective submersion. The multiplication and 7 are smooth, hence f is smooth. In addition
to that, for all (g1,¢2),(g},95) € G? such that 7(g1,92) = 7(9},95), g1 = ¢} and goH = ghH,
hence g1 = g1 and g19oH = gig4H, i.e. f(g1,92) = f(g},95). By Theorem there is a unique
f:GxG/H — G x G/H such that fo7 = f, ie. forall gi,g0 € G, f(g1,92H) = (91,9192 H).
In particular, the unique application L : G x G/H — G/H such that for all g1,92 € G x G/H
L(g1,92H) = g1g2 is smooth. This means that the action G ~ G/H given by L is smooth. This
proof is inspired by Proposition 5.21 page 113 in [10].

In addition to that, for all g € G, L(g,-) is smooth. But for all ¢ € G, L(g,-) o L(g7!,") =
L(g~',-) o L(g,-) = Idg,u, hence L(g,-) € Diff(G). We decuce that L defines a Lie group action
from G on G/H. O

PROPOSITIONS 4.8. Let x € M.
1. The stabilizer GG, is closed in G.

2. The orbit O, has the structure of an immersed submanifold of M and the unique map ¢, :
G/G, — O, such that for all g € G, p,(¢9G.) = g - x is a diffeomorphism.

Proof We denote by 1 the smooth action from G on M. Letev, : g€ G+ g-xz € M.

1. Since the action is smooth, ev, is smooth. We have G, = ev,1({z}), hence G, is closed in
G. We conclude by Theorem [3.3

2. By Theorem the quotient space G/G, is a smooth manifold. There is L an action
G ~ G/G, given by for all 91,92 € G, g1 - 2G4 = (9192)G4. By Lemma[L.7] it is transitive
and smooth. For all g1,g2 € G, 7(g1) = 7(g2) = 9195 ' € Go = (q195 ") - x =z = eva(g1) =
ev,(g2). Passing smoothly to the quotient, there is a unique smooth map ¢, : G/G, - M
such that ev, = ¢, om. We know that ¢, is injective and that its image is the orbit O,. For

all g1,92 € G, g1 - 02(92G2) = 91 - (92 -2) = (g1 - 92) - @ :((QIQQ)GJC) = ¢.(91 - 92G2).
4.

Hence for all g € G we have 1), 0 9, = ¢, o L,. By Lemma [4.2} o, has a constant rank.

To resume, ¢, is an injection with a constant rank. By Proposition 5.17 at page 111 of [10], ¢,
is an injective immersion and O, is an immersed submanifold of M. We now have a smooth
bijective map ¢, : G/G, — O, of constant rank between two manifolds. By Proposition
6.5.(b) page 132 of [10], it is a diffeomorphism.

O

o REMARK. Let 2 € M. The diffeomorphism G/G, ~ O, allows us to "replace’ O, by G/G, in
some results or proofs : see Lemma for an example.

o NOTATION. For all x € M, we denote the Lie algebra of the stabilizer G, by g,.

o REMARK. Let x € M. Since we do the notation abuse g, C g, we can consider the quotient
space g/g, = {u+ g, ; u € g} equiped with its canonical linear space structure. We remind that
dimg/g, = dimg — dim g,.
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COROLLARY 4.9. Letxe Mandrw:g9€ G~ G/G, € gG,.
1. The manifold O, has a unique dimension and dim O, = dim G — dim G,.
2. Forall y € O,, dimg, = dimg,.

3. We have Kerdr, = g,.

Proof 1. Let ¢, the diffeomorphism saw in Proposition The map d(gﬁ£)wgl(y) : ngl(y)G/Gx —
T,O, is an isomorphism, hence dim 7,0, = dim G/G,.

2. Let y € O,. We have O, = O, hence, by the first item of this corollary, dim g, = dim g —
dim O, = dim g,,.

3. Because 7 is a submersion, dr. is surjective and by the rank formula dim Ker dr.+dim T /¢, =
dim g. Hence dim Kerdn, = dimG, = dimg,. Let X, € g,. By Proposition for all
t € R, exp(tX.) € G,. Hence dme(X.) = 4 (m(exp(tX.)) |t:0 = 4(G,) |t:0 = 0, hence

X, € Kerdmn,. By dimension equality, Ker 7, = g,.
O

¢ REMARKS. e Let x € M and 7 : G — G/G, the canonical surjection. By Corollary dre
induces a isomorphism g/g, ~ T, G/Gy.

o In this subsubsection we have seen some interesting properties about the geometry of orbits.
See Subsubsection [£.2.2)for an example of special orbits with even more geometric properties.

Another interesting thing we can notice about the geometry of Lie group actions is the possi-
bility to associate to each vector of the Lie algebra g a vector field on the manifold on which the

Lie group is smoothly acting.

DEFINITION 4.10. Let M be a manifold, a smooth action from G on M and ev : (g,2) € Gx M —
g-x € M. For all X, € g, the associated vector field to X, on M is

X: | M — TM
xz — dev(,x))e(Xe)

¢ REMARKS. o In this definition the action is smooth : hence the associated vector field to an
element of g is a vector field on the manifold.

e This point of view is useful in the proof of Proposition

> EXAMPLE. Let X, € g. For the action of G on itself by left translation (resp. right translation),
the associated vector field to X, on G is the left invariant (resp. right invariant) vector field
associated to X, through Proposition

LEMMA 4.11. Suppose that the action of G on M is smooth and left. Let X, € g and X € X(M)
the associated vector field to X, on M. The vector field X is complete and, for all x € M,
v:t € R exp(tXe) -« € M is the only integral curve of X through x on R. In particular, for all
re M,

X(a) = exp(tX) 1) | .

Proof For all y € M we denote evy : g € G +— g-y € M. Let x € M. By definition of a left

group action, for all g1,9, € Gand y € M, g1 - (92 - y) = (g192) - v, i.e. evg,.y(g1) = evy(g192), i.e.

Vev, (2)(91) = evy(9192)-
Let v : t € R +— exp(tX.) -z € M. We have 7(0) = z and for all t € R, 7/(t) =

c% (eXp(SXe) . '7;) ‘s:t = d(evw)exp(tXc)(d(Lexp(tXc))e(Xe» = d(eva: OLexp(tXE))e(Xe) = d(evevz(exp(tXe)))e(Xe> =
X(evyexp(tX,.)) = X(y(t)). Hence ~ is an integral curve of X through z and by the Cauchy-
Lipschitz theorem it is the only one (we already saw this kind of argument in Subsubsection .

In particular, X (z) = X (7(0)) =+/(0) = % (exp(tX,) - x) |t:0. O

23



PROPOSITION 4.12. Suppose that the action of G on M is smooth and left. Let x € M and
ev:(g,y) € Gx M+ g-y e M. The Lie algebra of the stabilizer G, is

Oz = {Xe €g | d(eva)e(Xe) = 0} :

Proof Let X, € g., i.e. X, € g and for all ¢t € R we have exp(tX.) € G,. Hence d(ev;).(X.) =
4 (ev,(exp(tX,))) |t:0 =4 (z) ‘t:O =0.

