Colle PSI*

Antoine Médoc

Semaine 3 (3 octobre 2022)

Planche 1 1

Question de cours

— Énoncer et démontrer la formule de Grassman.

Application 1.2

- Soient $F := \{(x, y, z) \in \mathbb{R}^3 \mid x + y + 2z = 0\}$ et $G := \{(x, y, z) \in \mathbb{R}^3 \mid x = -y = -z\}$ deux sous-espaces vectoriels de \mathbb{R}^3 . Montrer que F est un supplémentaire de G.
- Soit $(x,y,z) \in F \cap G$. On a x+y+2z=0 et x=-y=-z donc 2z=0 i.e. z=0, d'où (x,y,z)=(0,0,0). Ainsi $F\cap G=\{(0,0,0)\}$. Le sous-espace vectoriel F est le noyau d'une forme linéaire non nulle sur \mathbb{R}^3 donc, par le théorème du rang, dim F=3-1=2. De plus, G est engendré par (1, -1, -1) donc dim G = 1. Par la formule de Grassmann, $\dim(F+G)=2+1-0=3=\dim\mathbb{R}^3$ donc $F+G=\mathbb{R}^3$. Finalement, $\mathbb{R}^3=F\oplus G$.

1.3 Exercices

Exercice 1

Soit $f \in \mathcal{L}(\mathbb{R}^3)$ canoniquement associé à la matrice

$$M := \begin{pmatrix} 1 & 1 & -1 \\ -3 & -3 & 3 \\ -2 & -2 & 2 \end{pmatrix}.$$

- 1. Déterminer le noyau Ker f et sa dimension. On a Ker $f = \left\{ (x+y+z) \in \mathbb{R}^3 \;\middle|\; x+y-z=0 \right\}$. C'est donc un hyperplan de \mathbb{R}^3 et dim Ker f=2.
- 2. Donner une base de Im f.
 - Par le théorème du rang, $\operatorname{Im} f$ est une droite. Ainsi, n'importe quelle colonne non nulle de M est une base de Im f: par exemple, (1, -3, -2).
- 3. Donner une base b de \mathbb{R}^3 tel que

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

— Raisonnons par analyse-synthèse. Soit $b := (e_1, e_2, e_3)$ une telle base. On a $f(e_1) = 0$, $f(e_2) = e_1$ et $f(e_3) = 0$. Ainsi, $e_1 \in \operatorname{Ker} f \cap \operatorname{Im} f$ et $e_3 \in \operatorname{Ker} f$.

1

On choisit $e_1 := (1, -3, -2)$. On cherche un antécédent de e_1 pa f, i.e. une solution non nulle X = (x, y, z) à l'équation $MX = e_1$ avec e_1 la première colonne de M. On choisit par exemple $e_2 = (1, 0, 0)$. Enfin, on cherche $e_3 \in \text{Ker } f$ indépendant de e_1 : par exemple, $e_3 := (1, 0, 1)$.

Vérifions que la famille b ainsi construite est bien une base. On a $det(e_1, e_2, e_3) = 3 \neq 0$ donc b est une base. On a bien $Mat_b(f) = M$.

2 Planche 2

2.1 Question de cours

— Soit E un K-espace vectoriel de dimension finie n F un K-espace vectoriel. Soit (e_1, \ldots, e_n) une base de E et $(f_1, \ldots, f_n) \in F$. Existe-t-il une application linéaire $u \in \mathcal{L}(E, F)$ telle que $\forall i \ u(e_i) = f_i$? Est-elle unique? Le démontrer.

2.2 Application

- Soit E un espace vectoriel de dimension finie. Montrer que $\bigcap_{\varphi \in E^*} \operatorname{Ker} \varphi = \{0\}$.
- Soit $x \in \bigcap_{\varphi \in E^*} \operatorname{Ker} \varphi$ tel que $x \neq 0$. Par le théorème de la base incomplète, on peut compléter la famille libre (x) en une base (x, e_2, \ldots, e_n) de E. Il existe une forme linéaire $\varphi \in E^*$ telle que $\varphi(x) = 1$ et, pour tout $i \in [2, n]$, $\varphi(e_i) = 0$. Ainsi, $x \notin \operatorname{Ker} \varphi$ et cela est une contradition. Donc, par l'absurde, $\bigcap_{\varphi \in E^*} \operatorname{Ker} \varphi = \{0\}$.

