Sous-algèbres réduites de $\mathcal{M}_n(\mathbb{C})$

RIFFAUT Antonin

2013-2014

Définition 1. Soit \mathcal{A} une sous-algèbre associative de $\mathcal{M}_n(\mathbb{C})$. On dit que \mathcal{A} est réduite si elle ne possède pas d'élément nilpotent non trivial.

Proposition 2. Soit A une sous-algèbre associative réduite de $\mathcal{M}_n(\mathbb{C})$. Alors tous les éléments de A sont codiagonalisables.

Pour ce faire, nous allons établir que tous les éléments de \mathcal{A} sont diagonalisables, et que \mathcal{A} est commutative. Nous pourrons alors conclure que les éléments de \mathcal{A} sont codiagonalisables.

Démonstration. • Dans un premier temps, nous allons vérifier que si \mathcal{A} est réduite, alors la sousalgèbre $\mathcal{A} + \mathbb{C}I_n$ est également réduite. Nous pourrons alors supposer sans perte de généralité que $I_n \in \mathcal{A}$.

Soit $M = A + \lambda I_n \in \mathcal{A} + \mathbb{C}I_n$ avec $A \in \mathcal{A}$ et $\lambda \in \mathbb{C}^*$. On suppose que M est nilpotente. Alors A est inversible : en effet, si μ est une valeur propre de A, alors $\mu + \lambda$ est une valeur propre de M. Comme M est nilpotente, son unique valeur propre est 0, d'où $\mu = -\lambda$. On en déduit que $\operatorname{Sp}(A) = \{-\lambda\}$ avec $-\lambda \neq 0$: A est donc inversible. En outre, comme A et M commutent, alors AM est également nilpotente. Or $AM = A^2 + \lambda A \in \mathcal{A}$; puisque \mathcal{A} est réduite, nécessairement AM = 0, et par conséquent $A^{-1}AM = M = 0$, ce qui achève de démontrer que $\mathcal{A} + \mathbb{C}I_n$ est réduite

- À partir de maintenant, on suppose que I_n ∈ A, de sorte que les polynômes en les éléments de A soient encore des éléments de A. Soit A ∈ A. Nous allons démontrer que A est diagonalisable. Soit χ_A = ∏^r_{i=1}(X − λ_i)^{m_i} ∈ ℂ[X] son polynôme caractéristique, et P = ∏^r_{i=1}(X − λ_i) ∈ ℂ[X]. En notant m = max_{i∈{1,...,r}} m_i, on a χ_A|P^m, donc par le théorème de Cayley-Hamilton, P(A)^m = 0. Or P(A) ∈ A et A est réduite, donc P(A) = 0. P étant scindé à racines simples, on en déduit que A est diagonalisable.
- Il reste à démontrer que \mathcal{A} est commutative. Pour ce faire, nous allons tout d'abord montrer que l'algèbre \mathcal{A} est engendrée par les projecteurs de \mathcal{A} . Soit en effet $A \in \mathcal{A}$. Notons de nouveau $\lambda_1, \ldots, \lambda_r$ ses valeurs propres distinctes. Comme A est diagonalisable, alors

$$\mathbb{C}^n = \bigoplus_{i=1}^r E_{\lambda_i}(A).$$

Pour tout $i \in \{1, ..., r\}$, on note p_i le projecteur sur $E_{\lambda_i}(A)$ parallèlement à $\bigoplus_{j \neq i} E_{\lambda_j}(A)$. Alors pour tout $x \in \mathbb{C}^n$:

$$Ax = A\left(\sum_{i=1}^{r} p_i(x)\right) = \sum_{i=1}^{r} A\underbrace{p_i(x)}_{\in E_{\lambda_i}(A)} = \sum_{i=1}^{r} \lambda_i p_i(x)$$

d'où $A = \sum_{i=1}^r \lambda_i p_i$. Les p_i sont des éléments de \mathcal{A} en tant que polynômes en A: par exemple, $p_i = L_i(A)$ où L_i est le polynôme d'interpolation tel que $L_i(\lambda_j) = 0$ pour $i \neq j$, et $L_i(\lambda_i) = 1$. Finalement, toute matrice $A \in \mathcal{A}$ est combinaison linéaire finie de projecteurs de \mathcal{A} .

Pour conclure, observons que si $A \in \mathcal{A}$ et si B est un projecteur de \mathcal{A} , alors

$$(BAB - BA)^{2} = BABBAB - BABBA - BABAB + BABA$$
$$= BABAB - BABA - BABAB + BABA$$
$$= 0.$$

BAB - BA est nilpotente et appartient à \mathcal{A} , donc BA = BAB. De même, $(BAB - AB)^2 = 0$ d'où BAB = AB. On en déduit que AB = BA. Dans le cas général, étant données $A, B \in \mathcal{A}$ quelconques, il suffit d'écrire B comme combinaison linéaire finie de projecteurs de \mathcal{A} , et on aboutit aisément à la même conclusion. L'algèbre \mathcal{A} est bien commutative.

Complément : diagonalisation simultanée

Proposition 3. Soient K un corps (commutatif), E un K-espace vectoriel de dimension finie n, I un ensemble, et $(f_i)_{i\in I}$ une famille d'endomorphismes diagonalisables de E qui commutent deux à deux. Alors les f_i sont codiagonalisables.

 $D\acute{e}monstration$. Nous allons raisonner par récurrence sur n. Pour n=1, le résultat est immédiat. Supposons que $n \geq 2$. On distingue deux cas :

Cas 1 : les f_i sont tous des homothéties. Le résultat est alors direct.

Cas 2: il existe $i_0 \in I$ tel que f_{i_0} ne soit pas une homothétie. Soient $\lambda_1, \ldots, \lambda_r$ ses valeurs propres distinctes. Comme f_{i_0} est diagonalisable, alors

$$E = \bigoplus_{k=1}^{r} E_{\lambda_k}(f_{i_0}).$$

Fixons $k \in \{1, ..., r\}$. $E_{\lambda_k}(f_{i_0})$ est stable par f_{i_0} et par tous les f_i , $i \neq i_0$, car ils commutent tous avec f_{i_0} . Pour $i \in I$, notons alors $g_{k,i}$ l'endomorphisme induit par f_i sur $E_{\lambda_k}(f_{i_0})$. Les endomorphismes $g_{k,i}$ sont diagonalisables et commutent deux à deux; de plus, dim $E_{\lambda_k}(f_{i_0}) < n$ (car f_{i_0} n'est pas une homothétie). Par hypothèse de récurrence, il existe alors une base \mathcal{B}_k de $E_{\lambda_k}(f_{i_0})$ dans laquelle les matrices des $g_{k,i}$ sont toutes diagonales. La base \mathcal{B} de $E_{\lambda_k}(f_{i_0})$ est alors une base de diagonalisation simultanée des endomorphismes f_i , ce qui conclut la preuve.

Références

[MNE] MNEIMNÉ, Réduction des endomorphismes.