Reciprocally, let X, € g such that d(ev,).(X.) = 0. Let X € X(M) be the associated vector
field to X, on M. We have X(z) =0. Let v :t € R+— x € M. It is a smooth map and for all
teR, v (t)=0= X (z) = X(7(t)). Hence v is an integral curve of X through z. By Lemma[£.11]
for all t € R, y(t) = exp(tXe) -, i.e. exp(tX,) -z =z, i.e. exp(tX.) € G,. Hence X, € g,. O

4.2 Adjoint and coadjoint orbits

Here we see two important examples of Lie group actions (the adjoint and coadjoint actions) and
we study their orbits. In particular, we prove Theorem [£:26] which is the main result of this report.
This subsection is mainly based on [11} [12] 14} 16] for the first subsubsection and on [1} |6} |7} |g] for
the second subsubsection.

4.2.1 Definition of the adjoint and coadjoint orbits

o NoTaTIONS. For all g € G, we define ¢, : h € G — ghg™! € G the conjugation and Ad, :=
d(tg)e : T.G — TG its derivative at the identity.
The natural pairing between g* and g is (-,-) : for all (§,X) € g* x g, ({,X) = &(X). For all
g € G we define Ady : g* — g* by : for all { € g* and X € g,

(AdZ €, X) = (£, Ad, 1 X).

o REMARK. We notice a similarity between the definition of Ad* and the definition of the Hermitian
adjoint of a linear operator. However, we do not define Ad by <Ad; & X > = (¢,Ad, X) in order to
have the property below (Ad is a group morphism).

PROPOSITION 4.13. The maps

Ad: |G — GL(g)
g +— Ad,

are representations of G' (on repectively g and g*).

Proof Wehave Ad. = d(Idg)e = Idgy. Plus, forall g1, 92 € G, Adg, g, = d(¥g,95)e = d(¥g,0%g,)e =
d(g,)e 0 d(¥g,)e = Ady, Adg,. Hence Ad is well defined and is a group morphism.
We have Ad. = Idg hence Ad; = Idg-. Let gi,90 € G, £ € g" and X € g. We have

(Adg, g, 6 X) = (§Ad, 1)1 X ) = (€ Ad,0 Adys X ) = (AdS, Ad, €, X). Hence Ad” is well

9192
defined and is a group morphism. (|

DEFINITIONS 4.14. o The adjoint representation of G is Ad : g € G — Ad, € GL(g). The
coadjoint representation of G is Ad™ : g € G+ Ad, € GL(g").

o An adjoint orbit (resp. coadjoint orbit) of G is an orbit of the adjoint representation (resp.
coadjoint representation) of G.

> ExaMmpPLE. (of adjoint and coadjoint representations of a Lie group)
Here we suppose G = GL,,(K). We have g = M,,(K) and forall A € G, d(¢4)1, : B € M,,(K) —
ABA™! € M,,(K). Hence for all (A, B) € GL,(K) x M,,(K), Ada(B) = ABA™!. See Subsection
for more examples.

o REMARK. By propositions [3.27] for all g € G and X, € g, Ady(X,) = & (gexp(tX.)g™}) li—o-
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We now define similar representations for the Lie algebra g. Since dim g < +o00, by Proposition

the Lie algebra of GL(g) is L(g).

o NOTATION. We denote the derivative of Ad at the identity e by ad := d(Ad). : g — L(g) and for
all X € g, ady := ad(X). We denote the derivative of Ad" at the identity e by ad” := d(Ad"). :
g — L(g*) and for all X € g, ad := ad"(X).

PROPOSITIONS 4.15. 1. We have

ad : L(g)

g —
X — [X,]
and ad is a Lie algebra morphism.

2. The map ad* : g — L(g*) is a Lie algebra morphism and for all £ € g* and X,Y € g,
(adx §,Y) = (§, —adx Y).

Proof 1. Let X, Y. € g. We have adx, (Ye) = d(Ad)e(Xe)(Ye) = & (Adexpix.)) |,_o(Ye) =
% (Adexp(ex.)(Ye)) ‘t:O = % (d% (exp(tX,) exp(sYe) exp(—tX,)) |s:0> ‘t:O i.e., by Proposi-
tion adx, (Ye) = [Xe, Ye].

Let X,Y € g. Wehave [adx,ady] = adx ady —ady adx = [X, [V, ]]-]V, [X, ]| = = [[, X],Y]—
[[Y;-], X] hence, by the Jacobi identity, [adx,ady] = [[X,Y], ] = ad[x y]-

2. Let X,Y € gand £ € g*. We have (ad% &, Y) = <% (Adexp(tX))t:() £Y) = % ((Adexp(ex) {,Y>)t: =

0
2 (&A1) Y)) 1y = (6 & (Adexp(—1x)),_o Y) = (& adx V) = (€, —adx V). .

o REMARK. The second statement of Propositions shows us that there is a link between ad
and ad” like the link between Ad and Ad* : for all X € g, ady = (ad_x)*.

DEFINITION 4.16. The map ad (resp. ad®) is called adjoint representation (resp. coadjoint repre-
sentation) of the Lie algebra g.

4.2.2 Geometry of the coadjoint orbits

This subsubsection is almost exclusively dedicated to the explanation of Theorem which is a
very intesting property about the geometry of coadjoint orbits : they carry a symplectic structure.
This last notion has been introduced in Subsection Let £ € g*.

First, we define a 1-form on G using the Lie group structure of G and the natural pairing (-, -)
between g* and g. By taking its derivative, we now have a 2-form on G. By applying pullbacks
on this last 2-form, we obtain a 2-form on the coadjoint orbits associated to £. Finally, we prove
that this 2-form is symplectic. Proving that it is non-denegerated is the hardest point : we use a
classic result of this field, the KKS formula. This is the method used in |1, which is itself based
on g].

See appendix for a graph summarising this proof.

¢ NOTATION. For all g € G we denote Ly : ' € G — g9’ € Gand R; : ¢’ € G — ¢g'g € G. We
denote by G¢ (resp. O¢) the stabilizer (resp. orbit) of £ for the coadjoint action of G and by 7 the
canonical projection G — G/G¢. We denote by ge the Lie algebra of the Lie group G¢. We denote
by ¢ the unique map O — G/G¢ such that for all g € G, (g -§) = 9Ge.

In this subsection we consider three Lie group actions :

GG Y(g1,92) € G*, g1-92 = Ly, (92) = 9192
G~ Ge: Y(g,h) €GxGe, g-h=Ryp(g)=gh
GOc: Y(gv)eGx O g-v=Adjv
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LEMMA 4.17. Forallv e g*, g, = {X. €g| adk, v =0}.