2.3 Exercices

Exercice 1

Soit $A \in M_n(\mathbb{K})$ telle que, pour tout (i, j), $j = i + 1 \Rightarrow a_{i,j} = 1$ et $j \neq i + 1 \Rightarrow a_{i,j} = 0$. Soit $f \in \mathcal{L}(\mathbb{K}^n)$ canoniquement associé à A. Soit (e_1, \ldots, e_n) la base canonique de \mathbb{K}^n .

- 1. Écrire la matrice A.
 - Il s'agit de la matrice dont les seuls coefficients non nuls sont ceux de la première surdiagonale, tous égaux à 1.
- 2. Calculer $(f^2(e_1), \ldots, f^2(e_n))$ et en déduire A^2 .
 - On a $(f(e_1), \ldots, f(e_n)) = (0, e_1, \ldots, e_{n-1})$ et $(f^2(e_1), \ldots, f^2(e_n)) = (0, 0, e_1, \ldots, e_{n-2})$. Donc A^2 est la matrice dont les seuls coefficients non nuls sont ceux de la deuxième surdiagonale, tous égaux à 1.
- 3. Écrire les matrices A^{n-1} et A^n .
 - Par récurrence, $(f^{n-1}(e_1), \ldots, f^{n-1}(e_n)) = (0, \ldots, 0, e_1)$ et $(f^n(e_1), \ldots, f^n(e_n)) = (0, \ldots, 0)$. Ainsi, A^{n-1} est la matrice dont l'unique coefficient non nul est $[A^{n-1}]_{1,n} = 1$ et $A^n = 0$.
- 4. Soit E un \mathbb{K} -espace vectoriel de dimension n et $u \in \mathcal{L}(E)$ tel que $u^{n-1} \neq 0$ et $u^n = 0$. Montrer qu'il existe une base b de E telle que $\operatorname{Mat}_b(u) = A$.
 - On a $u^{n-1} \neq 0$ donc il existe $e_n \in E$ tel que $u^{n-1}(e_n) \neq 0$. Pour tout $i \in [1, n-1]$, on pose $e_i := u^{n-i}(e_n)$. Ainsi, pour tout $i \in [2, n]$, $u(e_i) = e_{i-1}$. Montrons que $b := (e_1, \ldots, e_n)$ est une base de E. Elle possède $n = \dim E$ vecteur donc il suffit de montrer qu'elle est libre. Soit $(\lambda_1, \ldots, \lambda_n)$ une famille de scalaires non tous nuls telle que $\sum_i \lambda_i e_i = 0$. Soit $i_0 := \max \{i \in [1, n] \mid \lambda_i \neq 0\}$. On a $u^{n-i_0-1}(\sum_i \lambda_i e_i = 0) = 0$, i.e. $\lambda_{i_0} e_n = 0$, i.e. $\lambda_{i_0} = 0$, ce qui est une contradiction. Donc b est libre, donc b est une base.

Par ailleurs, on a bien $Mat_b(u) = A$.

3 Planche 3

3.1 Question de cours

— Énoncer et démontrer la formule du rang.

3.2 Application

- Soit E et F deux K-espaces vectoriels de dimension finie, $u \in \mathcal{L}(E, F)$ et L un sous-espace vectoriel de E. Montrer que dim $u(L) = \dim L \dim(L \cap \operatorname{Ker} u)$.
- On applique la formule du rang à l'endomorphisme $f := u|_L : \dim L = \dim f(F) + \dim \operatorname{Ker} f = \dim u(F) + \dim(L \cap \operatorname{Ker} u).$

3.3 Exercices

Exercice 1

Soit $n \in \mathbb{N}^*$ et

$$\delta: \left| \begin{array}{ccc} \mathbb{R}_n[X] & \longrightarrow & \mathbb{R}_n[X] \\ P & \longmapsto & P(X+1) - P(X) \end{array} \right.$$