Proof Let v € g*. The adjoint representation of G is in particular a left action of G on a mani-
fold. By Proposition gy = {Xe €g | d(Ad* u)e(Xe)}. But for all X, € g, d(Ad*v).(X,) =
d(Ad™).(Xe)v = ady, v. O

PROPOSITION 4.18. For all v € O, the tangent space of the coadjoint orbit O¢ at v is
1,0 = {ad}e v; X, € g} )

Proof Let v € O,. We have O = O, hence 7,0 = T,,0,. Let X, € g. The map v : 1t €
R = Adgpiex,)v € Oy is smooth and verifies v(0) = v. Hence 7'(0) € T,0,. But 4/(0) =
d(Ad").(X.)v = ad_ v. Hence we have a map u : X, € g — ady_ v € 7,0, and it is linear.
Lemma tells us that Keru = g, hence, by the rank formula, dimImu = dimg — dimg, =
dim7,0,. Hence Imu = TvO,, ie. T,0¢ = {ad}e v; X, € g}. O

DEFINITION 4.19. Let w € Q(G), M a manifold and an action of G on M.
e The differential form w is G-invariant for this action if for all g € G, g*w = w.
o The differential form w is horizontal for this action if for all X € g, ix(w) = 0.
e The differential form w is basic for this action if it is both G-invariant and horizontal.
> EXAMPLE. See Lemma for an important example of a basic 2-form.

THEOREM 4.20. Let M be a manifold, H a Lie group and an action of H on M which is free and
proper. Let p: M — M/H be the quotient map of this action. The map

pr | QF(M/H) — {w e QF(M) | w basic}
w — prw

is a bijection.
Proof See Theorem 1.1 page 1 in [7]. O

o REMARK. We will use Theorem [4.20]with the projection , i.e. in the case "M = G" and "H = G'
(we remind that, thanks to Proposition G¢ is a Lie subgroup of G).

LEMMA 4.21. Let g € G and L, be the unique map G/G¢ — G¢ such that for all h € G,
Ly(hG¢) = (gh)Ge. We have pg0tpy = Lyope and Lyom = mo L.

Proof Let v € O¢. There is h € G such that v = h-{. We have (¢¢ 0 9)y)(V) = pe(g- (h-§)) =
ghGe = Ly(hGe) = (Lgoe) (h-€) = (Lgoe) (v). In addition to that, for all h € G we have
(Ty o 7) (h) = Ly(hGe) = ghGe = m(Ly(h)). 0

We now define the basic material needed to build our symplectic form on a coadjoint orbit.

DEFINITION 4.22. Let M be a manifold and k € N*. A g-valued k-differential form on M is an
element of the real vector space QF(M) ® g denoted by Q*(M, g).

o REMARK. Let 0 € QF(M,g). Let (uy,...,u,) be a basis of g and U a chart of M. There is
W1,y Wy € QF(M) such that 0 = 37 | w; ® u;.

> EXAMPLE. See in Subsubsection the sus-valued 2-form denoted by 6.
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DEFINITION 4.23. The Maurer-Cartan form 6 € Q*(G, g) on G is

0:| G — T*"G®yg
g +— vETYG = d(Ly-1)4(v) € T.G

and for all g € G we often denote 6, := 6(g).

o REMARK. For all left invariant vector field X € gand g € G, 04(X(g)) = d(L,-1)(X(g)) = X (e).
> EXAMPLE. We assume that G = GL,(K). For all A€ G and M € g, §,(M) = A~'M

LEMMA 4.24. 1. The Maurer-Cartan form 6 on G is invariant for G ~ G.

2. Let a := —(£,0), ie. forall g € G and v € T,G, a4(v) = £(0,(v)) € R. The map « is a
1-form on G invariant for G ~ G and G~ G¢.

Proof 1. For all g,h € G and v € TG, (h*0)4(v) = d(L(ng)-1)ng(d(Ln)g(v)) = d(Lg-1p-1 ©
Ln)g(v) = d(Lg-1)g(v) = b4(v).

2. Since ¢ is G-invariant, it is clear that it holds for . Let ¢ € G, h € G¢ and v €
TgG. We have (RZG)Q(U) = d(L(gh)fl)gh(d(Rh)g(U)) = d(L(gh)—l ORh)g (’U) = d(’l[)h o

Lg-1)g(v) = d(ihn)e (d(Lg-1)g(v)) = Adn(8y(v)), hence (Rja)y(v) = — (&, Adn(fy(v))) =
— (Ad}, §,04(v)) = = (&, 0,4(v)) = g (v). o

LEMMA 4.25. Let a:=—(&,0), and @ := da € Q(G).
1. The 2-form @ is basic for G ~ Gg.

2. The 2-form w := @*(7*) '@ on O verifies the Kirillov-Kostant-Souriau (KKS) formula : for
all v € O¢ and X, Y, € g,

wy(ady v,ady. v) = (v, [ X, Ye])

Proof 1. For all f € C>*(G,G), f*(do) = d(f*a). In addition to that, o is Ge-invariant.
Hence do is Ge-invariant. We want to show that & is horizontal. For all X € g¢, by
the Cartan magic formula, ix0 = ix(da) = (Lxa — d(ixa)). Because « is invariant for
G Ge, Lx(@) = 4 ((Rexp(ex(e)) ) |t:0 = 4 (a),_o =0, hence ix(®) = —d(ixa). But
ixa € C®(G) and for all g € G, ix(®)g = 0z (X () = — (£,04(X(9))) = — (£, X (e)). Hence
ixa is constant and d(ix(a)) = 0, i.e. ix(@) = 0. We deduce that @ is horizontal. To
conclude, @ is G¢-basic.

2. Since @ is G¢-basic, we can define (7*) '@ € Q*(G/G¢) by Theorem Hence w is well
defined and w € Q2(O¢). In fact, this is the differential form we will use to prove Theorem
4. 20|

First, we find a similar formula for the two form @ on G. Let ¢ € G and X, Y, € T,G.
We will use right invariant vector fields and the remark following Proposition Let
Xe = d(Ry-1)4(Xy) (resp. Y. := d(Ry-1)4(Yy)) and X € X(G) (resp. Y € X(G)) the
unique right invariant vector field such that X(e) = X, (resp. Y(e) = Y.). We have
X:heG—dRpe(Xe) € TG and X(g) = d(Ry)e(d(Ry-1)4(Xy)) = d(Idg)e(Xy) = X,.
In the same way, Y (g) = Y,. Hence (©)4(Xy,Y,) = (iyix@)y. In addition to that, using
Cartan magic formula, iyix® = iyixda = iy (—Lxa+d(ixa)). But, because « is invariant
forGAG, —Lxa= %((Lexp(tX(e)))*a)Lt:O = %(O&) = 0, hence iyix® = iyd(ixa). But for
all h € G, (ixa)n, = —(§,00(X () = — (& d(Lp-1)g(d(Rp)e(Xe))) = — (& Adp-1(Xe)) =
—(Ad} &, X,), hence iyix®d = —iyd((Ad" &, X)) = (Ly (Ad™ €, X,) — d(iy (Ad™ €, XL))).
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Since (Ad* ¢, X.) € Q%(G), iy (Ad* &, X,.) = 0 and
ivix® = Ly (Ad" €, X.)

d " .
=2 (Lexpev.))” (Ad™ €, Xe)) |,

with, for all £ € B, (Adj, € Xo) = (Adfpuy) Ad“E X ) = (Adigay,) Ad"E, X, ) =
<Ad>k f, Adexp(—tYe) Xe> Hence Z'yixc:) = <Ad* g, % (Adexp(—tYe) Xe) |t:0> = <Ad* 5, — adye (Xe)> =
(Ad™ &, —[Ye, X.]) = (Ad™ &, [Xe, Ye]). In particular, this formula is true in g, i.e. day(X(g),Y (9)) =
<Ad; & [Xe, Yel), ie. @g(Xy,Yy) = <Ad; &, [Xe, Ye]). We use this first result to prove the KKS
formula.
Let v € O¢ and X.,Y. € g. Let X € X(GQ) (resp. Y € X(G)) the unique right-invariant
vector field associated to X, (resp. Y). There is g € G such that v = Ad;¢. We have
wlady, v,ady, ) = (1) 7'@) ) (dey (adk, v), dpy(ady, v)), with g¢(v) = gGe = 7(g). We
also have d(p¢), (ad, v) = d(¢e), (d(Ad" v)e(Xe)) = d(peo(Ad”™ v))(X,) with, forall h € G,
(peo(Ad}))(h) = e((hg)-&) = hgGe = m(Ry(h)). Hence d(pe), (ad, v) = d(moRg)e(Xe) =
drg(d(Ry)e(Xe)) = dmy(X(g)). Likewise, d(g¢),(ady, v) = dmyg(Y(g)), so w(ad, v,ady, ) =
(7)) n(g) (dmg (X (9)), dmg (Y (9))) = (" (7*)71@)4(X(9), Y (9)) = @4(X(9),Y (9)). By
the formula we saw above in the second paragraph, we deduce w(ad’, v,ady. ) = (Ad} &, [X., Ye]) =
(v, [ X, Ye]). This is what we wanted to prove.

(]

¢ REMARKS. ¢ In this proof we did not use left-invariant vector fields, but right-invariant vector
fields : they are the vector fields associated to the elements of the Lie algebra g with the
right translation action G ~ G.

o By Proposition the KKS formula gives a result on all the fiber bundle T'Ok.

Now we have the necessary tools to prove the important result of this subsubsection.

THEOREM 4.26. For all coadjoint orbit O of G, there is a G-invariant symplectic form on O.

Proof Let £ € g*. We want to define a G-invariant symplectic form on O¢. We consider the
Maurer-Cartan form 6 on G, a := —(£,0) and @ = da € Q?(G). With ¢¢ the diffeomorphism
G/G¢ ~ O, we consider w := gag(w*)_luﬁ € Q(0O¢) the 2-form we have seen in Lemma We
want to prove that w is G-invariant, closed, and non-degenerate (this last point is the hardest one).

We start to prove that w is G-invariant. We denote by ¢ the coadjoint action of G. Let g € G.
Just like in Lemma let Ly be the unique map G/G¢ — G¢ such that for all h € G, Ly(hGe¢) =
(gh)Ge. We want to show that ¢jw = w. We have ¢yw = jpf(n*) " da = (p¢ o hg)* (%) " Lda =
(Zgowpe) (1) da = @iL, (1) "'da. But mL, (n*) ! = (Lyom) (n%) 7! = (woLy)*(x*) ™' =
Lym*(n*)~' = L so Lig*(w*)*1 = (7*)"'L}. Hence ¢jw = wz(w*)*lL;da = goz(ﬂ*)’ld(L;a) and,
by Lemma Ppw = pi(m*)"'da = w. We deduce that w is G-invariant.

Now, we want to prove that w is closed. We have dw = d (gpg (ﬂ*)_lda) = pid (7*)da).

But 7* (d ((7*)"'de)) = d (7*(7*)"'da) = d(da) = 0 so d ((7*)~'de) = 0. Hence dw = 0.
Finally, we want to prove that w is non degenerate using the KKS formula seen in Lemma
Let v € O¢ and X, € T, O¢ such that wl,(X'e, ) =0. By propisition there is X, € g such that
X, = ad_v. By the KKS formula, we have for all Y, € g, w, (ad¥, v,ady, v) = (v,[X.,Y.]) =
(v,adx, Y.) = (ad, v,Y.), hence (adk, v,Y.) =0, ie. adk v =0, ie. X.=0. We deduce that
w is non degenerate on O¢. This concludes. O

o REMARKS. Let a be the 1-form and w be the 2-form defined in the precedent proof.
e The 2-form w is often called the Kirillov form.
e We have seen that w is closed. Yet, while it "comes from" the exact 2-form da, it is not

necessarily exact.

28



<

e We can say that the 2-form w is canonical : we only used the Lie group structure of G to
define it.

e Why have we not just defined w by the KKS formula seen in lemma ? In the method
we used, it is easy to prove that w is well defined and closed, but hard to prove that it
is non-degenerate (we used the KKS formula). With the method where one uses the KKS
formula to define w, it becomes easy to show that it is non-degenerate, but hard to prove that
it is well defined and closed. Hence we can say that the main lemma in this subsubsection is

lemma

4.3 Two examples of coadjoint orbits

We have proved Theorem [£.26] and the fact that the coadjoint orbits of g are symplectic manifolds.
We give here two important examples of coadjoint orbits, following the second part of the course
[1]. This subsection is also based on |5}, 13} 15, 7]

4.3.1 The coadjoint orbits of SU,

First, we consider the case G := SUs, i.e.

G-{(jgﬁ>;mﬂwmﬁmf+wf—@,

which is diffeomorphic to S? the 3-sphere, i.e. the unitary ball of C? with the 2-norm (this already
shows us that dim SUy = 3). What do its coadjoint orbits look like ? What do its coadjoint
stabilizers look like 7 What is the symplectic form on its coadjoint orbits we defined in the proof
of Theorem [£.26] ?

DEFINITION 4.27. We denote

.. (0 =1\ . (0 — (i 0
1.—12,1.—<1 O)"]'_(—i 0>andk.—<0 —i)'

We denote by H := Spang {i,j, k} C My(C) the set of the quaternions, equiped with the matrix
addition + and the matrix multiplication x. For all ¢ € H, we denote by |¢|* := det ¢ its squared
absolute value and by ¢ its transpose conjugate.

NoOTATION. Using the injection A € R — A1 € H, we denote R C H : for all A € R, i(\) = A.
LEMMA 4.28. 1. Wehavei? = j2 = k2 = ijk = —1,ij = —ji = k, jk = —kj = i, ki = —ik = j.
2. For all ¢ € H, q¢ = \q|2.

Proof 1t is a direct calculus. O

In this subsubsection, we use some basic properties of the quaternions : see Section 1.3 of [15].
As a first remark, we can see that the group SUjs it the unitary ball of the quaternions :

LEMMA 4.29. We have
SU; = {cos 0 + (sin 0)(ai + yj + 2K) 5 0 € [0, 27, (2,9, 2) € R, |[(w,9,2)][3 = 1}
and for all ¢ € SUy, ¢7! = q.