- 1. Montrer que δ est bien définie et linéaire. Est-elle un injective? Est-elle surjective?
 - Pour tout $P \in \mathbb{R}_n[X]$, $\deg(P(X+1)-P(X)) \leqslant \max(\deg P, \deg P(X+1) = \deg P \leqslant n$. Donc δ est bien définie. Pour tous $P,Q \in \mathbb{R}_n[X]$ et $\lambda \in \mathbb{R}$, $(\lambda P)(X+1) = \lambda(P(X+1))$ et (P+Q)(X+1) = P(X+1) + Q(X+1). Donc δ est linéaire. On a $\Delta(1) = 0$ donc $\ker \delta \neq \{0\}$ et δ n'est pas injective. Or δ est un endomorphisme d'un espace vectoriel de dimension finie, donc elle n'est pas surjective.
- 2. Donner une base de Ker δ .
 - Soit $P \in \text{Ker } \delta$. On a, par une récurrence directe, $\forall k \in \mathbb{Z}$, P(k) = P(0). Ainsi, P P(0) admet une infinité de racines donc P = P(0), i.e. P est constant. Ainsi $\text{Ker } \delta \subset \mathbb{R}_0[X]$. L'inclusion réciproque est immédiate, d'où $\text{Ker } \delta = \mathbb{R}_0[X]$ le sousespace vectoriel des polynômes constants.
- 3. Déterminer $\text{Im}\delta$.
 - Par le théorème du rang, $n+1=\dim(\operatorname{Im}\delta)+1$, i.e. $\dim(\operatorname{Im}\delta)=1$. Soit $P\in\mathbb{R}_n[X]$. Le coefficient dominant de P est le même que celui de P(X+1) donc $\deg \delta(P)\leqslant (\deg P)-1\leqslant n-1$. Ainsi, $\operatorname{Im} f\subset\mathbb{R}_{n-1}$. Par égalité des dimension, $\operatorname{Im} f=\mathbb{R}_{n-1}[X]$.

4 Exercices supplémentaires

Exercice 1

- Montrer qu'une matrice A d'ordre n impair n'est pas inversible.
- On a det $A = \det A^T = \det(-A) = (-1)^n \det A = -\det A$ d'où det A = 0 et A n'est pas inversible.

Exercice 2

- Soit $u \in \mathcal{L}(\mathbb{R}^3)$ tel que $u^3 = -u$. Montrer que u n'est pas un automorphisme de \mathbb{R}^3 .
- On a det $u^3 = \det(-u)$, i.e. $(\det u)^3 = -\det u$, i.e. $\det u$ est une racine réelle de $X^3 + X = X(X^2 + 1)$, i.e. $\det u = 0$ et u n'est pas inversible.

Exercice 3

Soit $M, N \in M_n(\mathbb{C})$.

- 1. Supposons M inversible. Montrer que $\det(I_n MN) = \det(I_n NM)$.
- 2. Calculer

$$A := \begin{pmatrix} \mathbf{I}_n - NM & N \\ 0, \mathbf{I}_n & \end{pmatrix} \times \begin{pmatrix} \mathbf{I}_n & 0 \\ M & \mathbf{I}_n \end{pmatrix} \text{ et } B := \begin{pmatrix} \mathbf{I}_n & 0 \\ M & \mathbf{I}_n \end{pmatrix} \times \begin{pmatrix} \mathbf{I}_n & N \\ 0 & \mathbf{I}_n - MN \end{pmatrix}.$$

— On a
$$A = B = \begin{pmatrix} \mathbf{I}_n & N \\ M & \mathbf{I}_n \end{pmatrix}$$
.

- 3. Montrer que $\det(I_n MN) = \det(I_n NM)$.
 - On a det $A = \det B$ donc, en calculant par blocs, $\det(I_n MN) = \det(I_n NM)$.

Exercice 4

Soit E un K-espace vectoriel, $p \in \mathbb{N}^*$ et $u \in \mathcal{L}(E)$ tels que u^{p-1} et $u^p = 0$.