Proof For the first statement, see subsection 1.5 of [15]. For the second one, we use the fact that
_ 2
qaq = |ql”- 0

We denote by su, the Lie algebra of SUs, and we start by looking for a convenient description
of this Lie algebra.
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PROPOSITIONS 4.30. The Lie algebra of SUs is

5u2:{<ZbZ Zzb) ; beR,ze(C}

and (i, j, k) is a real basis of sus. In particular, dim SUy = 3.

Proof By Proposition , Sl = {X € My(C) ‘ X+X*=0,tr X = O}. A quick calculus gives
us the first result. The family (i, j, k) is free and it clear that these three matrices are elements of
suy, hence it is a real basis of this Lie algebra. O

© REMARKS. o For all A € suy\ {0}, A € GLy(C).

e As we saw in Proposition [3.22] if we consider sus as a subset of My(C) (as we did in Propo-
sition [4.30]) the Lie bracket is the matrices commutator. Hence, as the unitary ball of the
quaternions, the Lie bracket is the communator of this non-commutative R-algebra.

We consider the real linear space isomorphism

p: R3 — Sllg
(2,y,2) +— wi+yj+ek’

We notice that (U, 1) is a chart of the manifold suy. We denote by A the vector product on R3.
We also denote e := (1,0,0)7, e5 := (0,1,0)” and e3 := (0,0,1)”. With the identification (R3)* ~
R3, the natural pairing (-, -) between (R3)* and R? is the scalar product on R3. Propositions m
below allows us to identify suy and suj with R3.

PROPOSITIONS 4.31. 1. For all u,v € R3, [p(u), p(v)] = 2u A v.
2. For all u € R?, [Ju]|3 = det p(u).

3. Forallu,v € R?, with ¢(u)* the transpose conjugate of the matrix p(u), (u,v) = 1 tr(p(u)*¢(v)).

4. For all u € R3, p(u) = o(—u).
5. For all u,v € R3, p(u)p(v) = — (u,v) + u Av.

Proof 1t is a direct calculus. O

o REMARK. Statements 2 and 3 of tells us that (4, B) € sus x suy — StrA*B € R is
well definded and is a scalar product with an accociated norm equal to the absolute value of the
quaternions. With this scalar product, ¢ preserves the scalar product.

¢ NOTATION. For all A, B € suy, we denote (A, B), = %tr A*B.

By the third statement of Propositions and Riesz representation theorem, R : A € suy —
(A,-),, € suj is a vector space isomorphism.

¢ NOTATION. With the isomorphism R, we can make the notation abuse suj = sus : for all A € suy,
R(A) = A.

At this point, since we know that the coadjoint orbits of SU; are even dimensional by Theorem
4.26] we know they are manifolds of dimension 0 (i.e. a point) or 2. What is the coadjoint
represensation of SUy ?

PROPOSITION 4.32. For all ¢ € SUs,

Adg: | sup —  suy

Adq: A — A7’
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Proof Let ¢ € SU,. We already saw in the example below definition that for all A €
sug, Adg A = qAq~! = qAg. For all A € SUy and B € suj, <Ad; B,A>m = (B,Adz 4),, =
%tr B*gBq = %tr qC*qB = %tr(qC(j)*B = (¢Cq, B),,. Hence Ad; = Ad,. O

REMARK. Proposition is very easy to state thanks to the identifications we made earlier.

LEMMA 4.33. Let 0 € [0,27[ and I € suy such that [I|* = 1. Let ¢ := cos6 4 (sin#)I. The map
u € R — ¢! (gp(u)q) € R? is the R3-rotation of axis ¢~ '(I) and angle —26.

Proof See subsection 1.5 of [15]. O

PROPOSITION 4.34. For all B € sus,

Op = {C € suy ’ det C' = det B} .

Proof Let B € suy. For all ¢ € SUsy, |¢Bg®> = 1 x (detB) x 1 = det B. Hence Op C
{C’Gﬁug | detC’:detB}. Let C' € suy such that detC = det B. The vectors u := ¢ 'B
and v := ¢~ 'C are such that ||u||, = ||v]|,. Hence there is a € R? and 6 € [0,2n[ such that
llall, = 1 and v is the rotation of u of axis a and angle §. By lemmas [1.29] and with
q := coS (—g) + (sin (—g)) ¢(a), ¢ € SUz and Ady B = C, hence C € Op. This concludes. O

Now that we have made some calculus with the Lie algebra isomorphism ¢, we do not write it
anymore and use the notation abuse below.

NOTATION. With the isomorphism ¢, we can make the notation abuse sus = R? : for all u € R?,
P(u) = u.

REMARKS. e In fact, Proposition shows us that in R3 the coadjoint orbits of SU,y are
the origin (of dimension 0) and the spheres of stricly positive radius (of dimension 2). See
appendix for illustrations.

« Let 7 > 0. We can show that the manifold structure on {z € R®| ||z|[, =} given by
Theorem [4.8]is the same than the manifold structure on the sphere given by the stereographic
projections (i.e. the classic manifold structure on the sphere), in the sense that ¢ induces a
diffeomorphism on each coadjoint orbits of SUs.

We are now looking for the symplectic strucure of these coadjoint orbits as described in Theorem

[4.26] 7
LEMMA 4.35. For all A, B € suy, ady B=ads B=2AA B.

Proof Let A, B € sus. We have ady B = [A, B] = 2A A B. In addition to that, for all C' € su,,
(ady B,C),, = —(B,adaC),, = —2(B,ANC),, = —2(BNA,C),, = (2AANB,C),,. Hence
ady B=2ANB. O

PROPOSITION 4.36. Let A € sup\ {0} and let r := det A. Let w € Q%(04) the symplectic form
defined by the KKS formula : for all B € O4 and u,v € TgOy, wp(ad), B,ad; B) = (B, [u,v]). For
all Be€ Oy and u,v € TgOy,

1
wp(u,v) = —;u/\ .

Proof Let B € Oa. For all u,v € sus, wg(ad, B,ad, B) = (B, [u,v]),, i.e., by Lemma
wp(uAB,vAB) =3 (B,uAv),,, ie wp(uAB,vAB)=(B,uAv). Let ¢, := 1B and eg,e, € R

such that (e, eg, €,) is an orthonormal basis of R®. For all u € sus, ad, B =2uA B = 2ruAe,.
Hence, by Proposition TpO4 = Spang {eg, e, }. Let u,v € TpOy4 and (ug, u,) € R? (resp.

(vg,v,) € R?) the coordinate of u (resp. v) in the basis (eg,e,). Let @ := —“2ey + “2e,, and
U= —DT“’eg—I—”T"eg,. We have 4AB = v and 9AB = v, hence wp(u,v) = (B, A 0) = T%;—ue% =
—%u Awv. ]
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¢ REMARK. Proposition 4.36|shows us that the symplectic form on a sphere with strictly positive
radius is the Euclidean area form on the sphere divided by the diameter of the sphere.
Let » > 0 and S, C R? the sphere of radius r. What is the area of S, with this measure ?

It is the absolute value of the volume of the compact manifold S, equiped with the volume form

4rr?
T

= 4nr

w defined in the proof of Theorem [4.26 Hence the volume of the sphere is ‘ /. s, 1‘ =
(hence if 7 # 1, it is not 47r?).

Let arg : S' — [0, 27[ the unique application such that for all 6 € [0, 27[, arg e’ = 6.
PROPOSITION 4.37. We have Gy, = SU,. For all A € SUs \ {Io},

Sl — GA
z +— cosargz+ (sinargz) oA

is a group isomorphism.

Proof Let A € SU3\{Iz} and I := ﬁA, which is a quaternion of absolute value 1. By Lemma
[1.29] we can define f : z € S' — cosargz + (sinargz) I € SUs. Let 2,2’ € S' and (6,0') :=
(arg z,argz’). We have f(zz') = cos(0 + 0') + sin(0 + 0')I = £(cosB)(cosd’) — (sind)(sind’) +
((cos0)(sin@’) + (cos@')(sinf))I. But I? = —T- T+ I AT = — HIH; + 0 = —1, hence by a direct
calculus f(2)f(2') = f(z2'). Thus f is a group morphism.

For all z,2' € S! such that f(z) = f(2'), cosargz = cosargz’ and sinargz = sinarg?’, i.e.
z = 7', hence f is injective.

Let ¢ € Ga. There is 6 € [0,27[ and J € suy such that |J| = 1 and ¢ = cos€ + (sinf)J. We
have gBq = B, i.e. the rotation r : B € sus — qBq € suy of axis J and angle —27 fixes B. Firstly,
suppose J ¢ {I,—I}. Then —20 = 0[27], i.e. § = 0[nx], i.e. ¢ € {1,—1} = {f(1), f(—1)}. Secondly,
suppose J € {I,—I}. We have ¢ € {f(eie), f(—ew)}. We deduce that f is surjective. a

4.3.2 The coadjoint orbits of SL2(R)

Now, we consider the case of the special linear group G = SLs(R), which is denoted in this
subsubsection by the more convenient notation SLs :

G={g€My(R)| detg=1}.
We denote by sls its Lie algebra.

PROPOSITION 4.38. The Lie algebra of SLs is

5[2:{@ _ba> ;(a,b,c)€R3}.

Proof Tt is a direct consequence of Proposition [3.21 ]

In particular, dim SLs = 3.

We consider the matrices

1 0 0 1 0 1
xi= (5 L) = (3 o) maz= (" ).

The family (X,Y, Z) is clearly a real basis of sl;. We see later that this is an interesting choice
(which is made in [5]). Like in the precedent example we consider the isomorphism of linear
vector spaces

©: R3 — sly
(,y,2) — X +yY +22°
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LEMMA 4.39. 1. We have XY = -YX = Z,YZ = —2Y = -X, ZX = —-XZ = -Y,
[X,Y] =22, [Y,Z] = —2X, and [Z, X] = —2V.

2. For all u,v € R3, (u,v) = 1 trp(u)Tp(v).

Proof By a direct calculus, and using the fact that the Lie bracket on sl is the matrix commutator.
O

o REMARK. Lemma shows us that (A, B) € sly X sly — %tr AT B € R is a scalar product and,
with this one, ¢ preserve the scalar product.

© NOTATION. For all A,B € sly, we denote (4,B) := 1trATB. By the Riesz representation
theorem, we make the notation abuse sl5 = sly : for all A € sly, A = (A, -). Using the isomorphism
©, we make the notation abuse slo = R? : for all u € R3, p(u) = u.

PROPOSITION 4.40. For all g € SLo, Ad, : A € sl — gAg~* € sl and

Ad; 2 sl — sly

A — (¢T)tAgT = Ad(gr)-1.

Proof We prove it the same way we proved Proposition Let g € SLy. By the example
below definition that for all A € sup, Adg A = gAg~!'. For all A € su} = suy and C € suy,
<Ad; A,C)y=(Ag7'Cg)=3trATg7'Cg = ((g7)""Ag",C). Hence Ady = Adgry-1. O

LEMMA 4.41. (Caculus rules about coadjoint orbits of SL.)
1. For all A € suy, 04 = {gAgf1 ;g€ SLQ}.
2. For all (z,y,2) € R, 22 + y? — 22 = —det(a X + yY + 22).

3. Forall g= (¢ ) € SLy,

gXg~!= (ad + cb) X + (cd — ab)Y — (ab+ cd)Z (1)
gYgl=  (—ac+bd)X + L¥=xdy | alelpod® (g
9Zg7 = —(ac+bd) X + CHE=Cy | deiidrd 7o (3)

Proof By and the fact that g € SLy — (g7)~! € SLy is well defined and is a bijection, we
have the first statement. By a direct calculus, we have the second and third statements. (Il

PROPOSITION 4.42. Let O C R3. The subset O is a coadjoint orbit of SLs if and only if one and
only one of the following statements is true :

1. There is A > 0 such that O = {(z,y,2) € R? ’ a4 y% — 2% = N2

2. There is A > 0 such that O = {(x,y,z) cR3 ’ 224y -2 =Nz > 0}.

3. We have O = {0}.

4. There is A > 0 such that O = {(x,y,z) cR3 ’ 224y -2 =Nz < 0}.
Proof We use Lemma and denote by (1) (resp. (2)) (resp. (3)) the formula denoted by
(1) (resp. (2)) (resp. (3)) in the third statement of this lemma. First, we want to prove that
all the sets defined in the proposition are coadjoint orbits. Let O3 = {0} and, for all A > 0,

Ol,)\ = {(1’,y,2’) eR? | z? +y2 — 2% = )\2}7 02,)\ = {(ac,y,z) eR? ’ z? +y2 -2 = _)‘272 > 0}7
Our:={(z,y,2) eR? | 2? +y? — 22 = —A\?,2 < 0}

o Let A > 0. We have AX € O . For all g € SLa, —det(gAXg™!) = A2, i.e. gAXg~! € O1..
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Thus Oxx C Oq,x. Reciprocally, let A :=xX +yY +2Z € Oy 5. Let

(L, =(y+2)/(2A), (y = 2)/(x + A), (x+ A)/(2A)) if z # =)
(a,b,c,d) := (I, —y/A\A/y,0) ife=—-dandy=2#0
(0,1,-1,—y/)\) ifz=—-Xandy=—2

Since 22 +y%—22 = A2, it covers all the possible cases. Let g := (“ Z) Using 22 +y2 —22 = A2

c

and formula (1), we have g € SLy and gAXg~' = A. Hence A € O\x. Hence O; , = O,x.

o Let Ay := %(Y—ﬁ— Z). We have Ay = (8 (1,) € Oz0. Let g := (‘; Z) € SL,. We have