- 1. Soit $k \in \mathbb{N}^*$ et $x \in E$ tels que $u^{k-1}(x) \neq 0$. Montrer que $(x, u(x), \dots, u^k(x))$ est libre.
- Soit $(\lambda_0, \ldots, \lambda_k)$ une famille de scalaires non tous nuls telle que $\sum_{i=0}^k \lambda_i u^i(x) = 0$. Soit $i_0 = \min \{ i \in [0, k] \mid \lambda_i \neq 0 \}$. On a $k-1 \leqslant p-1$ donc $p-1-i_0 \geqslant 0$ et $u^{p-1-i_0}\left(\sum_{i=0}^k \lambda_i u^i(x)\right) = 0$, i.e. $\lambda_{i_0} u^{p-1}(x) = 0$, i.e. λ_{i_0} , ce qui est une contradiction. Donc $(x, u(x), \ldots, u^k(x))$ est libre.
- 2. Soit $e^u := \sum_{k=0}^{p-1} \frac{1}{k!} u^k$. Montrer que $\operatorname{Ker} u = \operatorname{Ker} e^u \operatorname{Id}_E$.
 - Soit $x \in \text{Ker } u$. On a $e^u(x) = x$ donc $x \in \text{Ker } e^u \text{Id}_E$. Soit $x \in \text{Ker } e^u - \text{Id}_E$. On a $\sum_{i=1}^{p-1} \frac{1}{k!} u^k(x) = 0$. Par l'absurde, supposons $u(x) \neq 0$. Soit $k := \max i \in [1, p-1] u^i(x) = 0$. On a donc $\sum_{i=1}^k \frac{1}{k!} u^k(x) = 0$. Or, par la question précédente, $(x, u(x), \dots, u^k(x))$ est libre. On a donc une contradiction. Ainsi, u(x) = 0, i.e. $u \in \text{Ker } u$.

Par double inclusion, $\operatorname{Ker} u = \operatorname{Ker} e^u - \operatorname{Id}_E$.

Exercice 5

Soit E un K-espace vectoriel, $f \in \mathcal{L}(E)$ et $a \in K^*$ tels que $f^3 - 3af^2 + a^2f = 0$.

- 1. Montrer que la somme $\operatorname{Ker} f + \operatorname{Im} f$ est directe.
 - Soit $x \in \text{Im} f \cap \text{Ker } f$. Il existe $z \in E$ tel que x = f(z). On a $f^2(z) = f(y) = 0$ et $f^3(x) = 0$. Or $f^3 3af^2 + a^2f = 0$ donc, en évaluant en z, $a^2x = 0$. Ainsi, x = 0. Donc $\text{Im} f \cap \text{Ker } f = \{0\}$.
- 2. Montrer que $E = \operatorname{Ker} f \oplus \operatorname{Im} f$.
 - Réalisons une analyse-synthèse. Soit $x \in E$ et $(u,v) \in \operatorname{Ker} f \times \operatorname{Im} f$ tels que x = u + v. Il existe $w \in E$ tel que v = f(w). On a f(x) = f(v). Donc $f^2(x) = f^2(v) = f^3(w) = 3af^2(w) a^2f(w) = 3af(x) a^2v$. Ainsi $v = \frac{1}{a^2}(3af(x) f^2(x))$ et u = x v. Faisons la synthèse. Soit $x \in E$, $v := \frac{1}{a^2}(3af(x) f^2(x))$ et u := x v. On a $v = f\left(\frac{1}{a^2}(3ax f(x))\right) \in \operatorname{Im} f$. De plus $f(u) = f(x) f(v) = f(x) \frac{1}{a^2}(3af^2(x) f^3(x)) = \frac{1}{a^2}(a^2f(x) 3af^2(x) + f^3(x)) = 0$, donc $u \in \operatorname{Ker} f$. Ainsi $E = \operatorname{Ker} f + \operatorname{Im} f$. Finalement, $E = \operatorname{Ker} f \oplus \operatorname{Im} f$