—det gAgg~! = 0 and, by formulas (1) and (2), the component of gAgg~! over Z in the
basis (X,Y,Z) is (a®> + ¢®)/2. But a = ¢ = 0 = detg = 0, hence (a® + b?)/2 > 0 and
gAog™! € O20. Thus O4, C Oz. Reciprocally, let B := zX 4+ yY + 2Z0; 5. Since
24y = 22 >0, (a,b,,d) = (V5T E V-2V TE (VET G - ayE—)/(2 4+ y)) is
well defined. Let g := (Z Z) Using 22 + y? = 22 and formulas (1) and (2), g € SLy and
gAog~t = A. Thus A € O4,. Hence O20 = 04,.
Let A > 0. We have A\Z € Oy . Let g = (Z Z) € SLy. We have —det gA\Zg—! = —\2
and (a? + b2 + ¢ + d?)/2 > 0 hence, by formula (3), gAZg~* € O3 x. Hence Oyz C Oz .
Reciprocally, let A := 2X +yY +2Z03 ). Since 22 +y? + A% = 22, we can define (a, b, c,d) =
(—x/\/AMz—vy),—1/v/z—y,\/z—y,d =0). Let g := (Z g) Using 22 + y? + A2 = 22 and
formula (3), g € SLy and gAZg~ = A. Thus A € O, 5. Hence Oy ) = Oyz.

e It is clear that O3 = O.

o Let Ag = 2(Y+Z). Wehave —Ag = (§ ') € Os,0. Weclearly have Oy 9 = {—B; B € O}
But we have shown that Oz g = O4,, hence Oy 0 = {—4; ;A€ O4,} = O_4,.

Let A > 0. We have —AZ € Og4. Just like in the precedent case, we have O4 ) =
{—A; A€ Oy,} and we have shown that O3y = Oxz, hence Oy = {—4; ;A€ O\z} =
O—)\Z-

We have shown that if one and only one of the statements 1., 2., 3., 4. is true, then O is a
coadjoint orbit of SLs. Reciprocally, we suppose that O is a coadjoint orbit of SLy. There is A € O
and we denote by (z,y, z) its coordinates in the basis (X,Y, Z). We will use the fact that O = Op
and the first part of the proof. We make the following case disjonction :

. IfdetA<O O:OLm.
o IfdetA>0and z>0: O:OQ,M‘
o IfdetA>0andz2=0:224+y>=—detA<0,hencex=y=2=0,i.e. A=0and O = Os.

L] IfdetAZOandz<0:O:O47\/m.

Finally, this cases are clearly two by two incompatibles. This concludes. ([
¢ REMARKS. e Proposition means that the coadjoint orbits of SLy, as subsets of R3 through

¢, are the connected components of the surfaces {(z,y,2) € R® |22 +y* —22=C} ; C €
R. Hence the coadjoint orbits of SLy in R? are connected components of hyperboloids of
revolution. See appendix [7.3] for illustrations.

e Just like in the case of SUy, we can show that the manifold structures of coadjoint orbits of
SLy as embedded submanifolds of R? or as immersed submanifolds of suy (see Theorem |4.8)
are the same, in the sense that ¢ induces a diffeomorphism on each coadjoint orbits of SLs.

PROPOSITION 4.43. Let A € sly, z its Z-coordinate in the basis (X,Y, Z) and Gp its stabilizer
for the coadjoint action of SLs.

e Ifdet A <0, GAS{(S T21)5 ;TER*} ~ R*,

e Ifdet A=0and z=0, G4 = SLs.
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e IfdetA=0and 2#0,Ga~{(5 1);;acR}U{(, );;acR}~{l,-1}xR.

e TdetA>0,Ga {(500 29); 0eR) ~SL

— sin 6 cos 6

Proof Given G a group, X a set and G ~ X a right group action, we recall that for all g € G
andrx € X, g€ G, — goggal € Gg.; is a group isomorphism.

e We suppose that det A < 0. Let A = v/—det A. By Proposition Op = Oyx, hence
Gp ~ Gix. In addition to that, it is clear that Gax = Gx.

For all r € R*, we denote g, := (0 21) € SLy. Let g = (¢ %) € Gx. By formula (2)
of Lemma [£41] ad = 1 and b = ¢ = 0. Let r := a € R. We have r # 0 and g = g,.

Reciprocally, for all r € R*, g, Xg, ! = X. Hence Gx = {g, ; 7 € R*}. Finally, it is clear
that r € R — g, € Gx is a group isomorphism.

e We suppose that det A =0 and z = 0. We have A = 0 and it is clear that G 4 = SLo.

+ We suppose that det A = 0 and z # 0. Let Ag = (X + Z). By Proposition O = 0a,
or 04 = O_4,. But it is clear that G4, = G_4,, hence G4 ~ G 4,.
For all (6,a) € {1,—1} x R, we denote gsq := (g ﬁ}) € SLy. Let g = (‘j Z) € Gp,- By
formula (2) and (3) of Lemma[d.41} a = d € {1,—1} and ¢ = 0. Hence g = gq,5. Reciprocally,

for all (6,a) € {1,-1} x R, g(;,aAogé_,; = Ap. Hence G4, = {954 ; (6,a) € {1,—1} x R}
Finally, by a direct calculus, (6,a) € {1, =1} x R+ g5, € G4, is a group isomorphism.

e We suppose that det A > 0. Let A := v/det A. By Proposition Oy =0yz or Oy =
O_yz. But it is clear that Ghnz = G_ z = Gz,s50 G4 = Gz.

For all 8 € R, we denote Ry = (f‘;?fg LO“Z) € SLy. Let g = (‘; Z) € Gyz. By formula (2)
and (3) of Lemma a?+b% =1 and ¢* + d*> = 1. Hence there is 6,6’ € R such that
(a,b,c,d) = (cosf,sinf,sin@,cosf). But det A =1, i.e. cos(d +0') =1, ie. § =—0[27].
Hence A = Ry. Reciprocally, for all § € R, RgAqRO™ = Ay. Hence Gz = {Ry; 0 € R}.
Finally, for all z € S', we denote by arg z the only element of [0, 27[ such that z = . The
map z € S! = Rare» € Gz is a group isomorphism.

O

To conclude this example, we are now looking for the symplectic form defined in the proof of

Theorem (.26
o REMARK. With the notation abuse sl, = R?, for all u := (z,y,2) € R?, u” := (z,y, —2).

LEMMA 4.44. For all u,v € R3 ad, v = 2uT AvT and ad} v = ad, uT = 20T Aw.

Proof Using Propositions about ad and Lemma [4.39 about some useful calculus rules, for
all u = (x,9,2),v := (2/,y,2") € R3 we compute ad, v = [u,v] = (yz’ — 2¢/)[Y, Z] + (22 —
22) (2, X+ (zy —y2') [X,Y] = —2(yz' — 2¢/)X — 2(z2' — 2'2)Y + 2(xy — y2')Z = 2uT AT,
But for all A, B,C € suy, (ad; B,C),, = — (B, [A,C]) = —%trBT(AC—C’A) = —% tr BT AC —
ABTC = —% tr(ATB — BAT)TC = ([B, AT],C), hence ady B = [B, AT] =2B" A A. O

PROPOSITION 4.45. Let A € slb\ {0} and w € 9%(O4) the unique symplectic form defined by
the KKS formula : for all B € O4 and u,v € Ts04, wp(ady, B,ad; B) = (B, [u,v]). Let B :=
(z,y,2) € Oa, 7 := /2?2 +y? and (eg, ey, €,) := (X, Y, Z). If r # 0, let e,,e9 € R? such that
(er,€q,€,) is a direct orthonormal basis of R3 and B = re, + ze,. Let dz = (e, ), dy := (e,,-) and
dz = (e.,). If r =0, let dr = (e,,-) and df = L (eg,-). We have z # 0 and

%dz/\d@ ifr#£0
wp = 1 .
s;de Ndy ifr=0

35



Proof To begin with, by proposition and the fact that A # 0, z # 0.

Let Tg := TpO4 the tangent space. If r = 0 we denote (e,,eq) := (e, ey), hence (e,,eq,€;)
is a direct orthonormal basis and we have B = re. + ze, (just like in the case r # 0). For
all u,v € sly, wp(ad) B,ad’ B) = (B, |u,v]) i.e., by Lemma m 2wp(BT A u, BT Av) =
<B,uT A vT>. By Lemma and Proposition T = {2BT Aus u€ 5[2} = {BT}L =
{w € R3 | <BT,w> = 0}. But BT # 0, hence w € T — BT Aw € Tp is a vector space isomor-
phism.

Let u,v € Tp. There is a unique (@,9) € T% such that u = BT A@ and v = BT A 9. In
particular, 2wp(u,v) = (B, @’ A0T). We denote (4, g, @.) (resp. (¥r,0g,0.)) the coordinate of
@ (resp. ¥) in the orthonormal basis (e, g, e,). On one hand, by definition of @ and ¥, we have
up = 2lg, ug = — (24, + 1), u, = rug, v, = 209, v9g = — (20, + 10,), v, = 1. On the other
hand, we have 2wg(u,v) = <B,ﬁT A f)T> =r(—UgpT, + 0,09) + 2(UVp — UpD,).

We suppose that r = 0, i.e. B = ze,. Hence @, are in T = Spang {e,,ep}, i.e. @, =7, = 0.
Thus we have 2wp (u, v) = 04 2(i, U9 — @0, ). But we have (dzAdy)(u,v) = u,rvg—vpug = ztg(—2z—
r0,) — 209 (=20, — 71,) = 22 (—Te¥, + Vo) = 220wp(u, v), hence wp(u, v) = é(dm A dy)(u,v).

We suppose that © # 0. We have (dz A df)(u,v) = u.“¢ — “2v, = >(rig — Uo)(—0rz —

T T

=

r0,) + %(—Tﬂg + 0.00)(—trz — r,) = %r(r(—'&gﬁz + U, 09) + (U0 — Ug?,)) = 2wp(u,v), hence
wp(u,v) = 1(dz A d)(u,v). O
o REMARKS. e With the notation A and w of the proprosition above, if A =0 then O4 = {0}

and w = 0, which is non degenerate because Ker wg = {0}. This is why we only consider the
case A # 0 in this proposition.

o With the notation e, eg, e, r of the proposition above, (e, eg, e.) are the circular coordinates
we often see in physics and we have (eg, -) = rdf as expected. Attention, in our proof, z,y, z,r
do not "vary", they are fixed by B.

e Let A € sl,\ {0}. There is C € R such that for all (z,y,2) € O, 2% + 3> — 2% = C, hence
d(z%) = d(z* + y? — C), i.e. dz = L(zdw + ydy) (we notice that if z = y = 0, it is the null
form). For all (x,vy, 2) € O4 such that 22 +y? # 0, we denote (e, g, e.), df and r just like in
the proposition above and we can show that df = T%(acdy —ydx) (we notice that if r — +oo,
it "diverges"). Hence for all (z,y, z) € O4 such that 2%+ # 0, %dz/\d@ = idw/\dy, which
is non degenerate and is coincident with the case x2 + y? = 0. We notice that this gives us
another intersesting formulation for the proposition above.

In the next (very short) section of this report, we see some news and application of the subject
of this internship report.
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5 Conclusion

Overview. We have seen that, with the basic properties of a Lie group, we can define its Lie
algebra and some useful Lie group actions. Using algebra and calculus notions, we have shown
that the coadjoint orbits of a Lie group carry a canonical symplectic structure. This is a useful
geometric property. Finally, with the example of the unitary group of dimension 2 over C and the
special linear group of dimension 2 over R, we have seen two concrete illustrations.

Applications. The Lie algebra of a Lie group is in fact very useful to study this Lie group.
Lie algebras are often used to classify Lie groups and to link them. It is very interesting, as Lie
groups often appear in several other fields in mathematics or in physics. For example, SU, is very
useful in quantum mechanics (see . This internship was initially aiming to study the Virasoro
algebra (but the first part presented in this report took too much time and space), which is for
example used in string theory. About the Virasoro algebra, see the paper Coadjoint orbits of the
Virasoro algebra and the global Liouville equation by Joézsef Balog, Laszl6 Fehér and Laszlo Palla
published in 1998. In addition to this, we can mention that there is an extension of the theory we
have seen in this internship to infinite dimension.

News. There is still research about Lie groups and coadjoint orbits. For example, the non

homogeneous Lorentz group, which comes from physics and special relativity, is still studied in
mathematics for it has some unconvenient properties.
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7 Appendix

We give here some figures to illustrate different results of this report.

7.1 Proof of Theorem |4.26

Here is a graph summarising the proof of Theorem [4.26] explained in Subsubsection [4.2.2] The
framed results are the most important ones. An arrow from a result to another one indicates that
the first result is used to prove the second one.

Let G be a Lie group and g its Lie algebra. Let £ € g* and 6 the Maurer-Cartan form on G. Let
7 the canonical projection G — G/Ge¢, a := — (£, 60) and, with ¢, the canonical diffeomorphism
G/Ge¢ ~ Og, we consider w := ¢f (7*)~tda € Q(O¢). These are the notations used in Subsubsection

| m* is a bijection |—>||m KKS formula

do is G¢-basic

w is closed w is non degenerate

N S

| w is a G-invariant symplectic form

« is G-invariant and Ge¢-invariant

w is G-invariant

[4:24] The Maurer-Cartan form 6 is G-invariant
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7.2 Coadjoint orbits of the Lie group SU,, O = {x? + y? + 22 = 1}

z

S
s
=
N

iy I“‘I‘I‘\\\\\ﬂ'

_ MO\
..’H manaAftyes?

0.5 -0.5

This is one coadjoint orbit.

7.3 Coadjoint orbits of the Lie group SL,
Drawing {(z,y,2) € R® | 2? + y? — 22 =1}

This is one coadjoint orbit.
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Drawing {(z,y,2) € R® | * + y? — 22 = 0}
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This is the union of three coadjoint orbits.

Drawing {(z,y,2) € R® | 2? + ¢y? — 2% = — L}
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\
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This is the union of two coadjoint orbits.
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